KMS cvičení 5. Ondřej Marek
|
|
- Jindřiška Sára Macháčková
- před 8 lety
- Počet zobrazení:
Transkript
1 KMS cvičení 5 Ondřej Marek
2 Ondřej Marek KMS 5 KINEMAICKÉ BUZENÍ ABSOLUNÍ SOUŘADNICE Pohybová rovnice: mx + b x x + k x x = mx + bx + kx = bx + kx Partikulární řešení: x = X e iωt x = iωx e iωt k m b x(t) b x x mx m k x x x = Xe iωt x (t) x = iωxe iωt x = ω Xe iωt po dosazení do pohybové rovnice: k mω + ibω Xe iωt = ibω + k X e iωt X X = k + ibω k mω + ibω = Ω + iζωω Ω ω + iζωω = + iζη η + iζη X = X e iφ Γ η = φ = arccos + ζη η + ζη + ζη arccos η η + ζη
3 Ondřej Marek KMS 5 KINEMAICKÉ BUZENÍ - RELAIVNÍ SOUŘADNICE x = x + x r Pohybová rovnice: mx r + bx r + kx r = mx Partikulární řešení: x = X e iωt x = ω X e iωt x r = X r e iωt k m b x r (t) x r = iωx r e iωt x r = ω X r e iωt x (t) po dosazení do pohybové rovnice: k mω + ibω X r e iωt = mω X e iωt X r mω = X k mω + ibω = ω Ω ω + iζωω = η η + iζη Γ η = η η + ζη φ = arccos η η + ζη 3
4 PŘÍKLAD: Příklad - kinematické buzení L φ M d / t Motor M pohání hřídel, ke kterému je připojen setrvačník s momentem setrvačnosti I=,kgm, střední úhlovou rychlostí n=5ot/min. Motor má ovšem nerovnoměrný chod, který je definován pomocí oscilace úhlového zrychlení φ Vyšetřete vybuzené kmity v soustavě (frekvence a amplitudy) G=8 GPa, d=3mm, L=.5m, ζ=. ŘEŠENÍ: Pokud se neuvažuje moment setrvačnosti rotoru motoru, pak lze úlohu chápat jako kinematické buzení setrvačníku na poddajném hřídeli. k Pohybová rovnice v absolutních souřadnicích: Iφ + bφ + kφ = bφ + kφ Pohybová rovnice v relativních souřadnicích: Iφ r + bφ r + kφ r = Iφ φ (t) φ r (t) φ(t) b I
5 Příklad () Z pohybových rovnic je patrné, že je výhodnější úlohu řešit v relativních souřadnicích, jelikož na pravé straně vystupuje zrychlení. φ r + b I φ r + k I φ r = φ φ r + ζωφ r + Ω φ r = φ torzní tuhost: k = GJ p L = G πd L 3 Ω = k I = G πd IL 3 = π 3..5 = rad/s Jelikož je buzení periodické, ale není harmonické, bude snahou nejprve nahradit periodickou funkci φ t pomocí řady harmonických funkcí (fourierův rozvoj). Náhrada Fourierovým rozvojem: f t = a + a k cos kωt + b k kωt a = k= f t dt, a k = ω = πn 3 = 57 rad/s = π ω = 6 n f t cos kωt dt, b k = f t kωt dt 5
6 Ondřej Marek Kmitání mechanických soustav Příklad (3) Náhrada průběhu síly Fourierovým rozvojem: a = a = b = a = b = a 3 = f t dt b 3 = b = = t cos ωt dt t ωt dt t cos ωt dt t ωt dt t cos 3ωt dt + t cos ω dt + t ω dt + t cos ω dt + t ω dt + t cos 3ω dt t 3ωt dt + + t cos ω dt t ω dt 3 = = + + t cos ω dt t ω dt t cos 3ω dt 3 + t 3ω dt π + π + π = 8 π = π + + π = = = + + t 3ω dt 3 π π + π = = 8 3π a = b = a 5 = b 5 = 8 5π a 6 = b 6 = a 7 = b 7 = 8 7π 6
7 Ondřej Marek - KMS Rozvoj do řádu 5 vypadá následovně: φ t 8 πn π 3 t 8 3π 3πn 3 t + 8 5π 5πn 3 t.5 Náhrada původní funkce součtem harmonických funkcí (fourierův rozvoj) original Fourier do j= Fourier do j=3 Fourier do j=5 Fourier do j=7 Lze si všimnout, že nenulové jsou pouze liché koeficienty b a jsou prvky posloupnosti, φ t pak lze zapsat jako součet řady: φ t = j+ 8 j π j= πn j 3 t t [s] Fourierův rozvoj - výřez original Fourier do j= Fourier do j=3 Fourier do j=5 Fourier do j=7 6 8 x -3 7
8 Ondřej Marek - KMS Příklad (3) Jelikož se jedná o případ vynuceného kmitání a soustava je tlumená, má smysl počítat pouze partikulární řešení (homogenní po čase odezní díky útlumu). Původní pohybová rovnice: φ r + ζωφ r + Ω φ r = φ Funkce na pravé straně je známá a je již známá i náhrada funkce fourierovým rozvojem. Lze zapsat následovně φ r + ζωφ r + Ω φ r = a + a k cos kωt + b k kωt k= φ r + ζωφ r + Ω φ r = a Φ ke ikωt k= V případě funkce z příkladu lze psát: φ r + ζωφ r + Ω φ r = 8 πn π 3 t + 8 3πn 3π 3 t 8 5πn 5π 3 t + φ r + ζωφ r + Ω φ r = 8 π ieiωt + 8 3π iei3ωt 8 5π iei5ωt + odhad partikulárního řešení: φ rp = Φ r ie iωt + Φ r3 ie i3ωt + Φ r5 ie i5ωt + φ rp = iωφ r ie iωt + 3iωΦ r3 ie i3ωt + 5iωΦ r5 ie i5ωt + φ rp = ω Φ r ie iωt 3ω Φ r3 ie i3ωt 5ω Φ r5 ie i5ωt + 8
9 Ondřej Marek - KMS Ω ω + iζωω Φ r e iωt + Ω 3ω + iζω3ω Φ r3 e i3ωt + Ω 5ω + iζω5ω Φ r5 e i5ωt + = 8 π ieiωt + 8 3π iei3ωt 8 5π iei5ωt + V rovnici jsou vytknuty výrazy ie iωt, ie i3ωt, ie i5ωt jak na levé, tak i na pravé straně. Z rovnice lze psát 3 (obecně n) rovnic. ze kterých lze vyjádřit komplexní amplitudy vybuzených kmitů Φ rj pro jednotlivé frekvence. Komplexní amplituda v sobě zahrnuje informaci o velikosti a fázovém posunutí (zpoždění). Ω ω + iζωω Φ r = 8 π Ω 3ω + iζω3ω Φ r3 = 8 3π Ω 5ω + iζω5ω Φ r5 = 8 5π 8 Φ r = π Ω π ω + i π ζωω = i. 5 = i Φ r3 = 9π Ω 8π ω + i 5π ζωω = i Φ r5 = 5π Ω 65π ω + i 5π ζωω = i. 8 Φ r = Φ r e iθ = e i.96 Φ r3 = Φ r3 e iθ 3 = e i.55 Φ r5 = Φ r5 e iθ 5 = e i.5 9
10 Ondřej Marek - KMS Amplitudo-fázové charakteristiky, průběh ϕ r (t).5.5 x -5 ( ) ( ) x -6 3 ( ) ( ) x -7 5 ( ) ( ) Jelikož proběhla náhrada kωt = Re ie ikωt, pak lze do celkového řešení dosazovat opět rovnou kωt. φ r t = Φ r ωt + θ + Φ r3 3ωt + θ 3 + Φ r5 5ωt + θ 5 + φ r t = t t
11 Ondřej Marek - KMS Průběh ϕ r (t) - grafy. harmonická 3. harmonická 5. harmonická x -5 r ( t+ ) x -6 r3 (3 t+ 3 ) x -7 r5 (5 t+ 5 ) x -5 r (t) součet., 3. a 5. harmonické
KMS cvičení 6. Ondřej Marek
KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m
I. část - úvod. Iva Petríková
Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,
MODIFIKOVANÝ KLIKOVÝ MECHANISMUS
MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS
Funkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
Harmonické oscilátory
Harmonické oscilátory Jakub Kákona, kaklik@mlab.cz Abstrakt Tato úloha se zabývá měřením rezonančních vlastností mechanických tlumených i netlumených oscilátorů. 1 Úvod 1. Změřte tuhost pružiny statickou
Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo
Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 9.11.2012 Klasifikace: Část I Lineární
Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9
Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů
(test version, not revised) 9. prosince 2009
Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie
Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A
MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Nauka o Kmitání Přednáška č. 4
Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená
Mechanické kmitání a vlnění, Pohlovo kyvadlo
Fyzikální praktikum FJFI ČVUT v Praze Mechanické kmitání a vlnění, Pohlovo kyvadlo Číslo úlohy: 10 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum : 26. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo
Matematickým modelem soustavy je známá rovnice (1)
1. Lineární dynamické systémy 1.1 Rezonanční charakteristiky lineárních systémů s jedním stupněm volnosti Závislost amplitudy vynucených kmitů na frekvenci nazýváme amplitudo-frekvenční charakteristikou.
KMS cvičení 9. Ondřej Marek
KMS cvičení 9 Ondřej Marek SYSTÉM S n DOF ŘEŠENÍ V MODÁLNÍCH SOUŘADNICÍCH Pohybové rovnice lineárního systému: U je modální matice, vlastní vektory u 1, u 2,..., u n jsou sloupce v matici U x - vektor
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #10 Lineární harmonický oscilátor a Pohlovo kyvadlo Jméno: Ondřej Finke Datum měření: 10.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) Změřte
Téma: Dynamiky - Základní vztahy kmitání
Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí
9.7. Vybrané aplikace
Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
1.8. Mechanické vlnění
1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát
Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky
Statika staveních konstrukcí II., 3.ročník akalářského studia Téma 3, Úvod do dynamiky staveních konstrukcí dynamiky Úvod Vlastní kmitání Vynucené kmitání Tlumené kmitání Podmínky dynamické rovnováhy konstrukcí
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
f x = f y j i y j x i y = f(x), y = f(y),
Cvičení 1 Definice δ ij, ε ijk, Einsteinovo sumační pravidlo, δ ii, ε ijk ε lmk. Cvičení 2 Štoll, Tolar: D3.55, D3.63 Cvičení 3 Zopakujte si větu o derivovování složené funkce více proměnných (chain rule).
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Lineární harmonický oscilátor. Pohlovo torzní kyvadlo. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 1: Lineární harmonický oscilátor Datum měření: 4. 12. 29 Pohlovo torzní kyvadlo Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2. ročník, 1. kroužek,
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
OBSAH. MODÁLNÍ VLASTNOSTI KLIKOVÉHO ÚSTROJÍ FSI VUT BRNO ČTYŘVÁLCOVÉHO TRAKTOROVÉHO MOTORU Ústav automobilního 1 VSTUPNÍ HODNOTY PRO VÝPOČET...
OBSAH 1 VSTUPNÍ HODNOTY PRO VÝPOČET... 3 2 REDUKCE ROTAČNÍCH HMOT... 5 2.1 MOMENT SETRVAČNOSTI ROTAČNÍ HMOTY OJNICE... 5 2.2 MOMENT SETRVAČNOSTI JEDNOTLIVÝCH ZALOMENÍ... 5 3 REDUKCE POSUVNÝCH HMOT... 5
MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování
5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení
1 Pracovní úkoly 1. Změřte dobu kmitu T 0 dvou stejných nevázaných fyzických kyvadel.. Změřte doby kmitů T i dvou stejných fyzických kyvadel vázaných slabou pružnou vazbou vypouštěných z klidu při počátečních
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ
ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č. 3 DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ Prof. Ing. Vladimír Zeman, DrSc. OBSAH 1. Úvod. Základní výpočtový model v rotujícím prostoru 3. Základní výpočtový model rotoru
ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
Kmity a mechanické vlnění. neperiodický periodický
rozdělení časově proměnných pohybů (dějů): Mechanické kmitání neperiodický periodický ne(an)harmonický harmonický vlastní kmity nucené kmity - je pohyb HB (tělesa), při němž HB nepřekročí konečnou vzdálenost
Mechanika II.A Třetí domácí úkol
Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení
1.3 Pohyb hmotného nabitého bodu v homogenním magnetickém poli
Klasická mechanika analytická řešení pohybu částic a těles 1. Pohyb v odporujícím prostředí 1.1 Odporující síla je úměrná rychlosti pohybujícího se tělesa 1.2 Pohyb hmotného nabitého bodu v homogenním
Příklady kmitavých pohybů. Mechanické kmitání (oscilace)
Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje
Tlumené a vynucené kmity
Tlumené a vynucené kmity Katedra fyziky FEL ČVUT Evropský sociální fond Praha & U: Е Investujeme do vaší budoucnosti Problémová úloha 1: Laplaceova transformace Pomocí Laplaceovy transformace vlastností
Stroboskopické metody vibrační diagnostiky
Inovovaná přednáška/seminář studijního programu Strojní inženýrství Stroboskopické metody vibrační diagnostiky Zpracoval: Pracoviště: Pavel Němeček Katedra vozidel a motorů, Fakulta strojní, TU v Liberci
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině
KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme
Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ
KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ URČEN ENÍ PRÁCE KLIKOVÉHO LISU URČEN ENÍ SETRVAČNÍKU KLIKOVÉHO LISU KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÁ HŘÍDEL OJNICE KLIKOVÁ HŘÍDEL BERAN LOŽISKOVÁ TĚLESA
1. Regulace otáček asynchronního motoru - skalární řízení
1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán
Circular Harmonics. Tomáš Zámečník
Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích
Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.
Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+
Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Fourierovy řady Martin Bohata Katedra matematiky FEL ČVU v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Fourierovy řady 1 / 20 Úvod Často se setkáváme s periodickými
Téma: Dynamika - Úvod do stavební dynamiky
Počítačová podpora statických výpočtů Téma: Dynamika - Úvod do stavební dynamiky 1) Úlohy stavební dynamiky 2) Základní pojmy z fyziky 3) Základní zákony mechaniky 4) Základní dynamická zatížení Katedra
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Rezonanční jevy na LC oscilátoru a závaží na pružině
Rezonanční jevy na LC oscilátoru a závaží na pružině M. Stejskal, K. Záhorová*, J. Řehák** Gymnázium Emila Holuba, Gymnázium J.K.Tyla*, SPŠ Hronov** Abstrakt Zkoumali jsme rezonanční frekvenci závaží na
ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma
ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH SYSTÉMŮ UŽITÍM FFT Jiří Tůma Štramberk 1997 ii Anotace Cílem této knihy je systematicky popsat metody analýzy signálů z mechanických systémů a strojních zařízení. Obsahem
Experimentální dynamika (motivace, poslání, cíle)
Experimentální dynamika (motivace, poslání, cíle) www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Motivace, poslání, cíle 2. Dynamické modely v mechanice 3. Vibrace přehled, proč a jak měřit 4. Frekvenční
Mechanické kmitání (oscilace)
Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje
KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů.
Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Rotující soustavy 2. Základní model rotoru Lavalův rotor 3. Nevyváženost rotoru
Sestavení diferenciální a diferenční rovnice. Petr Hušek
Sestavení diferenciální a diferenční rovnice Petr Hušek Sestavení diferenciální a diferenční rovnice Petr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVU v Praze MAS 1/13 ČVU
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice
Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport.
Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. R. Mendřický, M. Lachman Elektrické pohony a servomechanismy 31.10.2014 Obsah prezentace
rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník
EVROPSKÝ SOCIÁLNÍ FOND Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky
Testovací příklady MEC2
Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být
i β i α ERP struktury s asynchronními motory
1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.
Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ Fakulta strojní Ústav technické matematiky Ú 12101
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ Fakulta strojní Ústav technické matematiky Ú 12101 Využití Fourierových řad v technických aplikacích BAKALÁŘSKÁ PRÁCE Student: Marek Johánek Vedoucí práce: Doc. Ing. Jan Halama,
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Řízené LRC Obvody
ELEKTŘNA A MAGNETZMUS Řešené úlohy a postupy: Řízené L Obvody Peter Dourmashkin MT 6, překlad: Jan Pacák (7) Obsah 9. ŘÍZENÉ L OBODY 3 9. ÚKOLY 3 9. OBENÉ LASTNOST ŘÍZENÝH L OBODŮ 3 ÚLOHA : ŘÍZENÉ OSLAE
pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa
pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa Výstup RVP: Klíčová slova: Eva Bochníčková žák měří vybrané veličiny vhodnými metodami, zpracuje získaná data
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
9. cvičení z Matematické analýzy 2
9. cvičení z Matematické analýzy 7. listopadu -. prosince 7 9. Určete Fourierovu řadu periodického rozšíření funkce ft = t na, a její součet. Definice: Necht f je -periodická funkce, která je integrabilní
Fyzika základního kurzu I (hypertextově) seznam důležitých skutečností
Fyzika základního kurzu I (hypertextově) seznam důležitých skutečností kolektiv ÚFI FSI Copyright c 005, ÚFI FSI VUT v Brně Tento text obsahuje rovnice, které jsou barevně vyznačeny v textu Fyzika. Kliknutím
Diferenciální rovnice
Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích
Zadání semestrální práce z předmětu Mechanika 2
Zadání semestrální práce z předmětu Mechanika 2 Jméno: VITALI DZIAMIDAU Číslo zadání: 7 U zobrazeného mechanismu definujte rozměry, hmotnosti a silové účinky a postupně proveďte: 1. kinematickou analýzu
Měření sil v osnovních nitích
Teorie tkaní Měření sil v osnovních nitích J. Dvořák Měření sil v osnovních nitích Cíl semináře : změřit a vyhodnotit průběh sil v osnovních nitích v intervalu tkacího cyklu Obsah: 1/ definice pojmů -elastické
SEMI-AKTIVNĚ ŘÍZENÉ TLUMENÍ PODVOZKU VYSOKORYCHLOSTNÍHO VLAKU
SEMI-AKTIVNĚ ŘÍZENÉ TLUMENÍ PODVOZKU VYSOKORYCHLOSTNÍHO VLAKU Filip Jeniš, Ing. ÚSTAV KONSTRUOVÁNÍ Fakulta strojního inženýrství VUT v Brně 25. 2. 2019 CÍL PRÁCE návrh a ověření algoritmu pro semi-aktivní
2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...
Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní
FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy
FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární
Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván
Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových
Kompenzace osnovních sil svůrkou
Teorie tkaní Kompenzace osnovních sil svůrkou M. Bílek 2016 Osnovní svůrka Osnovní svůrka plní obecně na tkacím stroji tyto funkce: vedení osnovy do tkací roviny, snímání tahové síly v osnově, kompenzace
Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
III. MKP vlastní kmitání
Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací
Energetická bilance elektrických strojů
Energetická bilance elektrických strojů Jiří Kubín TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,
na kole ve spirále smrti (viz. obr). Předpokládejte, že smyčka je kruhová a má poloměr R=2,7 m. Jakou
Příklad 1 Startující tryskové letadlo musí mít před vzlétnutím rychlost nejméně v 1 =360 km/h. S jakým nejmenším konstantním zrychlením může startovat na rozjezdové dráze dlouhé x 1 =1,8 km? [2, 78 m.s
Mechatronické systémy struktury s asynchronními motory
1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán
3.1.5 Složené kmitání
315 Složené kmitání Předpoklady: 3104 Pokus: Dvě pružiny zavěsíme vedle sebe, na obě dáme závaží Spodní konce obou pružin spojíme gumovým vláknem (velmi pružným, aby ho bylo možno prodloužit malou silou)
Otázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY
3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY Modulací nazýváme proces při kterém je jedním signálem přetvář en jiný signál za účelem př enosu informace. Př i amplitudové modulaci dochází k ovlivňování amplitudy nosného
Laboratorní úloha č. 3 - Kmity I
Laboratorní úloha č. 3 - Kmity I Úkoly měření: 1. Seznámení se s měřením na osciloskopu nastavení a měření základních veličin ve fyzice (frekvence, perioda, amplituda, harmonické, neharmonické kmity).
9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
Mechanické kmitání - určení tíhového zrychlení kyvadlem
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení
DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH
DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH VLASTNOSTÍ MECHANISMU TETRASPHERE Vypracoval: Jaroslav Štorkán Vedoucí práce: prof. Ing. Michael Valášek, DrSc. CÍLE PRÁCE Sestavit programy pro kinematické, dynamické
1.7.4. Skládání kmitů
.7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát
Technická diagnostika Vibrodiagnostika Ing. Jan BLATA, Ph.D. Kat. 340, VŠB-TU Ostrava Ostrava 2014
Fakulta strojní VŠB TUO Technická diagnostika Vibrodiagnostika Ing. Jan BLATA, Ph.D. Kat. 340, VŠB-TU Ostrava Ostrava 2014 Vibrodiagnostika Je jednou z nejpoužívanějších metod pro diagnostiku technického
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
Zakončení viskózním tlumičem. Charakteristická impedance.
Kapitola 1 Odraz vln 1.1 Korektní zakončení struny Zakončení viskózním tlumičem. Charakteristická impedance. V mnoha praktických situacích požadujeme, aby prostředím postupovaly signály pouze jedním směrem,
doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Analýza signálu Analýza systému Vibrační signál vstup Výstup Vibrační odezva Předpoklad, že vibrace existují a že jsou generovány
Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů
Jedenácté cvičení bude vysvětlovat tuto problematiku: Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů
Theory Česky (Czech Republic)
Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce