Odchylka přímek
|
|
- Markéta Nováková
- před 8 lety
- Počet zobrazení:
Transkript
1 734 Odchylka římek Předoklady: 708, 7306 Pedagogická ozámka: Pokd chcete hladký růěh začátk hodiy, je leší dořed ozorit žáky, že do otřeoat zorec ro úhel do ektorů Př : Urči úhel, který sírají ektory ( ; ), ( 3;4) Vyžijeme lastosti skalárího soči: Velikosti ektorů: Dosadíme do zorce: + +, 5 ( ) ; 3; ϕ 63 6 Př : Zoakj a oroej defiici a možé hodoty: a) laimetricky zaedeé odchylky římek, ) úhl ektorů zaedeého aalytické geometrii Na základě oroáí arhi ost ro ýočet odchylky římek aalytické geometrii Plaimetrická odchylka římek V říadě růzoěžek elikost ostrého eo raého úhl, říadě rooěžek la Úhel ektorů Velikost koexího úhl UOV, který zike z místěí ektorů a do orietoaých úseček OU a OV U O V ϕ 0;90 ϕ 0;80 Skalárí soči ektorů možňje sado rčit úhel, který ektory sírají Směr římek je rče omocí směroých ektorů Můžeme yžít skalárí soči směroých ektorů a ýočet odchylky římek Jak to doade? Odchylka římek se roá úhl směroých ektorů Pro odchylk římek latí: ϕ 80 α
2 Možá řešeí: Když yjde tý úhel, orátíme jede z ektorů Když yjde tý úhel, doočítáme odchylk do 80 Zamezíme hodotám ad 90 Pro tyto hodoty latí < 0 Zaráíme tom, ay yla hodota zlomk záorá čitatel zlomk dáme do asoltí hodoty (tím zároeň zaráíme tom, ay odchylka záisela a orietaci směroého ektor, rotože ro oačý ektor získáme oačo hodot skalárího soči se stejo asoltí hodoto) Odchylka římek, se směroými ektory, je číslo ϕ latí 0; π, ro které x + t Př 3: Urči odchylk římek, : : y 3 3 t, t R Potřejeme směroé ektory:, {[ t;3 t], t R} + : ( ; 3) + ( 3) 3 : ( ;) ( ; 3) ( ;) ϕ Odchylka římek, je ϕ 9 Př 4: Urči odchylk římek : x y a : 3x + y 0 Oě římky jso zadáy oeco roicí záme ormáloé ektory Je to rolém? + Nemsíme je řeádět a směroé ektory, rotože odchylka římek a, je stejá jako odchylka římek, které jso a ě kolmé (a které mají za směroé ektory ormáloé ektory římek a ) ( ; ) + ( ) 5 ( 3;) ( ; ) ( 3; )
3 4 4 ϕ Odchylka římek, je ϕ 60 5 Př 5: Urči odchylk římek AB a A[ 3;], [ ; ] B, : x y Pro rčeí odchylky římek můžeme ožít dojici směroých eo ormáloých ektorů z ormáloého ektor římky yočteme její směroý ektor AB B A ( 4;) ( ; ) ( ; ) AB 4; ; AB AB 6 6 ϕ AB Odchylka římek AB a je ϕ 49 4 Př 6: Je dáa římka : x 3y 0 odchylka od římky je 45 Najdi římk, která rochází odem Q [ ;] Hledáme římk otřejeme od (máme ze zadáí) a ektor (jedo zda směroý eo ormáloý) U římky záme ormáloý ektor ro římk hledáme také ormáloý ektor a; ( ; 3) + ( 3) 0, ( ; ) a ( ; 3 ) ( ; ) + ( 3) 3 a a a a + a 3 Dosazeí do zorce ro odchylk římek: cos 45 0 a + Prolém: Máme jedio roici, ale dě ezámé, zadáí eosahje žádý další údaj ro zasáí další roice Vysětleí: Normáloých ektorů římky je ekoečě moho:, jejíž A msíme si yrat, který z ich chceme sočítat, aychom získali jedozačý ýsledek (šechy jso stejě ožitelé, ale okd chceme kokrétí řešeí, msíme si jede yrat) 3
4 Vyereme aříklad takoý, který má x-oo sořadici roo jedé (okd ejso ormáloé ektory sislé 0;k rčitě je jede z ektorů s x-oo sořadicí roo jedé ormáloým ektorem římky ) Volíme: ( ; ) ( ) ( + ) ( ) 5 3 / + (Umocěím se zaíme odmociy i asoltí hodoty) ( 3) ( 3) 4 ± 4ac ± 3 ± 5 x, a x ( ; ) ( ; 0,5) ( ; ) 4 Existjí dě římky, které slňjí zadáí : : ( ; ) x + y + c 0 ( ; ) x y + c 0 Dosadíme [ ;] Q + + c 0 Dosadíme [ ;] c 3 c : x + y 3 0 : x y 0 Zadáí říklad slňjí římky : x + y 3 0 a : x y 0 Q + c 0 Pedagogická ozámka: Diskse o zoleí jedé sořadice ormáloého ektor ; y je důležitá Podoých říadů, kdy msíme sočítat ěco ejedozačého (aříklad směroé ektory), je moho a je doré, když stdeti cháo důod, roč je té sořadici zolit Dodatek: Můžeme si kázat, jak y řešeí říklad roíhalo, kdyychom si yrali jiý směroý ektor: Volíme: ( ; y) + y, ; 3 ; y 3y 4
5 3y cos y y ( y ) ( y) y y y 4 0 ( y 4)( y + ) 0 y, + y y + y 4 ; eo ; Můžeme také zolit y-oo sořadici a doočítat x-oo: x; y, x +, x 3 cos 45 0 x + x ( x ) ( x ) x 3x 0 + x x, ; 3 x; x 3 5x 5 x 6x y y 6 0 4x + 6x 4 0 ± ac 3± 3 4 ± a 4 ; ) x, ( ) (stejý směr jako ektor ; x, 0,5; ; Př 7: Jso dáy ody A [ ;3], B[ 4; ] a V [ 3;] A Najdi oeco roici osy úhl AVB o + V B Osa úhl růměr směrů oo rame rčíme ektory a tak, ay latilo: k A V, 0 l B V, l > 0 k > Vektor w + ak de mít směr osy úhl AVB A V ( 4;), A V B V ( ; ), B V + 5 Vektor A V je dakrát ětší zmešíme ho a oloi ( A V ) ( 4; ) ( ; ) 5
6 ( B V ) ( ; ) o ( ;) roice x + y + c 0 Dosadíme od [ 3;] c w + ; + ; ; o V : c Osa úhl AVB má oeco roici: x + y + 0 Př 8: Petákoá: straa 08/cičeí 47 e) g) straa 08/cičeí 48 a) ) straa 08/cičeí 50 straa 08/cičeí 5 straa 0/cičeí 77 Shrtí: Výočet odchylky římek je založe a rčeí odchylky směroých ektorů Hodoty jso meší ež 90 6
Odchylka přímek. ϕ 0;180. Předpoklady: 7208, 7306
74 Odchlka římek Předklad: 708, 706 Př : Zakj a rej defiici a mžé hdt: a) laimetrick zaedeé dchlk římek b) úhl ektrů zaedeéh aaltické gemetrii Na základě ráí arhi st r ýčet dchlk římek aaltické gemetrii
7.2.4 Násobení vektoru číslem
7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:
DUM č. 10 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla
projekt GML Brno Docens DUM č. 10 sadě Ma- Přípraa k matritě a PZ geometrie, analytická geometrie, analýza, komlexní čísla 14. Ator: Magda Krejčoá Datm: 1.08.01 Ročník: matritní ročníky Anotace DUM: Analytická
( ) 2 2 2. 7.4.8 Výpočty odchylek. Předpoklady: 7406
7.4.8 Výočty odchylek Předoklady: 7406 Pedagogická ozámka: Na octié robráí této hodiy otřebje běžý stdet tak jede a ůl hodiy yčoací. Defiici odchylek ro římky, roiy atd. ž záme ze stereometrie, teď jeom
Metoda datových obalů DEA
Metoda datoých obalů DEA Model datoých obalů složí ro hodoceí techické efektiit rodkčích jedotek ssté a základě elosti stů a ýstů. Protože stů a ýstů ůže být íce drhů, řadí se DEA ezi etod icekriteriálího
Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
7.3.2 Parametrické vyjádření přímky II
7.. Parametriké vyjádření římky II Předoklady 701 Př. 1 Jso dány body [ ;] a [ ; 1]. Najdi arametriké vyjádření římky. Urči sořadnie bod C [ 1;? ] tak, aby ležel na říme. Na které části římky bod C leží?
8.1.3 Rekurentní zadání posloupnosti I
8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím
Komplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
, která vznikla z matice A vynecháním i-tého řádku a j-tého sloupce nazýváme minorem matice A příslušnému k prvku
Cvičeí z ieárí agebry 4 Vít Vodrák Cvičeí č Determiat a vastosti determiatů Výpočet determiat djgovaá a iverzí matice Cramerovo pravido Determiat Defiice: Nechť je reáá čtvercová matice řád Čtvercovo matici,
7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
1.2. NORMA A SKALÁRNÍ SOUČIN
2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;
( ) Sčítání vektorů. Předpoklady: B. Urči: a) S. Př. 1: V rovině jsou dány body A[ 3;4]
722 Sčítání ektorů Předpoklady: 7201 Př 1: V roině jso dány body A[ 3;4], [ 1;1] B Urči: a) S AB b) = B A a) S AB ( ) a1 + b 3 1 1 a2 + b2 + 4 + 1 5 ; = ; = 2; 2 2 2 2 2 b) = B A = [ 1;1] [ 3; 4] = ( 2;
8.2.10 Příklady z finanční matematiky I
8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do
Hledání parabol
7.5.1 Hledání arabol Předoklad: 751, 7513 Pedagogická oznámka: Studenti jsou o řekonání očátečních roblémů s aměti vcelku úsěšní, všichni většinou zvládnou alesoň rvních ět říkladů. Hodinu organizuji tak,
8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
Definice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
7.2.3 Násobení vektoru číslem I
7..3 Násobení ektor číslem I Předpoklad: 70 Př. : Zakresli do sosta sořadnic alespoň dě různá místění ektorů: = 3; = 3;0 = ; a) ( ) ( ) c) ( ) - - - x - Pedagogická poznámka: Předchozí příklad není zbtečný.
s p nazýváme směrový vektor přímky p, t je parametr bodu
MATE ZS 2013 KONZ 3A Analytická geometrie lineárních útvarů v rovině a v rostoru Přímka v rovině 1 Parametrická rovnice římky v rovině: t R s o : X = A + t s, kde, Vektor s nazýváme směrový vektor římky,
( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302
7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.
Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
8.3.1 Vklady, jednoduché a složené úrokování
8..1 Vklady, jedoduché a složeé úrokováí Předoklady: 81 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží
3.3. Operace s vektory. Definice
Operace s ektory.. Operace s ektory Výklad Definice... Nechť ϕ je úhel do nenloých ektorů, (obr. ). Skalárním sočinem ektorů, rozmíme číslo, které bdeme označoat. (někdy strčně ) a které definjeme roností.
7.5.13 Rovnice paraboly
7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,
Analytická geometrie v rovině
nltická geometrie roině Zč je toho loket (ořnice) ) [ ], [ 7], [ ], [ 5] ; b) = 7 j, = j, = 4 j, = 8 j, = j R M P 9 8 7 6 5 4 ) L[ 7], M[ ] ; b) Q[ ], R[ 5] 9 8 7 6 5 4 4 5 6 7 [ 5], [, 5], [ ] Q 9 5 c),
Elektrické přístroje. Přechodné děje při vypínání
VŠB - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky Katedra elektrických strojů a řístrojů Předmět: Elektrické řístroje Protokol č.5 Přechodé děje ři vyíáí Skuia: Datum: Vyracoval: - -
Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)
Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova
c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),
a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte
Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v
..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku
1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V
Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být
Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika
Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo
1 Trochu o kritériích dělitelnosti
Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak
Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení
Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
3. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE
Euklidoský prostor. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE Průodce studiem Geometrii lze budoat metodou syntetickou nebo metodou analytickou. Při syntetické metodě pracujeme přímo s geometrickými objekty.
Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava
Okruhy z učiv sředoškolské memiky pro příprvu ke sudiu Fkulě ezpečosího ižeýrsví VŠB TU Osrv I Úprvy lgerických výrzů, zlomky, rozkld kvdrického rojčleu, mociy se záporým epoeem, mociy s rcioálím epoeem,
Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,
1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
7.2.10 Skalární součin IV
7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně
VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ
VEKTOROVÁ LGEBR NLYTICKÁ GEOMETRIE V ROVINĚ Délk úsečk, střed úsečk,, B Délk úsečk B : B C, BC Střed úsečk : B S s, s souřdice středu: s, s Vektor Vektor = oži všech souhlsě orietových rovoěžých úseček
5.1.8 Vzájemná poloha rovin
5.1.8 Vzájemná oloha rovin Předoklady: 5107 Př. 1: Kolik solečných bodů mohou mít dvě roviny? Každou možnost dokumentuj omocí dvou rovin určených vrcholy krychle a urči vzájemnou olohu rovin. Mohou nastat
Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006
8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0
Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta
Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k.
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti
8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:
Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v
..6 Znaménka Předpoklad: 3, 5 Opakoání: Veličin s elikostí a směrem = ektoroé eličin Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku
DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM
Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře
1. Číselné obory, dělitelnost, výrazy
1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá
Náhodné jevy, jevové pole, pravděpodobnost
S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem
Laboratorní práce č. 4: Úlohy z paprskové optiky
Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého
základním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě
7.3.7 Přímková smršť. Předpoklady: 7306
737 Přímkoá smršť Předpokldy 7306 Pedgogiká poznámk Hodin znikl jko reke n prní průhod učenií Třeoni se třídou 42011 Ukázlo se, že studenti mjí prolémy s přiřzením spráného ektoru k různým druhům roni
Dá se ukázat, že vzdálenost dvou bodů má tyto vlastnosti: 2.2 Vektor, souřadnice vektoru a algebraické operace s vektory
Vektorový počet.1 Eklidovský prostor E 3 Eklidovský prostor E 3 je prostor spořádaných trojic (tj. bodů), v němž je definována vzdálenost dvo jeho bodů A, B (značíme ji AB ). Vzdálenost bodů A = [a 1,
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
Téma 6: Indexy a diference
dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
4. Tvorba náhradního schématu Před provedením výpočtu sítě nutno ji nadefinovat (i v případě, že využíváme počítačový program)
4. Torba áhradího schématu Před proedeím ýpočtu sítě uto ji adefioat (i případě, že yužíáme počítačoý program) Pro optimálí olbu řešeí jsou důležité zjedodušující předpoklady chceme sestait áhradí schéma
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení
Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90
5.1.7 Vzájemná poloha přímky a roviny
5..7 Vzájemná oloha římky a roviny Předoklady: 506 Pedagogická oznámka: Tato a následující hodina je obtížně řiditelná. ni jedna z těchto hodin neobsahuje nic zásadního, v říadě časového skluzu je možné
Komplexní čísla, komplexně sdružená čísla, opačná komplexní čísla, absolutní hodnota (modul) komplexního čísla. z 2 z 1
Komplexí čísla, komplexě sdružeá čísla, opačá komplexí čísla, absolutí hodota (modul) komplexího čísla Defiice komplexího čísla Komplexí číslo je uspořádaá dvojice reálých čísel = (, ) (, ). je reálá,
Vytvoření vytyčovací sítě a vytyčení stavby
Vytvořeí vytyčovací ítě a vytyčeí tavby O bo P a ojici TB 89 a RS (roh retarace Slova roviňte bňk ravoúhlé vytyčovací ítě le obrák. V této íti vytyčte tavb aých roměrů a ajitěte olohově i výškově. Vytyčeí
Vícekanálové čekací systémy
Vícekaálové čekací systémy taice obsluhy sestává z ěkolika kaálů obsluhy, racujících aralelě a avzájem ezávisle. Vstuy i výstuy systému mají oissoovský charakter. Jedotky vstuující do systému obsadí ejrve
I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0
8. Elemetárí fukce I. Expoeciálí fukce Defiice: Pro komplexí hodoty z defiujeme expoeciálí fukci předpisem ) e z = z k k!. Vlastosti expoeciálí fukce: a) řada ) koverguje absolutě v C; b) pro z = x + jy
NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n
Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte
( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.
76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0
4. Model M1 syntetická geometrie
4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).
1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.
1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/
Petr Šedivý Šedivá matematika
LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími
1.7.4 Těžiště, rovnovážná poloha
74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit
Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat
Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí
Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2
Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z
Kolmost rovin a přímek
Kolmost rovin a přímek 1.Napište obecnou rovnici roviny, která prochází boem A[ 7; ;3] a je kolmá k přímce s parametrickým vyjářením x = + 3 t, y = t, z = 7 t, t R. Řešení: Hleanou rovinu si označíme α:
2.5.10 Přímá úměrnost
2.5.10 Přímá úměrost Předpoklady: 020508 Př. 1: 1 kwh hodia elektrické eergie stojí typicky 4,50 Kč. Doplň do tabulky kolik Kč stojí růzá možství objedaé elektrické eergie. Zkus v tabulce ajít zajímavé
Přednáška 7: Soustavy lineárních rovnic
Předáška 7: Soustavy lieárích rovic 7.1. Příklad (geometrie v roviě) Rozhoděte o vzájemé poloze přímky p : x y 1 a přímky a) a : x y 3, b) b : 2x 2y 3, c) c :3x 3y 3. Jak víme ze středí školy, lze o vzájemé
1.5.2 Mechanická práce II
.5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a
Stísněná plastická deformace PLASTICITA
Stísěá asticá deformace PLASTICITA STÍSNĚNÁ PLASTICKÁ DEORACE VE STATICKY NEURČITÝCH ÚLOHÁCH Elasticé řešeí: N cos, N N cos. Největší síla, tero může prt přeést: N S. Prt přejde do ast. stav prví při zatěž.síle
2.3.6 Práce plynu. Předpoklady: 2305
.3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram
Analytická metoda aneb Využití vektorů v geometrii
KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr
Užití binomické věty
9..9 Užití biomické věty Předpoklady: 98 Často ám z biomického rozvoje stačí pouze jede kokrétí čle. Př. : x Urči šestý čle biomického rozvoje xy + 4y. Získaý výraz uprav. Biomický rozvoj začíá: ( a +
Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy
1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné
Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1
Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky
MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek
MATEMATIKA ŘÍKLADY NA RCVIČENÍ arametrický ois křivek 1 Jedánakřivka k(t)=[t t+ ; t 3 3t], t R. Nakresletečástkřivk kro t 3 ;3.Naišterovnicetečenkřivkvbodech k( 1), k(1) a k(). Dosazením několika hodnot
Spojitost a limita funkcí jedné reálné proměnné
Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v
PaedDr. Jozef Beňuška ODRAZ A LOM SVĚTLA aneb Zákony při průchodu světla rozhraním
PaedDr. Jozef Beňuška jbeuska@extra.sk ODRAZ A LOM SVĚTLA aeb Zákoy při průchodu sětla rozhraím Vlěí, jež dopadá a rozhraí dou prostředí se může: - odrazit od rozhraí, - projít do druhého prostředí. Odraz
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY T BŘEZNA 09 D : 30. břez 09 M. možé skóre: 30 Počet řešitelů testu: 85 M. dosžeé skóre: 30 Počet úloh: 30 Mi. možé skóre: -7,5 Průměrá vyechost: 9, % Mi. dosžeé skóre: -,8 Správé
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
1 Nekonečné řady s nezápornými členy
Nekoečé řady s ezáporými čley Příklad.. Rozhoděte o kovergeci ásledující řady Řešeí. Pro každé N platí Řada tg. tg. diverguje, a proto podle srovávacího kritéria diverguje také řada tg. Příklad.. Určete
Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.
Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu
19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace
Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti