Bayesian Networks. The graph represents conditional independencies of the join probability distribution Π X V P(X pa(x)).
|
|
- Jitka Švecová
- před 6 lety
- Počet zobrazení:
Transkript
1 Bayesian Networks Definition (Bayesian Network) Bayesian network is a pair (G, P), where G = (V, E) is a DAG (directed acyclic graph with set of vertexes V and set of edges E) and P is a list of conditional probability distributions such that for every vertex X there is a probability table P(X pa(x)) where pa(x) denotes the set of parents of a vertex in G. The graph represents conditional independencies of the join probability distribution Π X V P(X pa(x)). Marta Vomlelová 10. října / 18
2 Příklad: Studfarm Existuje genetická nemoc, která je recesivní, tj. projeví se jen pokud jsou oba rodiče nosiči. Známe rodokmen, objevilo se nemocné dítě vytvořte model, který určí pravděpodobnost genetické chyby u všech členů rodokmenu. Rodokmen chcete modelovat do prarodičů nemocného. L Ann Brian Prior aa 0.01 AA 0.99 Fred Dorothy John Marta Vomlelová 10. října / 18
3 Nachlazení nebo Angína Nachlazení nebo angína Teplota, Bolest v krku, Skrvny v krku single nebo multiple faults Trobleshooting, Klasifikace dokumentů Marta Vomlelová 10. října / 18
4 Naive Bayes Klasifikátor Klasifikujeme do třídy C; sp(c) = {1,..., K} Pro každý atribut A 1,..., A n známe podmíněnou pravděpodobnost P(A i C = k) pro každou třídu k sp(c) Bernoulli (0-1): P(a 1,..., a n C = k) = Π n i=1p(a i C = k) Gaussovský p(x = v k) = 1 e (v µ k ) 2 2σ 2 k 2πσ 2 k Multinomial: P(x 1,..., x n C = k) = (Σn i=1 x i )! Π n i=1 x i! Πn i=1p(a i = 1 C = k) x i Predikce: ĝ = argmax k=1,...,k P(C = k)π n i=1p(a = a i C = k) Marta Vomlelová 10. října / 18
5 Příklad Snědli jsme 1000 bonbónů a zapsali, co jsme pozorovali: W=red W=green H=1 H=0 H=1 H=0 F=cherry F=lime Vytvořte naive bayes model s veličinou F jakožto cíl (nahoře). F=cherry = F=lime = P(W F ) P(H F ) F=cherry W=red W=green F=cherry H= H= F=lime F=lime Marta Vomlelová 10. října / 18
6 Tree augmented Naive Bayes Dovolíme stromovou strukturu na {A i } i místo podmíněné nezávislosti dáno C. Pr, Bt, Ut, Sc potřeba reprezentovat Ho Marta Vomlelová 10. října / 18
7 Ponožky dva páry ponožek různého vzoru a barvy výrazně sepravé do modelu přidáme podmínku, že každého typu jsou právě dvě ponožky Marta Vomlelová 10. října / 18
8 Příklad: Miny Navrhněte model, který spočte pravděpodobnost miny ve hře Minesweeper. Navrhněte aproximaci, která nebude mít uzel s více než 10 rodiči. Marta Vomlelová 10. října / 18
9 Parent divorsing - půjčka 11 atributů: příjem, typ práce, auta v rodině, finanční situace, počet dětí, počet adres v posledních 5 letech,... Při 5-ti hodnotových atributech M konfigurací. Pro snadný odhad pravděpodobnosti potřebuji aspoň 5 příkladů v nejméně časté kombinaci. Marta Vomlelová 10. října / 18
10 Poker Vytvořte zjednodušený model hry Poker s veličinou odhadující, jestli je lepší moje ruka nebo soupeřova. Marta Vomlelová 10. října / 18
11 Insurance Marta Vomlelová 10. října / 18
12 Čtení v bayesovské síti Typický dotaz: známe evidenci e o veličinách dom(e); ptáme se na jednorozměrné podmíněné pravděpodobnosti všech ostatních veličin X: P(X e). Struktura grafu nám umožnuje: Optimalizovat výpočet. Určit některé veličiny jako zbytečné, které je možno vypustit z modelu. Můžeme zkoumat nezávislost dvojice veličin dáno evidence. Marta Vomlelová 10. října / 18
13 Výpočet marginálních podmíněných pravděpodobností v bayesovské síti Úmluva: Zajímáme se pouze o bayesovské sítě, jejichž graf je spojitý. Jinak uvažujeme každou komponentu zvlášť. Algoritmus eliminace proměnných INIT Do seznamu Φ 1 dáme všechny tabulky P(e, A i pa(a i )), v každé tabulce odstraním "řádky"nekonzistentní s evidencí, tj. s nulovou pravděpodobností. Tj. předem evidencí vynásobíme a marginalizujeme přes proměnné s evidencí. ELIM Postupně budeme eliminovat (následujícím algoritmem) všechny proměnné bez evidence, které nás nezajímají (dostaneme P(A, e)). ORM Nakonec eliminujeme i zbývající proměnné bez evidence, čímž spočteme normalizační konstatnu α = P(e); touto konstantou vydělíme tabulku z předchozího kroku a dostaneme podmíněnou pravděpodobnost P(A e). Marta Vomlelová 10. října / 18
14 Eliminace proměnné X v kroku i znamená: 1 Vyber z Φ i všechny tabulky, které mají v doméně X, dej je do Φ X. 2 Spočti φ = X Π T Φ X T 3 Nové Φ i+1 se rovná: Φ i \ Φ X {φ} Pozn: Pokud v Φ last nakonec zbyde více tabulek, musíme je vynásobit. Pozn2: Ne-eliminované A může být buď veličina, nebo množina veličin. Marta Vomlelová 10. října / 18
15 Charakteristika algoritmu Eliminace proměnných Snadný na pochopení a implementaci. Otázka: v jakém pořadí eliminovat? Špatné pořadí vede ke zbytečně velkým tabulkám φ. Pokud nás zajímají všechny jednorozměrné marginály, tak bychom nemuseli počítat vše pro každou zvlášť, dost výpočtů se opakuje. Proto většina software používá jiné algoritmy, my se podíváme, co používá Hugin, ostatní mají různé modifikace. Miny: Špatné a lepší pořadí eliminace. patně Nejdřív nepozorované rodiče (např. v minách ). rávně Nejdřív barren tj. uzly bez dětí a bez evidence. becně Nejdřív simpliciální uzly. Marta Vomlelová 10. října / 18
16 d-separace Definition (d-separace) Dvě veličiny A, B V bayesovské sítě G = (V, E) jsou d-separované A d B C množinou C V \ {A, B} právě když pro každou (neorientovanou) cestu z A do B platí aspoň jedno z následujících: cesta obsahuje uzel Blocking C a hrany se v Blocking nesetkávají head-to-head, cesta obsahuje uzel Blocking kde se hrany setkávají head-to-head a ani on ani nikdo z jeho následníků není v C, {Blocking, succ(blocking)} C =. Theorem (d-separace) Pokud jsou A, B d-separované dáno C (A d B C) v BN B, pak jsou i podmíněně nezávislé (A B C). Marta Vomlelová 10. října / 18
17 Příklad d-separace Definition (d-separace) Dvě veličiny A, B V bayesovské sítě G = (V, E) jsou d-separované A d B C množinou C V \ {A, B} právě když pro každou (neorientovanou) cestu z A do B platí aspoň jedno z následujících: cesta obsahuje uzel Blocking C a hrany se v Blocking nesetkávají head-to-head, cesta obsahuje uzel Blocking kde se hrany setkávají head-to-head a ani on ani nikdo z jeho následníků není v C, {Blocking, succ(blocking)} C =. A C E B D F Platí následující? E d B ano E d D ne E d D A ne E d D C ano E d D {C, F } ne E d B F ne Marta Vomlelová 10. října / 18
Výpočet marginálních podmíněných pravděpodobností v bayesovské síti
Výpočet marginálních podmíněných pravděpodobností v bayesovské síti Úmluva: Zajímáme se pouze o bayesovské sítě, jejichž graf je spojitý. Jinak uvažujeme každou komponentu zvlášť. Notace Definition (Pojmy
EM algoritmus. Proč zahrnovat do modelu neznámé veličiny
EM algoritmus používá se pro odhad nepozorovaných veličin. Jde o iterativní algoritmus opakující dva kroky: Estimate, který odhadne hodnoty nepozorovaných dat, a Maximize, který maximalizuje věrohodnost
Ústav teorie informace a automatizace. J. Vomlel (ÚTIA AV ČR) Úvod do bayesovských sítí 30/10/ / 28
Úvod do bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky http://www.utia.cz/vomlel 30. října 2008 J. Vomlel (ÚTIA AV ČR) Úvod do bayesovských sítí 30/10/2008
Teorie užitku. Marta Vomlelová 14. prosince / 23
Teorie užitku Většinou měříme výplatu, hodnotu atd. penězi. MEU (maximalizace očekávaného zisku) je většinou rozumná věc k volbě. Ale občas je lidská intuice jiná a je na nás, jestli věříme víc intuici
Bayesovská klasifikace
Bayesovská klasifikace založeno na Bayesově větě P(H E) = P(E H) P(H) P(E) použití pro klasifikaci: hypotéza s maximální aposteriorní pravděpodobností H MAP = H J právě když P(H J E) = max i P(E H i) P(H
Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na:
Úvod do bayesovských sítí Jiří Vomlel Laboratoř inteligentních systémů Vysoká škola ekonomická Praha Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obor hodnot Necht X je kartézský součin
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
AVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie
Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce p íznaků Granáty Četnost Jablka Váha [dkg] Pravděpodobnosti - diskrétní p íznaky Uvažujme diskrétní p íznaky váhové kategorie Nechť tabulka
Katedra kybernetiky, FEL, ČVUT v Praze.
Grafické pravděpodobnostní modely úvod Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze http://ida.felk.cvut.cz pprůchod GPM blokem P1: úvod bayesovské sítě motivace a definice, jak nám grafy pomáhají
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky)
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Bayesovská síť zachycuje závislosti mezi náhodnými proměnnými Pro zopakování orientovaný acyklický graf
n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)
5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =
Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně
7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností
Vícerozměrná rozdělení
Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.
Zjednodušení generativního systému redukcí rozlišení
Zjednodušení generativního systému redukcí rozlišení Ze studie zahrnující dotaz na vzdělání. Obor hodnot v i : e základní vzdělání h střední vzdělání c bakalář g magistr Možné redukce rozlišení cg vysoké
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
Umělá inteligence II
Umělá inteligence II 11 http://ktiml.mff.cuni.cz/~bartak Roman Barták, KTIML roman.bartak@mff.cuni.cz Dnešní program! V reálném prostředí převládá neurčitost.! Neurčitost umíme zpracovávat pravděpodobnostními
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti
A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Vojta Vonásek vonasek@labe.felk.cvut.cz České vysoké učení technické v Praze Fakulta elektrotechnická Katedra kybernetiky Markovovy
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
Příklady ke čtvrtému testu - Pravděpodobnost
Příklady ke čtvrtému testu - Pravděpodobnost 6. dubna 0 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a vyřešte příklad podobný. Tím se ujistíte, že příkladu
Odhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.
6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
Vzorová písemka č. 1 (rok 2015/2016) - řešení
Vzorová písemka č. rok /6 - řešení Pavla Pecherková. května 6 VARIANTA A. Náhodná veličina X je určena hustotou pravděpodobností: máme hustotu { pravděpodobnosti C x pro x ; na intervalu f x jinde jedná
Neurčitost: Bayesovské sítě
Neurčitost: Bayesovské sítě 12. dubna 2018 1 Opakování: pravděpodobnost 2 Bayesovská síť 3 Sémantika sítě Zdroj: Roman Barták, přednáška přednáška Umělá inteligence II, Matematicko-fyzikální fakulta, Karlova
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách
13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních
, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv
42206, skupina (6:5-7:45) Jméno: Zápočtový test z PSI Nezapomeňte podepsat VŠECHNY papíry, které odevzdáváte Škrtejte zřetelně a stejně zřetelně pište i věci, které platí Co je škrtnuto, nebude bráno v
Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie
Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce příznaků 3 25 2 Granáty Jablka Četnost 15 1 5 2 3 4 5 6 7 8 Váha [dkg] Pravděpodobnosti - diskrétní příznaky Uvažujme diskrétní příznaky
Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/
Genetické algoritmy Jiří Vomlel Laboratoř inteligentních systémů Vysoká škola ekonomická Praha Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Motivace z Darwinovy teorie evoluce Přírodní
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
Praha, 24. listopadu 2014
Příklady aplikací bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace (ÚTIA) Akademie věd České republiky http://www.utia.cz/vomlel Praha, 24. listopadu 2014 Obsah přednášky Příklad bayesovské
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Pro zopakování Pravděpodobnost je formální mechanismus pro zachycení neurčitosti. Pravděpodobnost každé
Cvičení ze statistiky - 5. Filip Děchtěrenko
Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Zápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Varianty Monte Carlo Tree Search
Varianty Monte Carlo Tree Search tomas.kuca@matfyz.cz Herní algoritmy MFF UK Praha 2011 Témata O čem bude přednáška? Monte Carlo Tree Search od her podobných Go (bez Go) k vzdálenějším rozdíly a rozšíření
Informační systémy pro podporu rozhodování
Informační systémy pro rozhodování Informační systémy pro podporu rozhodování 5 Jan Žižka, Naděžda Chalupová Ústav informatiky PEF Mendelova universita v Brně Asociační pravidla Asociační pravidla (sdružovací
Cvičení ze statistiky - 7. Filip Děchtěrenko
Cvičení ze statistiky - 7 Filip Děchtěrenko Minule bylo.. Probrali jsme spojité modely Tyhle termíny by měly být známé: Rovnoměrné rozdělení Střední hodnota Mccalova transformace Normální rozdělení Přehled
Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.
Bodové odhady parametrů a výstupů
Bodové odhady parametrů a výstupů 26. listopadu 2013 Máme rozdělení s neznámými parametry a chceme odhadnout jeden nebo několik příštích výstupů. Již víme, že úplnou informaci v této situaci nese sdružené
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
Fyzikální korespondenční seminář MFF UK
Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná
Monte Carlo Lokalizace. Martin Skalský
Monte Carlo Lokalizace Martin Skalský Proč Lokalizace? Problém určení pozice robota a věcí kolem něj. (filtrování dat, state estimation) Je důležitá Knowledge about where things are is at the core of any
DJ2 rekurze v SQL. slajdy k přednášce NDBI001. Jaroslav Pokorný
DJ2 rekurze v SQL slajdy k přednášce NDBI001 Jaroslav Pokorný 1 Obsah 1. Úvod 2. Tvorba rekurzívních dotazů 3. Počítaní v rekurzi 4. Rekurzívní vyhledávání 5. Logické hierarchie 6. Zastavení rekurze 7.
Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036
Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,
, 4. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv
..06, 4. skupina (6: - 7:4) Jméno: Zápočtový test z PSI Nezapomeňte podepsat VŠECHNY papír, které odevzdáváte. Škrtejte zřetelně a stejně zřetelně pište i věci, které platí. Co je škrtnuto, nebude bráno
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
http://www.utia.cas.cz/vomlel 6. prosince 2011 J. Vomlel (ÚTIA AV ČR) Aplikace bayesovských sítí 6. prosince 2011 1 / 3
Příklady aplikací bayesovských sítí Jiří Vomlel ÚTIA, Akademie věd ČR http://www.utia.cas.cz/vomlel 6. prosince 2011 J. Vomlel (ÚTIA AV ČR) Aplikace bayesovských sítí 6. prosince 2011 1 / 3 Jednoduchý
Prohledávání svazu zjemnění
Prohledávání svazu zjemnění Rekonstrukční chyba je monotonně neklesající podél každé cesty svazu zjemnění: Je-li G i G k G j potom (G i ) (G k ) (G j ) Rekonstrukční chyba je aditivní podél každé cesty
Asociační i jiná. Pravidla. (Ch )
Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo
Teorie rozhodování (decision theory)
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Teorie pravděpodobnosti (probability theory) popisuje v co má agent věřit na základě pozorování. Teorie
Praha, 2. listopadu 2016
Příklady aplikací bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace (ÚTIA) Akademie věd České republiky http://www.utia.cz/vomlel Praha, 2. listopadu 2016 Obsah přednášky Aplikace 1:
em do konce semestru. Obsah Vetknutý nosník, str. 8 Problém č.8: Průhyb nosníku - Ritzova metoda
Zápočtové problémy Na následujících stránkách naleznete druhou sérii zápočtových problémů věnovanou nosníkům. Ti, co ještě nemají žádný problém přidělený, si mohou vybrat libovolný z nich. Řešení můžete
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů
Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci
VK CZ.1.07/2.2.00/
Robotika Tvorba map v robotice - MRBT 3. března 2015 Ing. František Burian Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193 v pojetí mobilní
Klasifikace a rozpoznávání. Lineární klasifikátory
Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Kontingenční tabulky. (Analýza kategoriálních dat)
Kontingenční tabulky (Analýza kategoriálních dat) Agenda Standardní analýzy dat v kontingenčních tabulkách úvod, KT, míry diverzity nominálních veličin, některá rozdělení chí kvadrát testy, analýza reziduí,
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
Intervalová data a výpočet některých statistik
Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
Pokročilé neparametrické metody. Klára Kubošová
Klára Kubošová Další typy stromů CHAID, PRIM, MARS CHAID - Chi-squared Automatic Interaction Detector G.V.Kass (1980) nebinární strom pro kategoriální proměnné. Jako kriteriální statistika pro větvení
Protokol č. 5. Vytyčovací údaje zkusných ploch
Protokol č. 5 Vytyčovací údaje zkusných ploch Zadání: Ve vybraném porostu bylo prováděno zjišťování zásob za použití reprezentativní metody kruhových zkusných ploch. Na těchto zkusných plochách byl zjišťován
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Rekonstrukce diskrétního rozdělení psti metodou maximální entropie
Rekonstrukce diskrétního rozdělení psti metodou maximální entropie Příklad Lze nalézt četnosti nepozorovaných stavů tak, abychom si vymýšleli co nejméně? Nechť n i, i = 1, 2,..., N jsou známé (absolutní)
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
9. Vícerozměrná integrace
9. Vícerozměrná integrace Tomáš Salač Ú UK, FF UK LS 2017/18 Tomáš Salač ( Ú UK, FF UK ) 9. Vícerozměrná integrace LS 2017/18 1 / 29 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Metody analýzy dat I. Míry a metriky - pokračování
Metody analýzy dat I Míry a metriky - pokračování Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [168-193] Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis:
1.8.5 Dělení mnohočlenů
185 Dělení mnohočlenů Předpoklady: 18 Mohou nastat dvě možnosti 1 Dělení mnohočlenů jednočlenem Jednoduché dělíme každý člen zvlášť Př 1: Vyděl mnohočleny ( 9x y 6x y + 1xy x : x Dělit znamená dát mnohočleny