DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH
|
|
- Denis Mach
- před 8 lety
- Počet zobrazení:
Transkript
1 DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH
2 Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině C = [c, c 2 ] R 2 Definice: Zobrazení f: A R, kde A R 2 ted zobrazení podmnožin R 2 do množin reálných čísel Se nazývá reálná funkce dvou reálných proměnných A = D(f) z = f, =. z C = [4,9]
3 Definiční obor f, > 0 <, > = ln arcsin + > 0 D f = {, R 2 ; > 0, <, >, + > 0} Zobrazíme definiční obor NENÍ GRAF FUNKCE!!! > graf f = {,, f, R 3 ;, D f } 3 > - = = = =
4 Definice: Nechť A a, a 2 R 2. Kartézský součin otevřených intervalů Se nazývá okolí bodu A=[a, a 2 ] a ε, a + ε a 2 ε, a 2 + ε ε > 0 a 2 + ε a > > a 2 ε - a ε a a + ε Definice: Nechť M R 2. Bod A R 2 se nazývá a) Vnitřní bod množin M, Jestliže eistuje jeho okolí, které je podmnožinou M b) Hraniční bod množin M Jestliže v každém jeho okolí je bod, který patří i nepatří do M
5 Definice: Nechť M R 2. Množina M se nazývá a) Otevřená, jestliže neobsahuje žádný hraniční bod b) Uzavřená, jestliže obsahuje všechn své hraniční bod c) Omezená (ohraničená), jestliže je podmnožinou okolí nějakého bodu Definice: Nechť M R 2. Množina M se nazývá kompaktní Jestliže je uzavřená a omezená f, = arcsin > > 2 2 -
6 f, = ln > > f, = = 3 3 Otevřená, jestliže neobsahuje žádný hraniční bod Uzavřená, jestliže obsahuje všechn své hraniční bod
7 f, = = Kompaktní množina 3
8 f, = arccos 0 f, = arcsin Definice: Definice: Nechť M R 2. Množina M se nazývá kompaktní Říkáme, že množina M R n Jestliže je uzavřená a omezená Je omezená (resp. ohraničená) Jestliže eistuje k > 0, takové, že vzdálenost každého bodu X M od počátku O je menší nebo rovno k
9 Derivace funkce dvou a více proměnných úvod Dík derivaci jedné proměnné jsme mohli: a) Zjistit jak se změní, kdž se změní b) Minimum a maimum etrém funkce Ve většině případech si nevstačíme s jednou proměnnou U =. U =..z dπ dq = 0 Ma. zisk Min. náklad dtc dq = 0 Q = A. K a. L a P ČEZ = f(, ) Q = 2Y P + P 2 Dík derivaci více proměnných budeme schopni Určit příspěvk jednotlivých nezávislých proměnných k závislé proměnné Znaménko derivace Klíčové pro pochopení optimalizačních problémů Celá ekonomie je jedna velká optimalizace
10 Derivace funkce dvou proměnných teorie z = + 2 z = f, Parciální derivace Podle matematik pro VŠE výraz zúžená funkce pomůže při počítání zúžíme jednu proměnnou si představíme jako nějakou konstantu f = ln ( 2 + ) f, = ln ( ) f 2 = ln (4 + 2 ) C=[2,] Definice: Nechť f je funkce dvou proměnných, C=[c,c 2 ] je vnitřní bod D(f) a f resp. f 2 je zúžení funkce f definované předpisem f ()=f(,c 2 ) resp. f 2 ()=f(c,) Číslo f C, resp. f C definované vztahem f C = f c resp. f C = f 2 c 2 Se nazývají parciální derivace funkce f podle (resp. ) v bodě C f 2 = f = f 2, = f 2 = f 2, = f 2 =
11 kdž derivujeme funkci více proměnných tak derivujeme podle jedné proměnné a na zbtek se díváme jako na konstant f, = ln ( ) C=[2,] f f f, f, = = = f = f f C = f C = = = 2 5 Chceme vědět jak se změní závislá proměnná kdž se změní konkrétní nezávislá proměnná A zbtek se nemění C piva = 0,5T + 0,0Y 2P piva + 4P vína C piva T = 0,5 C piva Y = 0,0 C piva P piva = 2 C piva P vína = 4 Jak se změní spotřeba kdž: ) Vzroste teplota 2) Klesne důchod 3) Vzroste cena piva 4) Vzroste cena vína!!!všímat si znaménka derivace!!!
12 Definice: Nechť f je funkce dvou proměnných, C=[c,c 2 ] je vnitřní bod D(f). Vektor f (C) definovaný vztahem f C = ( f C, f C ) Se nazývá derivace funkce f v bodě C f C = 2 Název gradient funkce f v bodě C = 4 5 f C = f 2, = ( 4, 2 ) 5 5 Definice: Nechť f je funkce dvou proměnných. Funkce dvou proměnných Pokud jsou všechn druhé f, parciální f, f, derivace f funkce f spojité Se nazývají druhé parciální derivace funkce f z = f, 2 z 2 = f, 2 z = f, = 5 + e. = e.. = e.. + e = Smíšené parciální derivace z = f, = 5 + e 3 z = f, 2 z 2 = f, 2 z = f, f, = ln ( ) f f = e. = = = e.. C=[2,] = 2 5 = e.. + e
13 Etrém funkce dvou proměnných Definice: Nechť M je podmnožina definičního oboru funkce dvou proměnných M D f Jestliže pro všechna X=[,] M platí f(x) f(c) Resp. f(x) f(c) Říkáme, že funkce f má v bodě C=[c,c 2 ] maimum resp. minimum na množině M Maimum a minimum funkce jsou tzv. etrém funkce Opět musíme rozlišovat lokální a globální (absolutní) etrém Pokud je množina M jen okolí bodu C, hovoříme o lokálních etrémech Kdž M=D(f) má funkce v C globální (absolutní) etrém f(, ) =. < 0,3 > f C = 3.3 = 9 f X 9 f C = 0 f X 0 < 0,3 > C[3,3] C[0,0]
14 Věta (nutná podmínka pro lokální etrém dvou proměnných) Má-li funkce dvou proměnných f ve vnitřním bodě C D f lokální etrém a eistuje f (C), pak f C = 0,0 Pozor stejně jako u etrému funkcí proměnné Kdž f C = 0,0 nutně to neznamená etrém!!! Stacionární bod bod podezřelé z etrému f, = z = f, = 2 f, = 2 = 0 = 0 Hledám bod podezřelé z etrému = 2 = 2 = 0 = 0 A=[0,0] = = B=[,] Stacionární bod Etrém může být, ale nemusí!!!
15 Věta: (postačující podmínka pro lokální etrém funkce dvou proměnných) Nechť C je vnitřní bod D(f), ve kterém f (C)=(0,0) a funkce dvou proměnných f Má v okolí bodu C spojité druhé parciální derivace. Označme D = f(c) D 2 = f(c) f(c) f(c) f(c) D = f 0,0 = 0 D D 2 = 0 0 = = f, = 2 D 2 = 2 2 = 2 a) Jestliže D 2 >0 a D >0, pak funkce f má v bodě C lokální minimu b) Jestliže D 2 >0 a D <0, pak funkce f má v bodě C lokální maimum c) Jestliže D 2 <0, pak funkce f nemá v bodě C lokální etrém (sedlový bod) D 2 = 0 nemůžeme rozhodnout Hessova matice Hessián f, = z = f, = 2 f, = 2 = 0 = 0 A=[0,0] = 0 = 0 = = A=[,] = 2 = 2 Lok. Ma. 2 z 2 = f, = 2 2 z 2 = f, = 2 2 z = f, = 2 z = f, =
16 Věta: Slvestrovo kritérium Kvadratická forma q: R n R je (i) Pozitivně definitní, jestliže všechn hlavní subdeterminant matice A jsou kladné a a 2 a a 3 a 2 a > 0 a 2 a 22 a a 23 > 0 2 a > 0 22 a 3 a 32 a 33 (ii) Negativně definitní, jestliže subdeterminant střídají znaménka počínaje záporným a a 2 a 3 a a 2 a a 2 a 22 a <0 23 <0 a 2 a > 0 22 a 3 a 32 a 33 (iii) Indefinitní, jestliže jsou všechn subdeterminant nenulové a přitom neplatí ani pravidlo (i) ani (ii) Subdeterminant (minor) získáme ze čtvercové matice A, odstraněním i-tého řádku a j-tého sloupce determinant osekané matice
17 H f 0, 0 = 2 f 2 ( 0, 0 ) 2 f ( 0, 0 ) 2 f ( 0, 0 ) 2 f 2 ( 0, 0 ) 0, 0 je stacionární bod funkce f. Potom ) Je-li H f 0, 0 >0, má funkce f v bodě 0, 0 lokální etrém a) 2 f 2 (, )>0, má funkce f v bodě 0, 0 ostré lokální minimum (PD) b) 2 f 2 (, )<0, má funkce f v bodě 0, 0 ostré lokální maimum (ND) 2) Je-li H f 0, 0 < 0, má funkce f v bodě 0, 0 sedlový bod Nemá ted v tomto bodě lokální etrém (ID)
18 Vázané etrém Hledáme etrém jedné funkce, ale jsme svázáni jinou funkcí Hledáme maimální užitek, ale jsme svázání rozpočtovým omezením Mám rozpočet a chci za něj získat nejvšší možný užitek Vrábíme auta, ale jsme vázáni rozpočtem firm Mám rozpočet a chci při něm vrobit maimální objem Pro hledání vázaných etrémů vužijeme: a) Dosazovací metodu b) Jacobián c) Metodu Lagrangeových multiplikátorů Definice: Nechť f a g jsou funkce dvou proměnných, M={[,] D f ; g, = 0} Etrém funkce f v množině M se nazývají vázané etrém Rovnici g(,)=0 říkáme vazební podmínka U = 2pivo + rum I = P pivo pivo + P rum rum 500 = 25pivo + 5rum 25pivo + 5rum 500 = 0
19 Dosazovací metoda Nejjednodušší, ale její použití je omezené Lze použít v případě, kd jsme schopni z vazební podmínk g, = 0 Vjádřit jako funkce (a naopak) g, = 0 = φ() = 0 = Následně dosadíme = φ() do funkce f Věta: Nechť je funkce f() spojitá na intervalu (a,b) A na tomto intervalu má také derivace. Jestliže f ( 0 )=0 a f ( 0 )>0 Resp. f ( 0 )=0 a f ( 0 )<0 Pak má funkce f() v 0 lokální minimum lokální maimum f, = f(, φ ) = h() postup stejný jako u funkce jedné proměnné f, = h = f(, ) = 2 3 9( ) + 3( ) = h = h = 2 8 = = 6 2. = 0 = 2 = h 2 = = 6 > 0 h = 2. 8 = 6 < 0 lokální minimum lokální maimum A = [2,] B = [,0]
20 Jacobiho determinant Dosazovací metoda nám nebude většinou stačit Z g(,)=0 nepůjde vdolovat / Věta: (nutná podmínka pro vázaný etrém) Má-li funkce dvou proměnných f při vazební podmínce g(,)=0 v bodě C vázaný etrém A funkce f,g, mají v okolí bodu C spojité parciální derivace, pak f(c) f(c) g(c) g(c) = 0 Jacobián
21 f, = e = 5 g, = 0 g, = f(c) f(c) g(c) g(c) = 0 Věta (zobecněná Weierstrassova) Funkce (dvou proměnných) spojitá v neprázdné kompaktní množině Má na této množině maimum i minimum f, = e +2. g, = 2 f, = e +2.2 g, = 2 e e +2 2 = 2. e +2 4e +2 = 2e +2. ( 2) 5 2e = = 0 = 2 = = 2 = = 2 A = [,2] B = [, 2] = 5 = ± f A = e 5 f B = e 5 Vázané maimum Vázané minimum
22 Metoda Lagrangeových multiplikátorů g(,)=0 Vužijeme kdž nepůjde použít dosazovací metoda, Jacobián + pro etrém 3 a více proměnných + pro více vazebných podmínek ) Vtvoříme Lagrangeho funkci L L,, r = f,, r + λ g (,, r ) + λ 2 g 2,, r +.. L,, z = z 5 + λ ( z 2 9) 2) Zjistíme podezřelé bod z etrému L,, r r L,, r = 0 = 0 g,, r = 0 g 2,, r = 0 Množina bodů vhovující vazební podmínce je uzavřená a omezená Kompaktní WV. D(f)=R 2 M D(f) f A = 23 Vázané minimum f B = 3 Vázané maimum A = ( 2,, 2) B = (2,,2) L = 4 + 2λ = 0 L = 2 + 2λ = 0 L z = 4 + 2zλ = 0 f,, z = z 5 2 λ 2 λ = z 2 = 9 + λ = 2 λ = λ z = 2 λ z 2 = 9 2 λ 2 = + 2 λ 2 = 9
23 Etrém na kompaktní množině s vnitřními bod Podezřelé bod budeme muset hledat a) Uvnitř množin b) Na hranici množin a) Na závěr spočítat funkční hodnot a určit etrém f, = M = {, ; , 0} f, = 2 2 = 0 f, = = 0 = 6 = 8 b ) g, = 2 g, = = = 25 = 8. (4 + 3) = 4 3 b 2 ) Funkce f má NA MNOŽINĚ M minimum v bodě B a maimum v E f B = 75 f E = 05 f F = < 25, > 0 A = [6, 8] = 25, > 0 2 = 9 = ±3 f 0, B = [3, 4] C = [ 3,4] = 0 = = h() h = = 0 D = [0, 8] b 3 ) hrot na hranici = 8 E = [0,5] 5 6 F = [0, 5]
Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou
1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový
Více1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH
1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU
VíceFunkce dvou a více proměnných
Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:
Více6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH
Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle
Více5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
Více10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
VíceKapitola 4: Extrémy funkcí dvou proměnných 1/5
Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje
Vícex 2(A), x y (A) y x (A), 2 f
II.10. Etrém funkcí Věta (nutná podmínka pro lokální etrém). Necht funkce f(, ) je diferencovatelná v bodě A. Má-li funkce f v bodě A lokální etrém, pak gradf(a) = 0. Onačme hlavní minor matice druhých
VíceDefinice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f
Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,
VíceUčební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální
VíceFunkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
VíceEXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH DEFINICE. Funkce f více proměnných. má v bodě C D(f) lokální maximum, resp. lokální minimum, jestliže existuje okolí U bodu C takové, že f(c) je maximální (resp. minimální
Víceverze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový
1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec
Víceanalytické geometrie v prostoru s počátkem 18. stol.
4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami
VícePřijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R
VíceMonotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné
66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak
VíceOhraničená Hessova matice ( bordered hessian ) je. Sestrojíme posloupnost determinantů (minorů):
Ohraničená Hessova matice ( bordered hessian ) je matice 2. parc. derivací L vzhledem k λ λ r x x n v tomto pořadí: g 0 0 g x n g 0 0 2 g 2 x n g 0 0 r g x HB = r x n g g r 2 L 2 L. x 2 x x n g g x 2 r
VíceMatematická analýza pro informatiky I. Extrémy funkcí více proměnných
Matematická analýza pro informatiky I. 12. přednáška Extrémy funkcí více proměnných Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 12. dubna 2011
VíceMatematika 5 FSV UK, ZS Miroslav Zelený
Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení
Vícefakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz
VícePrůběh funkce II (hledání extrémů)
.. Průběh funkce II (hledání etrémů) Předpoklad: Pedagogická poznámka: Poslední příklad v běžné vučovací hodině nestíháme. Rchlost postupu je možné značně ovlivnit tím, kolik času dáte studentům na výzkumné
VíceFunkce více proměnných. April 29, 2016
Funkce více proměnných April 29, 2016 Příklad (Derivace vyšších řádů) Daná je funkce f (x, y) = x 2 y + y 3 x 4, určte její parc. derivace podle x a podle y prvního i druhého řádu, i smíšené. f x = 2xy
Více1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
VíceDerivace úvod. Jak zjistit míru změny?
Derivace úvod P ČEZ Jak zjistit míru změny? Derivace nám dá odpověď jestli je funkce: rostoucí/klesající konkávní/konvení jak moc je strmá jak moc roste kde má maimum/minimum 1000 700 P ČEZ P ČEZ 3% 4%
Více9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom
Vícef(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
VíceDefinice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
VíceOtázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
VíceLimita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
VíceLimita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
VíceLimita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
Více8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R.
Řešené příklady k extrémům funkcí více proměnných 8 Určete všechny lokální extrémy funkce fx y x + arctg x + y + y x y R Řešení Funkci f si vyjádříme jako součet f + f kde f x x + arctg x x R f y y + y
VíceDiferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY
Diferenciální počet funkcí jedné reálné proměnné - 4.1 - LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Při hledání lokálních etrémů postupujeme podle následujícího programu Nalezneme
Více5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými
Více{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou
Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(
Víceverze 1.3 x j (a) g k 2. Platí-li vztahy v předchozím bodu a mají-li f, g 1,..., g s v a diferenciál K = f + j=1
1 Úvod Vázané extrémy funkcí více proměnných verze 1. Následující text popisuje hledání vázaných extrémů funkcí více proměnných. Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec
VíceÚvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Více+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
VíceZáklady matematiky pro FEK
Základ matematik pro FEK 7. přednáška Blanka Šedivá KMA zimní semestr 06/07 Blanka Šedivá (KMA) Základ matematik pro FEK zimní semestr 06/07 / 5 Jednostranné limit Definice: Vlastní limita ve vlastním
Vícey = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).
III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce
VíceEXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH
EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R
VíceDrsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy
Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura
VíceDodatek 2: Funkce dvou proměnných 1/9
Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných
VícePrimitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
VíceDERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem
VíceOznačení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).
9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)
VíceMichal Bulant. Masarykova univerzita Fakulta informatiky
Matematika III 3. přednáška Funkce více proměnných: derivace vyšších řádů, lokální a absolutní extrémy Michal Bulant Masarykova univerzita Fakulta informatiky 6. 10. 2010 Obsah přednášky 1 Literatura 2
VícePrůvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
Více12. Funkce více proměnných
12. Funkce více proměnných 12.1 Parciální derivace a totální diferenciál Definice Necht f je reálná funkce n proměnných, a 2 R n a 1 i n. 12.1 Parciální derivace a totální diferenciál Definice Necht f
VíceExtrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
VíceDEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
VíceAplikace derivace ( )
Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické
Více( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce
MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu
VíceHledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky
6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme
Více1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
VíceDnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.
Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného
VíceBakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
VíceDiferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
VíceDefinice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
Více[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu
1..1 Průběh funkce III (prohnutí Předpoklad: 111 Pedagogická poznámka: Při poctivém probírání b tato látka zabrala dvě celé vučovací hodin. Studenti z toho nebudou příliš nadšení, je zde příliš mnoho definic
VíceMatematika pro informatiky
(FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce
VíceFUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného
VíceDiferenciální počet funkce jedné proměnné 1
Diferenciální počet funkce jedné proměnné Limita funkce Pojem limita můžeme česk vjádřit jako mez, případně hranice Zavedení pojmu limita si objasníme na příkladu Příklad : Funkce f ( ) Obr 6: Graf funkce
VícePolynomy a racionální lomené funkce
Polnom a racionální lomené funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Polnom Definice a základní pojm Násobnost kořene Počet kořenů Kvadratický polnom Rozklad na součin kořenových
Více30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.
KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1
VíceVšechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních
VíceMatematika II Extrémy funkcí více promìnných
Matematika II Extrémy funkcí více promìnných RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Parciální derivace vy¹¹ích øádù Def.
VíceUzavřené a otevřené množiny
Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,
VíceUrčete a graficky znázorněte definiční obor funkce
Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro
Více( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis
1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž
Více2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
Více1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
VíceDrsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
VíceDEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib
INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student
VíceRolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b
Průběh unkce Rolleova věta Mějme unkci, která má tto vlastnosti : a) je spojitá v a, b b) v každém bodě a,b má derivaci c) (a) = (b). b Potom eistuje v a, alespoň jeden bod c, v němž ( c) : 1, 3 0 1 1
Vícec ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =
VíceAPLIKACE. Poznámky Otázky
APLIKACE Následující úlohy lze zhruba rozdělit na geometrické, algebraické a úlohy popisující různé stavy v některých oblastech jiných věd, např. fyziky nebo ekonomie. GEOMETRICKÉ ÚLOHY Mezi typické úlohy
Více1 Funkce více proměnných
1 Funkce více proměnných Je-li n + 1 proměnných veličin obsaženo v nějaké rovnici, můžeme kteroukoliv z nich pokládat za funkci ostatních n nezávisle proměnných. Takové funkce mají podobné vlastnosti jako
VíceFunkce. Vlastnosti funkcí
FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční
Více(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
Více1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
VíceGlobální extrémy (na kompaktní množině)
Globální extrémy (na kompaktní množině) Budeme hledat globální extrémy funkce f na uzavřené a ohraničené (tedy kompaktní) množině M. Funkce f může svého globálního extrému na M nabývat bud v nějaké bodě
Více17. Posloupnosti a řady funkcí
17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.
VíceLimita a spojitost LDF MENDELU
Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceZáklady maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické
VíceMatematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16
Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.
VíceDerivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
VícePROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
VíceFunkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VíceFUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
VíceDerivace funkcí více proměnných
Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,
Vícei=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
VíceMatematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceMASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii
MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou
VíceNejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
VíceNalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
Více