Numerické řešení šíření pasivního skaláru v proudící tekutině

Rozměr: px
Začít zobrazení ze stránky:

Download "Numerické řešení šíření pasivního skaláru v proudící tekutině"

Transkript

1 Numeriké řešeí šířeí pasiího skaláru proudíí ekuiě Ig. Mila Smělý. Úod Tao práe si klade za íl umerik oěři eperimeálě zjišěý li separae a ířiosi, keré mají rozhodujíí podíl a aiálí přeos koerae plů při osilačím prouděí erálíh dýhaíh esáh (obr..). Obrázek zahuje posloupos ří klů při osilačím prouděí. V rozěeí modelu dýhaíh es je paré održeí a zik reirkulačí oblasi. Ta je zdrojem ířiosi, kerá má rozhodujíí podíl a podélý přeos a umožňuje, ab se koerae dalšíh kleh šířila do dalšíh ěí. Obr.. Prí ři kl osilačího prouděí e ěeí modelu dýhaíh es (eperime). Přezao od [3].. Numeriký model Nesaioárí roii s koekí a difuzí lze pro proměou Φ pro dourozměrý případ za předpokladu splěí roie koiui zapsa e aru Φ Φ Φ Φ = Φ, (.) kde ( ) a ( ) začí rhlosi koeke a difuze e směru ) (. Aplikaí Crak-Niholsooa shémau a ADI fakorizae pro časoou iegrai lze ýhozí roii přeés a ar ) ( O Φ = Φ (.)

2 Prí a druhé deriae prosoru jsou jádře kompakími shéma črého řádu přesosi. Souaa je epodmíěě sabilí, lze ji řeši s liboolým časoým krokem s druhým řádem přesosi čase. 3. Tesoaí příklad Pro oěřeí přesosi prezeoaé ADI meod při řešeí esaioáríh problémů s koekí a difúzí je použi příklad šířeí Gaussoa pulsu e čeroé oblasi [0;] [0;] házejíího z počáečíh podmíek ( 0,5) ( 0,5) Φ( 0,, ) = ep, (3.) kerý má eakí řešeí e aru ( 0,5) ( 0,5) Φ eak (,, ) = ep. (3.) 4 (4 ) (4 ) Dirihleo okrajoé podmík jsou přeza z eakího řešeí. Zolea uiformí síť = = 0, 05 m, součiielé difúze = = 0,0 m s. / 3 Zkoumá da případ, = = 0,8 m s a =,5 0 s pro Pe = a / 5 = = 80 m s a =,5 0 s pro Pe = 00. / L Pe = začí Péleoo číslo. ν Norma hb je jádřea e formě L = m. m, ( Φ i, j Φ i, j ) eak i=, j=. (3.3) Obr. 3. Sroáí eakího řešeí (a) a ADI s použiím kompakíh shéma (b) oblasi, <, <,8 čase 0,05 s při Pe = 00.

3 ,00E-04 L (),00E-05,00E , 0,4 0,6 0,8 Obr. 3. Výoj hb L čase při Pe =. Z Obr. 3. je parý proes usaloáí hb průběhu ýpoču, ož je elmi ýhodé pro řešeí esaioáríh problémů. Meoda epřiáší do řešeí žádou přídaou hbu a o i při ššíh Péleoýh čísleh, kde oproi jiým meodám edohází k rozmazáí liem soké rhlosi koeke, jak je ukázáo a Obr. 3., kerý zahuje sroáí eakího řešeí a ADI meod. To zameá, že puls drží po elý průběh řešeí spráý ar. 4. Model kaálu Problém bl řeše ejpre roém a po rozšířeí aké zakřieém kaále. Obě řešeí jsou založea a poeiálím prouděí. 4.. Roý kaál Pro kaál o jedokoé šíře b = m je kompleí poeiál pro případ osilačího hlaího proudu o frekei f e směru s poeiálím írem počáku souřadé sousa oře superpozií osilačího paralelího proudu e směru a poeiálího íru, ořeého ak, ab a sěáh kaálu bla složka rhlosi kolmá ke sěě uloá. Výsledý kompleí poeiál je ( ) F( z) = Γ a( ).( i) i ( ) l( i( b)), (4.) π = kde a ( ) = Aos(πf ) [ m / s] začí ampliudu rhlosi osilačího prouděí a Γ ( ) [ m / s] časoě proměliou ířios. Z kompleího poeiálu lze deriaí ododi roie pro složk rhlosi prouděí F z = ( ) Γ( ) Re = ( ) [ m / s], (4.) z π = ( b) F z b = ( ) Γ( ) Im = a( ) ( ) [ m / s]. (4.3) z π = ( b) Na zjedodušeém modelu pli bla proedea série ýpočů pro ampliudu osilačího prouděí A = 0, m / s, frekei f = 0, Hz a uloou, kosaí ebo proměou ířios Γ. Součiiel difúze bl zole [s] 5 = = 5 0 m s ož řádoě odpoídá / molekulárí difúzi kslíku douaomoém plu. Počáečí puls je rooměrě rozmísě apříč kaálem e zdáleosi šířk kaálu od sředu íru a spojiě aazuje a okolí hodo.

4 Na obrázíh plý ekor s ozačeím [m/s] ukazuje měříko rhlosi zázorěého proudoého pole. 4.. Výsledk pro roý kaál Výpoč bl proede a obdélíkoé oblasi [-0,5; 0,5] [-,5;,8] rozděleé praoúhlou uiformí síí po kroíh d = d = 0,005 m a ( = 0) (m = 66) bodů. Teo rozsah dobře umožňuje sledoa časoý ýoj domiaí čási pulsu. Na horí a dolí sěě kaálu jsou předepsá Dirihleo okrajoé podmík asaeé a uloou hodou, hmoa esmí proháze sěami. Na leém a praém koi jsou předepsá Neumao okrajoé podmík asaeé a uloou hodou prí deriae, keré hmoě umožňují olé opušěí oblasi. Obr. 4.. zahuje posloupos řešeí pouze osilačího prouděí s uloou ířiosí Γ. Vplýá z ěho miimálí přeos hmo podél kaálu. Puls se po upluí dob period 0_s ráí zpě do ýhozí pozie. Je paré posupé rozploáí pulsu liem difúze. Obr 4.. Řešeí s uloou ířiosí časeh 0 až 0 s.

5 Obr. 4.. zahuje sekei řešeí při kosaí ířiosi Γ =,8 m / s po dobu dou period, 0 s. Sigularia e sředu íru bla ahrazea spojiým jádrem, keré ijak eolií přesos řešeí, proože puls se k ěmu žádém čase epřiblíží. Na obrázíh eí jádro íru zobrazeo z důodu ěší přehledosi. Z časoého průběhu je parý posu hmo liem urhleí čási horí a dolí čási kaálu. Po upluí prí period se puls přesue a srau aprao od íru, ed a opačou srau ež bla ýhozí pozie a po další periodě se puls přesue zpě a leou srau od íru, dál ež bla ýhozí poloha. Hmoa se omo případě pohbuje rámi elé oblasi arozdíl od osilačího prouděí bez ířiosi, kd se pohbuje sále a sejém mísě. Obr. 4.. Řešeí s ířiosí Γ =,8 m/s časeh 0 až 0 s. Obr zahuje řešeí s proměou ířiosí Γ ( ) =,8os(πf ) klesajíí a soupajíí záislosi a aiálí rhlosi prouděí po dobu 0s. Podobě jako předhozím případě zde dohází k posuu hmo liem ířiosi a pohbuje se rámi elé oblasi. Obr Řešeí s ířiosí Γ =,8 os(πf) časeh 0 až 0 s. Obr zahuje sekei s proměou ířiosí Γ ( ) =,8 os(πf ) klesajíí a soupajíí záislosi a aiálí rhlosi prouděí a zároeň měíí se změou směru rhlosi i smsl oáčeí íru po dobu dou period. Hmoa se omo případě sie posouá ýrazěji podél kaálu, ale z důodu změ směru rhlosi prouděí a opačou srau se po upluí dob period ráí zpě a ýhozí pozii a sejě pak po upluí druhé a řeí period. V omo případě se jedá pouze o jiý druh osilačího prouděí.

6 4.4. Zakřieý kaál Obr Řešeí s ířiosí Γ =,8 os(πf) časeh 0 až 0 s. Ab eblo řešeí omezeo je a praoúhlé oblasi, je ýhodé áře křiočaré síě globálím souřadém ssému,, keré lze jedoduhou úpraou přeés a praoúhlé souřadie ξ, η a řeši obdobě jako půodí problém. Srukuroaou síť lze podle [4] oři apříklad pomoí elipikýh Wislowoýh roi a ýhozí roii s koekí a difúzí (.) pak s pomoí rasformaí uprai a ar, kerý lze řeši podobě jako půodí sousau Výsledk zakřieém kaálu Výpoče bl proede a jedoduhém kruhoě zakřieém kaále, a kerém je možo síť eakě jádři. Poloměr zakřieí bl zole ak, ab mohl bý ýsledek poroá s roým kaálem 3 m. Jedolié bod síě jsou pak bod ležíí a kružiíh. Na Obr je zobrazea síť souřadiíh, ořeá 0 60 bod. Obr Zakřieý kaál souřadiíh,.

7 Proudoé pole kaále je ořeo osilujíím poeiálím írem se sředem počáku, pro kerý lze jedoduše jádři ečé rhlosi Γ ( r) = os(πf ), (4.5.) πr, kde ířios Γ = m / s je aržea ak, ab se rhlos a sředím poloměru roala π rhlosi osilačího proudu roém kaále. Frekee f = 0, Hz. Součiiel difúze 5 = = = 5 0 m s. Pro možos poroáí a lepší přehledos jsou ýsledk / zobraze souřadém ssému ξ, η. Obr zahuje sroáí ýsledků zakřieém a roém kaále po dobu jedé period 0 s. V zakřieém kaále dohází liem ířiosi k ýrazějšímu posuu hmo oproi pouhému osilačímu prouděí roém kaále, ale obou případeh se a koi každé period ráí puls do počáečí poloh. Z oho ple, že i pouhé zakřieí může apomoi podélému šířeí pasiího skaláru. ξ η

8 ξ η ξ η

9 Obr Sroáí řešeí roém a zakřieém kaále pro čas 0 až 0 s. 5 Záěr Nejpre bl proede čři ýpoč a roém roiém modelu kaálu pli. Celý ýpoče bl připrae a aprogramoá jaze C pomoí ADI meod a kompakíh shéma. Ze sroáí ýsledků ple jasé zlepšeí při podélém přeosu pasiího skaláru případeh, ihž se ířios skuje, oproi ěm, kde je pouhé osilačí prouděí. Na Obr. 4.. s uloou ířiosí se puls pohbuje je oblasi ± 0, m kolem ýhozí poloh, ož je plě souladu s eoreikým předpokladem délk dráh získaé iegraí rhlosi. Za hraie ěho mezí se koerae šíří je pozola liem difúze. Na Obr a Obr. 4..4, kde je kosaí ebo proměá hodoa ířiosi, dohází oproi pouhému osilačímu prouděí ke zaelému posuu pulsu za dobu jedé period, ož umoží dalšíh kleh posuuí až k proilehlé sraě zobrazoaé oblasi a ed k ýrazému zlepšeí podélého přeosu hmo obou směreh. Dále bl proede ýpoče a zakřieém kaálu, kerý roěž prokázal zlepšeí podélého přeosu oproi roému kaálu s pouhým osilačím prouděím jak je ukázáo a Obr Podařilo se ed a elemeáríh případeh prokáza li ířiosi a podélý přeos pasiího skaláru. Dosažeé ýsledk jsou souladu s předpoklad i eperimeem a mohou se sá ýhozím maeriálem pro další ýzkum a složiějšíh případeh, keré epoedou k pouhému dokazoáí liu ířiosi ale i k ěšímu přiblížeí ke skuečosi a kaifikai ohoo jeu.

10 6. Sezam použié lieraur [] You D.: A High Order Padé ADI Meod for Usead Coeio-Diffusio Equaios, Ceer for Turbulee Researh, Saford, 005 [] Moi P.: Fudameals of Egieerig Numerial Aalsis, Cambridge Uiersi Press, Cambridge, 00 [3] Vališoá K., Kob M., Adame J.: Vli ířiosi a přeos pasiího skaláru osilačím prouděí, Colloquium FLUID DYNAMICS 005, Praha, 005 [4] Farrashkhala M., Miles J.P.: Basi Sruured Grid Geeraio, Buerworh- Heiema, Oford, 003 [5] Dořák R., Kozel K.: Maemaiké modeloáí aerodamie, Nakladaelsí ČVUT, Praha, 996

Numerické řešení nestacionární rovnice s konvekcí a difuzí za použití ADI metody a kompaktního schématu

Numerické řešení nestacionární rovnice s konvekcí a difuzí za použití ADI metody a kompaktního schématu Numeriké řešeí esaioárí roie s koekí a difuzí za použií ADI meod a kompakího shémau Mila Smělý Úod Tao sudie aazuje a dříější ýzkum liu sekudárího prouděí a šířeí pasiího skaláru modelu dýhaíh es [] a

Více

6 Algoritmy ořezávání a testování polohy

6 Algoritmy ořezávání a testování polohy 6 lgorim ořezáváí a esováí poloh Sudijí íl Teo blok je věová problemaie vzájemé poloh grafikýh primiiv, zejméa poloze bodu vzhledem k mohoúhelíku včeě jedolivýh speifikýh varia jako jsou čřúhelík, jehož

Více

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají Teploa laky obou čásech se yroají 1 m1 1 m rooáe budou sředí kieické eergie obou druhů molekul sejé: 1 1 m m 1 1 ěžší molekuly se pohybují pomaleji ež lehčí sejé musí edy bý i objemoé kocerace: 1 když

Více

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad

Více

Přijímací zkouška na navazující magisterské studium 2016

Přijímací zkouška na navazující magisterské studium 2016 Přijímací zkouška a avazující magiserské sudium 2016 Sudijí program: Sudijí obor: Maemaika Fiačí a pojisá maemaika Variaa A Řešeí příkladů pečlivě odůvoděe. Věuje pozoros ověřeí předpokladů použiých maemaických

Více

Modelování vlivu parametrického buzení na kmitání vetknutého nosníku

Modelování vlivu parametrického buzení na kmitání vetknutého nosníku . ročík echické koferece ARaP, 4. a 5.. 4, Praha Modelováí vlivu paramerického buzeí a kmiáí vekuého osíku Jiří TŮMA, Per Ferfecki, Pavel ŠURÁNE, Miroslav MAHDA VŠB - Techická uiverzia Osrava ARaP 4 Osova

Více

asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia :

asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia : Dmk I, 3. předášk Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm

Více

Číslo materiálu VY_32_INOVACE_CTE_2.MA_17_Klopné obvody RS, JK, D, T. Střední odborná škola a Střední odborné učiliště, Dubno Ing.

Číslo materiálu VY_32_INOVACE_CTE_2.MA_17_Klopné obvody RS, JK, D, T. Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projeku CZ..7/.5./34.58 Číslo maeriálu VY_32_INOVACE_CTE_2.MA_7_Klopé obvody RS, JK, D, T. Název školy Auor Temaická oblas Ročík Sředí odborá škola a Sředí odboré učilišě, Dubo Ig. Miroslav Krýdl

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

Křivočarý pohyb bodu.

Křivočarý pohyb bodu. Křočý pohb bodu. Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

Řešení soustav lineárních rovnic

Řešení soustav lineárních rovnic Řešeí sousv lieáríc rovic Sousv lieáríc rovic Sousvou m lieáríc rovic o ezámýc rozumíme sousvu : Kde ij i R M m m Čísl ij zýváme koeficiey sousvy čísl i soluí čley Uvedeou sousvu udeme zči Sm m M m Homogeí

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

23. Mechanické vlnění

23. Mechanické vlnění 3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze

Více

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla Paprskoá optika Sětlo jako elektromagetiké lěí Šířeí sětla, Odraz a lom sětla Disperze sětla Sětlo jako elektromagetiké lěí James Clerk Maxwell (83 879) agliký fyzik autorem teorie, podle íž elektro-magetiké

Více

Přednáška č. 7 Analýza experimentálních údajů, testování statistických hypotéz, testy střední hodnoty

Přednáška č. 7 Analýza experimentálních údajů, testování statistických hypotéz, testy střední hodnoty Předáška č 7 Aalýza eperieálích údajů, esoáí saisických hypoéz, esy sředí hodoy K popisu lasosí základího souboru e saisice souboru ýběroého, kerý předsauje určiý koečý poče údajů získaých z proedeých

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019 Jméo: Příklad 2 3 Celkem bodů Bodů 0 8 2 30 Získáo 0 Uvažujte posloupost distribucí {f } + = D (R defiovaou jako f (x = ( δ x m, kde δ ( x m začí Diracovu distribuci v bodě m Najděte limitu f = lim + f

Více

Hlavní body. Úvod do vlnění. Harmonické vlny. Energie a intenzita vlnění. Popis, periodicita v čase a prostoru Huygensův princip, odraz a lom vlnění

Hlavní body. Úvod do vlnění. Harmonické vlny. Energie a intenzita vlnění. Popis, periodicita v čase a prostoru Huygensův princip, odraz a lom vlnění Vlnění Úvod do vlnění Hlavní bod Harmoniké vln Popis, periodiia v čase a prosoru Hugensův prinip, odraz a lom vlnění Energie a inenzia vlnění Inerferene vln, Dopplerův jev Vln přenos kmiů prosorem Prosředím

Více

SP NV Normalita-vlastnosti

SP NV Normalita-vlastnosti SP - - NV Normala-vlasos Přpomeuí vlasosí Normálího rozděleí Charakerscká fukce Lévyho-Ldebergova věa - cerálí lmí věa -rozměré ormálí rozděleí -rozměré ormálí rozděleí Přpomeuí vlasosí Normálího rozděleí

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

VÝKONOVÉ DIODY 5000 A 0,1 A I FAV 50 V U RRM V

VÝKONOVÉ DIODY 5000 A 0,1 A I FAV 50 V U RRM V VÝKONOVÉ DIODY Výkoové polovodičové diody se v aplikacích používají k zabezpečeí průchodu proudu jedím směrem, ejčasěji k usměrňováí sřídavého proudu.,1 A I AV 5 A 5 V RRM 1 V Věkerých aplikacích je požadová

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte

Více

OBJEKTOVÁ ALGEBRA. Zdeněk Pezlar. Ústav Informatiky, Provozně-ekonomická fakulta MZLU, Brno, ČR. Abstrakt

OBJEKTOVÁ ALGEBRA. Zdeněk Pezlar. Ústav Informatiky, Provozně-ekonomická fakulta MZLU, Brno, ČR. Abstrakt OBEKTOVÁ ALGEBRA Zdeěk Pezlar Úsav Iformaiky, Provozě-ekoomická fakula MZLU, Bro, ČR Absrak V objekovém modelu da defiujeme objekové schéma (řídu) jako čveřici skládající se ze jméa řídy, aribuů, domé

Více

Nelineární systémy. 3 / Matematické základy

Nelineární systémy. 3 / Matematické základy Nelieárí sysémy 3 / Maemaické základy Přehled 1. Úvod 2. Příklady 3. Maemaické základy 4. Sabilia a Lyapuovova fukce 5. Řízeí NS pomocí přibližé liearizace. Gai schedulig 6. Řízeí NS pomocí srukurálích

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

1.6. Srovnání empirických a teoretických parametrů (4.-5.předn.)

1.6. Srovnání empirických a teoretických parametrů (4.-5.předn.) .6. rováí empirických a eoreických paramerů (4.-5.před.) Cíle: - pravděpodobosí zkoumáí výběrového saisického souboru: kvaifikace eoreických paramerů, srováí eoreických a empirických paramerů (Probable

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uirzia Karloa Praz Pdagogiká fakla SEMINÁRNÍ PRÁE Z INTEGRÁLNÍHO POČTU NEURČITÝ INTEGRÁL 00/00 IFRIK Zadáí čás I: Urč primiií fk k daým fkím a sao jjih dfiičí iral(y) ( ) ara ( ) ( ) ar Vypraoáí: Igráí

Více

DIFERENCIÁLNÍ ROVNICE

DIFERENCIÁLNÍ ROVNICE VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Isiu maemaik a deskripiví geomerie DIFERENCIÁLNÍ ROVNICE Maemaika IV Jaroslav Vlček Jiří Vrbický Osrava Předmluva Skripum "Difereciálí rovice" keré vziklo

Více

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové: Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí

Více

Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt

Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt DALŠÍ TYPY VLN Iotozvukové vly (elektostatiké ízkofekvečí vly) jsou to podélé vly podobé klasikému zvuku v plyu ω γ kt k M B s = = plazma zvuk pomalý po elektoy, yhlý po ioty hustota elektoů je v každém

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Světlo v izotropním látkovém prostředí a na rozhraní izotropní bezztrátové dielektrikum je charakterizováno skalární permitivitou ε = εε.

Světlo v izotropním látkovém prostředí a na rozhraní izotropní bezztrátové dielektrikum je charakterizováno skalární permitivitou ε = εε. Učebí ex k předášce UFY2 Feselovy vzoce a jevy a ozhaí dvou posředí I Svělo v zoopím lákovém posředí a a ozhaí zoopí bezzáové delekkum je chaakezováo skaláí pemvou ε εε a pemeablou μ μμ (kde μ po emagecké

Více

n(- ) = n p FEKT VUT v Brně ESO / L3 / J.Boušek 1 FEKT VUT v Brně ESO / L3 / J.Boušek x p x 0 N A E = 0

n(- ) = n p FEKT VUT v Brně ESO / L3 / J.Boušek 1 FEKT VUT v Brně ESO / L3 / J.Boušek x p x 0 N A E = 0 M FK BRĚ J.Boušek / lekroické součásky / 3 řechod v rovovážém savu K ; K J J J J J,drif J,dif µ d d J J,drif J,dif µ - d d o dosazeí (µk/ : iseiův vzah d d k d µ d d d µ - závislos a relaiví změě kocerace

Více

KINEMATIKA. 1. Základní kinematické veličiny

KINEMATIKA. 1. Základní kinematické veličiny KINEMATIKA. Základní kinemaické veličiny Tao čá fyziky popiuje pohyb ěle. VZTAŽNÁ SOUSTAVA je ěleo nebo ouava ěle, ke kerým vzahujeme pohyb nebo klid ledovaného ělea. Aboluní klid neexiuje, proože pohyb

Více

Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury.

Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury. 2. přednáška N + M + M Jádro průřeu Šikmý ohb M + N M + N M + M + N Jádro průřeu Ecenrický lak a vloučeného ahu Konrolní oák Miroslav Vokáč miroslav.vokac@cvu.c ČVUT v Prae, Fakula archiekur 19. října

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 5

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 5 Fakula srojího ižeýrsví VUT v Brě Úsav kosruováí KONSTRUOVÁNÍ STROJŮ převody Předáška 5 Čelí soukolí se šikmými zuby hp://www.audiforum.l/ Moderaio is bes, ad o avoid all exremes. PLUTARCHOS Čelí soukolí

Více

Kapitola 5 - Matice (nad tělesem)

Kapitola 5 - Matice (nad tělesem) Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic

Více

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha. Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní

Více

Zdánlivé paradoxy ve speciální teorii relativity

Zdánlivé paradoxy ve speciální teorii relativity ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ (FYZIKÁLNÍ SEMINÁŘ) Zdánié paradoxy e speiání eorii reaiiy Jan Duhoň Lenka Kučeroá Mirek Vinš Víězsa Dosá OBSAH: PARADOX RYTÍŘŮ PARADOX

Více

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou

Více

Metoda datových obalů DEA

Metoda datových obalů DEA Metoda datoých obalů DEA Model datoých obalů složí ro hodoceí techické efektiit rodkčích jedotek ssté a základě elosti stů a ýstů. Protože stů a ýstů ůže být íce drhů, řadí se DEA ezi etod icekriteriálího

Více

Maxwellovy a vlnová rovnice v obecném prostředí

Maxwellovy a vlnová rovnice v obecném prostředí Maxwellovy a vlnová rovnie v obeném prosředí Ing. B. Mihal Malík, Ing. B. Jiří rimas TCHNICKÁ UNIVRZITA V LIBRCI Fakula meharoniky, informaiky a mezioborovýh sudií Teno maeriál vznikl v rámi proeku SF

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pržost a plasticita II CD3 Lděk Brdčko VUT Brě Faklta stabí Ústa stabí mchaik tl: 541147368 mail: brdcko.l @ fc.tbr.c http:www.fc.tbr.cstbrdcko.lhtmldistc.htm Obsah přdmět 1. přdáška spolhliost kostrkcí

Více

Odchylka přímek

Odchylka přímek 734 Odchylka římek Předoklady: 708, 7306 Pedagogická ozámka: Pokd chcete hladký růěh začátk hodiy, je leší dořed ozorit žáky, že do otřeoat zorec ro úhel do ektorů Př : Urči úhel, který sírají ektory (

Více

Transport látek. Dva typy modelů. Řešení problémů. Pohyb rozpuštěných látek. Pohyb rozhraní. Přechod - emulze

Transport látek. Dva typy modelů. Řešení problémů. Pohyb rozpuštěných látek. Pohyb rozhraní. Přechod - emulze Transpor láek a p modelů Pohb rozpušěnýh láek láka e rozpušěna hmonos lák neolní husou kapaln dobré promíhání lák ( Pohb rozhraní Nemíselné lák Přehod - emulze Řešení problémů užíání odníh zdroů - zásoboání

Více

č á Č Ě ó č á ů á ě ě é ď Ú č á Č ě ě š č ě í ří á ů š í š í í é ě ů č ě ří č ě ě í ý č á í í á ý á ě í ář š á í á í ň á č é ó í á ě á íč ě á á ě ří č ě í á Č ě á á Ž á ú í ě Č č ý ě ě ď á é á á ě ě

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více

Rovnoměrně zrychlený pohyb v grafech

Rovnoměrně zrychlený pohyb v grafech ..9 Ronoměrně zrychlený pohyb grfech Předpokldy: 4 Př. : N obrázku jsou nkresleny grfy dráhy, rychlosi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. s,, ronoměrně zrychlený pohyb: zrychlení

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

=, kde P(x) a Q(x) jsou polynomy. Rozklad na parciální zlomky Parciální zlomky jsou speciální racionální lomené funkce. Rozlišujeme 2 typy:

=, kde P(x) a Q(x) jsou polynomy. Rozklad na parciální zlomky Parciální zlomky jsou speciální racionální lomené funkce. Rozlišujeme 2 typy: 3 předáš INTEGRAE RAIONÁLNÍ LOMENÉ FUNKE Důležiou supiu fucí, eré můžeme (spoň eoreicy) iegrov v možiě elemeárích fucí, voří rcioálí lomeé fuce Kždou rcioálí lomeou fuci vru P( ) f ( ) =, de P() Q() jsou

Více

č é á ý á ý í é č á í ůř ž č á í á á é é í Č á ý čí á í á í ý ž á Ý ě š ů á ý č é í ř í í é á í ž ě ě ý í ů č é ů ě č í č á ě Žá í á ý á ý ú ěš ý ý á

č é á ý á ý í é č á í ůř ž č á í á á é é í Č á ý čí á í á í ý ž á Ý ě š ů á ý č é í ř í í é á í ž ě ě ý í ů č é ů ě č í č á ě Žá í á ý á ý ú ěš ý ý á č é á ý á ý í é č á í ůř ž č á í á á é é í Č á ý čí á í á í ý ž á Ý ě š ů á ý č é í ř í í é á í ž ě ě ý í ů č é ů ě č í č á ě Žá í á ý á ý ú ěš ý ý á š á á ř ý á á í š í ř ý í á í í ý í č é ř í ěčí áš

Více

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2011/2012

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2011/2012 řijíí ouš do ujíío iseséo sudi čielsí fi po. supeň Š čielsí fi po SŠ po deiý o 0/0 Koouč o poloěu 0 oosi se ůže oáče ole odooé os. N oouči je iuo eé láo. N oi lá isí áží o oosi. ou á oouč úloou los, uí-li

Více

í á ě ý ů ý č ář í š éž á ý š á ě č á ý ý č ě ř ří é ě ší ř í ě í á ž ý č á á é é á í á é ář é č é é ě á š á ř í ě ů á á á ž é ě á ž ý ě ě ů ý š é ř š

í á ě ý ů ý č ář í š éž á ý š á ě č á ý ý č ě ř ří é ě ší ř í ě í á ž ý č á á é é á í á é ář é č é é ě á š á ř í ě ů á á á ž é ě á ž ý ě ě ů ý š é ř š Á Ď é á á ř š ú í á í í ě í é ě š žá é ě ý ý ů ý é í é í ě é á í é ý é áš é š ž í á ý ž á é á řá ý ý ž é í é ě ší š í ě í á á ý í á í ů ž éú é í í á á í ř á í ř á ý ú í á í ú í á á í á ý č í á á á ě ě

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

ý í á á š ě é í š íž á á ě š š ě ě á ě é ř é ž čá é ž ř í ř í í á č í š á í š ř í é ě š ž í ý é ě í í í á ř é ě ě ší ž ů ý á ě š é číš ě á ú ě í á í ě

ý í á á š ě é í š íž á á ě š š ě ě á ě é ř é ž čá é ž ř í ř í í á č í š á í š ř í é ě š ž í ý é ě í í í á ř é ě ě ší ž ů ý á ě š é číš ě á ú ě í á í ě Í Á Í Ý Á Ú Ř Č Í Í č ř á ý š á ý í í č í í ě í ž ě í č í á í í í í č í í á í ěž ě á í č í ěř í é ýš ý á á ě í í š ů í á í ů č í ž í ž í áš ě ě á é ě á í é š í é ř é á é á í á ě ž áž í ý č á í ž ý ě ší

Více

ě í á á Č á á í ěř č é é ý č é ě í í ě í č é ď á é ý á ý ý ý ě ů ě á Č ý í á í řá ý ý í ě š ě é ý é ý číč ý ě ů ř áš á č é é č é ě í ý ď á í ě í ř áš

ě í á á Č á á í ěř č é é ý č é ě í í ě í č é ď á é ý á ý ý ý ě ů ě á Č ý í á í řá ý ý í ě š ě é ý é ý číč ý ě ů ř áš á č é é č é ě í ý ď á í ě í ř áš Č Á Á Í Ž í Č é ř í á Č é é á ř íž é í é á í ě ý č í ž ží á ů ý ř ů ý ý á ý á ý á ý ý ě á í á á í í á ě ě í č é ž á í á é é á é ý á í é í ží á é ě č í úč ů á í ó ě é ě č ř ůř š á í á í ě č ý á í á ě é

Více

Pohyb po kružnici - shrnutí. ω = Předpoklady:

Pohyb po kružnici - shrnutí. ω = Předpoklady: .3.3 Pohyb po kružnici - shrnuí Předpokldy: 3 Pomocí dou ě U kruhoého pohybu je ýhodnější měři úhel (kerý je pro šechny body sejný) než dráhu (kerá se pro body s různou zdálenosí od osy liší). Ke kždé

Více

é ě á é í í é ě é Íó á á í šíč ý á ě ý ř ý ř ší í š é ř é ří á ě á ě š ř ř í ř ů č é á í ó á š ů Ž ě ý ů čí š á Ž ý ý ě í é é á ž ý éž ě í Ž í ý ů ě ě

é ě á é í í é ě é Íó á á í šíč ý á ě ý ř ý ř ší í š é ř é ří á ě á ě š ř ř í ř ů č é á í ó á š ů Ž ě ý ů čí š á Ž ý ý ě í é é á ž ý éž ě í Ž í ý ů ě ě á Ží ř í ř é Í č é á č é í í ý í ž á š š á žá ý é š ř ě é ěž š ě ě é ó ř š í í í í í ě é á á í í í í í í ž ý ž ě ň í ů čí á ř ý č é é é á é Ž Ž ář ě ší é řá í áž í í ď í ž é ř ší í ó ž é á é ý ý Š Ž í

Více

Í ě Í ě ú ě ě Í Ú ě š ě š Ř Ť Ť š š š ů ú ě ě Í ě š Í ě Í š Ě Ž Ř ů ů Č ó Ú É Ď Ň Ř Ú Ú Í Ú ú É Ž É É ď ú ó Á ó É ň ů ó ů ú Á ů ÍÉ É ú Í ůó Č ď ď Í ď Č Č óó ú Č ě Ž ě ě ů š ě š š Ó ě Č š ě ě ě ě š ě ůž

Více

FOURIEROVA A LAPLACEOVA TRANSFORMACE,

FOURIEROVA A LAPLACEOVA TRANSFORMACE, FOUIEOVA A LAPLACEOVA ANSFOMACE, OPEÁOOVÉ CHAAKEISIKY DVOJPÓLŮ Fourierovy řady prodlužováí periody Prodloužeí periody při zachováí šířy ipulsu π sižováí záladí frevece ω = frevece, eré jsou u raší periody

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

í ří á á í š ž Ž í ů ý ý ů š ý éž č ě Ž é é ě ť íš Ž ř č ří ší ě í ě á š č ň ě Ž š ší ě é ž š ě ě ý ří ě í é ě ý ň á í š ě ý č á é á í á ě í í ě é ž ž

í ří á á í š ž Ž í ů ý ý ů š ý éž č ě Ž é é ě ť íš Ž ř č ří ší ě í ě á š č ň ě Ž š ší ě é ž š ě ě ý ří ě í é ě ý ň á í š ě ý č á é á í á ě í í ě é ž ž á ý í ě í í š č á ě ů ý é í á óš š ů ářů á ý š ě ř á ů ý č č á ů ý Ž á ě Ž á ú ří á ú á č áž č á ě á á ž á š ě í í Í Ť ý Ž š ř ř í ů ý áš ž Ř č Ř ř č é ý Š Ě Á Ů Š ý ř á é áš ž ě é á ř ě ší á ů Í á í č

Více

čá é č é é í á č é ď čí ě é í š ě šíč č í Č á á ě í ů í ě ý ý š Í á ů č ě é á í š ě í í č ě í č ě á í á ě ří é é á ž í ý ě č ý á é ý é í č á ě ě ě ší

čá é č é é í á č é ď čí ě é í š ě šíč č í Č á á ě í ů í ě ý ý š Í á ů č ě é á í š ě í í č ě í č ě á í á ě ří é é á ž í ý ě č ý á é ý é í č á ě ě ě ší č é ě é ú í ř á ý á Ž éž ý á ě š é ří é č éž í ý ÍŽ é ř ší é é č ě ě éú é á á ý ů ň ž á í á í ů č í č ě ý š ý é í á é ř á í í í š ý á ý ů ž í Ž ú á é č ě á é ř ř í š ý č é é ý ž é č ě ě é é í š ě í í ř

Více

Á í ú ý í á ů ř ť ů ž á Ú á ů á á ž í á íž á á á í ěž á ú í á í ě í í é á í í í ý í ří ě é í ž í ě ář í í á í á í ě í á ří á í á í í é é í á ří žá é í ě ý Í ří í á íí Ří í é á ě é í é í í áš í ú á í á

Více

TERMOMECHANIKA 18. Tepelné výměníky

TERMOMECHANIKA 18. Tepelné výměníky FSI VU v Brě, Eergetký ústav Odbor termomehaky a tehky prostředí Prof. Ig. Mla Pavelek, S. EMOMEANIKA 8. epelé výměíky OSNOVA 8. KAPIOLY ypy výměíků tepla Základí problémy výměíků tepla Prostup tepla Středí

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

Matematika 2 (BMA2 + KMA2)

Matematika 2 (BMA2 + KMA2) FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Maemaika BMA KMA Auoři eu: Prof RNDr Fraišek Melkes, CSc Mgr Mari Řeáč FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

Více

Zákony bilance. Bilance hmotnosti Bilance hybnosti Bilance momentu hybnosti Bilance mechanické energie

Zákony bilance. Bilance hmotnosti Bilance hybnosti Bilance momentu hybnosti Bilance mechanické energie Zákony bilance Bilance hmonosi Bilance hybnosi Bilance momenu hybnosi Bilance mechanické energie Koninuum ermodynamický sysém Pené ěleso = ěšinou uzařený sysém Konsanní hmonos - nezáisí na čase ochází

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

Úhrada za ústřední vytápění bytů V

Úhrada za ústřední vytápění bytů V Úhrada za úsřdí vyápěí byů V Aoa osldí z sér čláků o poměrovém měří pojdává o vzahu poměrového a zv. absoluího měří pla, a poukazuj a další, zaím méě zámou možos využí poměrovýh dkáorů VIA, krou j korola

Více

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

Kinematika hmotného bodu

Kinematika hmotného bodu Kinemaika hmoného bodu 1. MECHANICKÝ POHYB Základní pojmy kinemaiky Relaino klidu a pohybu. POLOHA HMOTNÉHO BODU 3. TRAJEKTORIE A DRÁHA HMOTNÉHO BODU 4. RYCHLOST HMOTNÉHO BODU 5. ZRYCHLENÍ HMOTNÉHO BODU

Více

í é é ě š é á á š é í ř ž ě š ří ě ů é á š ě č á í é ě ě ě č ř é í š ě í ý á í í í š ě ě ší ň í š ě í ž é ž č áčá š ý ý í á á ší ý á č é í í á č ý á í

í é é ě š é á á š é í ř ž ě š ří ě ů é á š ě č á í é ě ě ě č ř é í š ě í ý á í í í š ě ě ší ň í š ě í ž é ž č áčá š ý ý í á á ší ý á č é í í á č ý á í í é é ě š é á á š é í ř ž ě š ří ě ů é á š ě č á í é ě ě ě č ř é í š ě í ý á í í í š ě ě ší ň í š ě í ž é ž č áčá š ý ý í á á ší ý á č é í í á č ý á í í é í ě ší í ř ěž ě é ě ě ší á í č ř č í í ý č ě ě

Více

Systé my, procesy a signály I. Vypoč těte normovanou energii signálů na obr.1.26 v č asovém intervalu T = 1ms: -1V. f) 1V

Systé my, procesy a signály I. Vypoč těte normovanou energii signálů na obr.1.26 v č asovém intervalu T = 1ms: -1V. f) 1V NEŘ EŠENÉPŘ ÍKLADY r 1.7. Vypoč ěe normovanou energii signálů na obr.1.6 v č asovém inervalu T = : a) g) b) ) c) - + i) - d) T - j) T - sin( Ω ) T 4 T T e) k) sin ( Ω ) T 4 T T f) l) cos( Ω ) 4 T T Obr.1.6.

Více

Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský

Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský Jan Malinsý V omo doumenu bude odvozeno sperum vysenuého sinusového signálu pomocí onvoluce ve frevenční oblasi. V časové oblasi e možno eno vysenuý signál vyvoři násobením obdélníového ( V a sinusového

Více

í ě ší ý á í í á ě ě ú í á í é á í ý ů ě ě ší é č ý ří á í čá í í ě í ž é ž ý á ý é ý ž čí ž í ší ř á á č ž ř š é ř č é ží í ě ší ř á č ý ů á ů ý č í

í ě ší ý á í í á ě ě ú í á í é á í ý ů ě ě ší é č ý ří á í čá í í ě í ž é ž ý á ý é ý ž čí ž í ší ř á á č ž ř š é ř č é ží í ě ší ř á č ý ů á ů ý č í í ě ší ý á í í á ě ě ú í á í é á í ý ů ě ě ší é č ý ří á í čá í í ě í ž é ž ý á ý é ý ž čí ž í ší ř á á č ž ř š é ř č é ží í ě ší ř á č ý ů á ů ý č í ů ž á ří ří ž á í í ý é í ž í ě ý č é á ž é á ě á á

Více

í í Á Á í ž Í í ě ě ý ý č ů ří ě é áž Ť é í í í í š čí á ž š ž í ř ž ě Í í Í š ý ů á í í ú é ě š é ě ýž ěč í ž ě á ř ř ý ě é á š ší ří ě ý Í ž í č Č í í ř ě í é í úť Í é ří ě ě š é ě ě é é ž í ří ě á í

Více

í é ří ří ý é íř Ú í í í šíř é Í ř í ý ů ě ý í ě ó ó í ě ýó ó í ě ýó ří í í í ří ď í š í é ů ěř ů Ť ěř í ě é ě í ů é ďí í ž í ů ě í í ý ů é í ě ý ů é ů ž ří ř í ý ěř ě ď é ú í ž Í í ž é ě ě ý ř ě ů ř š

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

Přehled modelů viskoelastických těles a materiálů

Přehled modelů viskoelastických těles a materiálů Přehled modelů vskoelsckých ěles merálů Klscké reologcké modely Klscké reologcké modely vycházejí z předsvy, že chováí ěles lze hrd chováím sysému složeého z pruž písů, edy z ookeových ewoových ěles. ookeovo

Více

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě. 18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími

Více

OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE

OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE OBECNÁ LOÁLNĚ PODEPŘENÁ ŽELEZOBETONOÁ STROPNÍ ONSTRUCE Je dán železobeonový monoliický skele (viz schéma konsrukce). Sousední desková pole jsou zaížena rozdílným užiným zaížením. Meodou součových momenů

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

7. Soustavy lineárních diferenciálních rovnic.

7. Soustavy lineárních diferenciálních rovnic. 7 837 4:3 Josf Hkrdla sousavy liárích difrciálích rovic 7 Sousavy liárích difrciálích rovic Příklad 7 3 + 5 + ( ) ξ 3 + ( ) ξ Maicový zápis 3 5 + 3 ( ) ξ ( ) ξ Dfiic 7 (sousava liárích difrciálích rovic

Více

ž í éó é Č ó í ě ý ží í šíř í č ář ř ší ž í ů ě ý ý é ě ý é ó ě á á ž á ř ř é í íž á ž Ž á á á ý á á á í Š é ž ý ě ší ť é ý é ů ě ý ý ť íž ý ý ý ř ší č ě á á í í ří á ě í á č ě ý í é čí í í ž é ě ý í

Více

Ó Á Á ý ř ó é ě ší ř ž í ě í ěř í é á ž ň ří í é íř ů ří í ř í č é í é š é Ť č é áš ý á ý é ě é á é é í ž ě í í á ó áš ý č á á č í á ě á ó ů á ě í á ó é č íú ě ý á á ř á í í í ý íží í ó é ář ó á ř á ý

Více

ý é ě é é ž í ř ř í Ž á ř í ž í á ů íč é á ř á í é á ů á Í ří č ýý ř ů ů é ří í ťř č č í á í á ří š í í ř í í é í á í ř ší ý ý ě í ůč ě Í í ě á á š ří

ý é ě é é ž í ř ř í Ž á ř í ž í á ů íč é á ř á í é á ů á Í ří č ýý ř ů ů é ří í ťř č č í á í á ří š í í ř í í é í á í ř ší ý ý ě í ůč ě Í í ě á á š ří ďí í ž Íá ý é ří ýč í é í ě í č ý í ý á í ý ř ý á í Ž ž é á é ř ě ě íč ář š č é ý á é í ř ř Í ď ý í ří é š ú í ř é ů čí ů í í č é ěší á ží ý á í é Č é ý é Č á á áč ář á í ž ý č ý í í á á ží á é ří ž š

Více

á ó ě ší ú ě ů á č á ó í á ů ž ř í í ší ú í ž é í á á ě á é í č úč ý á í é ž ý ě č ý ě á á ý á ý é ě š š ě í á ů ě é é ž ů ř í ý á í ř í ě á í á ž ú ů

á ó ě ší ú ě ů á č á ó í á ů ž ř í í ší ú í ž é í á á ě á é í č úč ý á í é ž ý ě č ý ě á á ý á ý é ě š š ě í á ů ě é é ž ů ř í ý á í ř í ě á í á ž ú ů Ó í á ý č é ó á ý á ý í ý í ř í ší á ú í ě ř ů é ř áš ě é ó í ř á í í ó ě á ě ě á ě á ě ší ž ř íž á á é í ů á í š ř áž ě ě č Č á ě ý ší á ý ě ě čí ř ší ž á ří č é ž á í í ě é ó í č á é č á ř ý ř š éý é

Více

Vícekanálové čekací systémy

Vícekanálové čekací systémy Vícekaálové čekací systémy taice obsluhy sestává z ěkolika kaálů obsluhy, racujících aralelě a avzájem ezávisle. Vstuy i výstuy systému mají oissoovský charakter. Jedotky vstuující do systému obsadí ejrve

Více

4. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1, MĚŘENÍ KMITOČTU A FÁZOVÉHO ROZDÍLU

4. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1, MĚŘENÍ KMITOČTU A FÁZOVÉHO ROZDÍLU 4. MĚŘICÍ PŘEVODÍKY ELEKICKÝCH VELIČI, MĚŘEÍ KMIOČ A FÁZOVÉHO OZDÍL Převodníky pro měření soč a rozdíl (s operačním zesilovačem, s ransformáory) Inegrační zesilovač: základní princip a odvození přenos

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava Okruhy z učiv sředoškolské memiky pro příprvu ke sudiu Fkulě ezpečosího ižeýrsví VŠB TU Osrv I Úprvy lgerických výrzů, zlomky, rozkld kvdrického rojčleu, mociy se záporým epoeem, mociy s rcioálím epoeem,

Více