NUMERICKÝ VÝPOČET PRAVDĚPODOBNOSTI UŽITÍM USEKNUTÝCH HISTOGRAMŮ PŘI POSUZOVÁNÍ SPOLEHLIVOSTI KONSTRUKCÍ

Rozměr: px
Začít zobrazení ze stránky:

Download "NUMERICKÝ VÝPOČET PRAVDĚPODOBNOSTI UŽITÍM USEKNUTÝCH HISTOGRAMŮ PŘI POSUZOVÁNÍ SPOLEHLIVOSTI KONSTRUKCÍ"

Transkript

1 Petr Janas, Martin Krejsa 2 NUMERICKÝ VÝPOČET PRAVDĚPODOBNOSTI UŽITÍM USEKNUTÝCH HISTOGRAMŮ PŘI POSUZOVÁNÍ SPOLEHLIVOSTI KONSTRUKCÍ Abstract The paper reviews briefly one of the proposed probabilistic assessment concepts. The potential of the proposed concept and of the corresponding software is emphasized. The new edition of the Czech specification for structural design, ČSN (998), already contains provisions allowing for apication of probabilistic concept, using criterion P f < P d, where P f is the probability of failure and P d is the target probability defined in specifications.. ÚVOD Při posuzování spolehlivosti konstrukcí je patrná snaha používat ve stále větší míře ně pravděpodobnostních metod na úkor metod deterministických, i když i tyto metody dle našeho názoru budou hrát stále svou oprávněnou úlohu. Plně pravděpodobnostní metody jsou schopny podstatně věrohodněji a přirozeněji simulovat vstupy mající nezanedbatelný vliv pro posuzování chování stavebního objektu a jeho spolehlivosti. Tyto mají totiž většinou do značné míry náhodný charakter, který jediná deterministicky určená reprezentativní hodnota nemůže často ně charakterizovat. Plně pravděpodobnostní posuzování spolehlivosti stavebních objektů je úloha nelehká nejen z hlediska zajištění souborů potřebných vstupních údajů, ale také z hlediska jejich zpracování. Značně se však urychluje a umožňuje rozvojem výpočetní techniky. Rozvíjí se celá řada metod uvedených např. v [5] nebo [4], většinou založených na využití simulační techniky Monte Carlo. Stále větší možnost je věnovaná původní něpravděpodobnostní metodě SBRA ([3] a [4]), která rovněž využívá simulační techniku Monte Carlo. Předložený příspěvek ukazuje alternativní postup ně pravděpodobnostního výpočtu spolehlivosti konstrukce bez využití této simulační techniky. Poprvé byl presentován v [2]. 2. VÝPOČET PRAVDĚPODOBNOSTI Z HISTOGRAMU Náhodný charakter veličin vstupujících do pravděpodobnostního výpočtu při posuzování spolehlivostí konstrukcí se často vyjadřuje histogramy vycházejícími z pozorování a měření často i dlouhodobých. Ve vlastním výpočtu se pak dostáváme do situace, kdy se jednotlivé náhodné veličiny vzájemně násobí, dělí, sčítají a odčítají, pokud nejsou potřebné složitější početní úkony. Vzniká tedy potřeba početních operací s náhodnými veličinami, které jsou vyjádřeny histogramy. Tyto operace lze realizovat přímo deterministicky při využití základních principů teorie pravděpodobnosti. Postup vychází ze základních pojmů a postupů teorie pravděpodobnosti, z nichž některé z nich si dovolíme připomenout. Náhodný jev je jev, který v daných podmínkách může nastat nebo nenastat. Doc., Ing., CSc., VŠB TU Ostrava, Fakulta stavební, Katedra stavební mechaniky, Ludvíka Podéště 875, Ostrava - Poruba 2 Ing., Ph.D., VŠB TU Ostrava, Fakulta stavební, Katedra stavební mechaniky, Ludvíka Podéště 875, Ostrava - Poruba

2 Pravděpodobnost je kvantitativním vyjádřením náhodného jevu. Jestliže za určitých podmínek má nastat jeden z n navzájem se vylučujících jevů, přičemž není důvod předpokládat, že některý z nich má větší možnost výskytu než jiný, říkáme, že tyto jevy mají stejnou pravděpodobnost p =. () n Je-li nějaký náhodný jev A důsledkem kteréhokoliv z m jevů při daném počtu n možných jevů (navzájem se vylučujících a stejně pravděpodobných), je pravděpodobností jevu A poměr m p = (2) n Pravděpodobnost současného výskytu několika jevů se rovná součinu pravděpodobnosti těchto jevů, pravděpodobnost výskytu stejného jevu z několika navzájem se vylučujících jevů se rovná součtu pravděpodobnosti těchto jevů. Výše uvedené poznatky lze jednoduše dokumentovat na příkladě. Oblíbená kostka o šesti stěnách má na každé stěně jediné číslo a to až 6. Při hodu kostkou je pravděpodobnost, že padne libovolné ze šesti čísel p = = 0,6666. (3) 6 Při druhém hodu kostky, je pravděpodobnost výskytu libovolného čísla stejná a to opět p 2 = 0,6666. Pravděpodobnost současného výskytu dvou libovolných čísel ve dvou hodech po sobě se rovná v daném případě součinu p = p p2 = = 0, (4) 36 Tuto pravděpodobnost výskytu mají při dvou hodech kostkou všechny libovolné dvojice čísel, které mohou ve dvou po sobě jdoucích hodech padnou. Zajímá-li nás jaký bude pravděpodobný výsledek součtu čísel ze dvou po sobě jdoucích hodů, pak nebude u všech možností stejný, přestože atí výše uvedené pro pravděpodobnost dvojice čísel. Číslo 2 je např.výsledkem součtu +, pravděpodobnost jeho výskytu je p ( 2) =, (5) 36 číslo 3 již může být výsledkem součtu +2 nebo 2+ a pravděpodobnost jeho výskytu je dána součtem pravděpodobností v daném případě dvou navzájem se vylučujících možností tj. 2 p ( 3) = + =. (6) Obdobně tomu bude při výpočtu pravděpodobnosti výskytu všech ostatních možností výskytu součtu s dvou zcela libovolných čísel z prvního nebo druhého hodu. Součet všech pravděpodobností 2 2 p s = p(s) =. (7)

3 Obr.: Výpočet pravděpodobnosti součet Obr.2: Výpočet pravděpodobnosti - rozdíl Naprosto shodným způsobem lze postupovat při součinu, rozdílu a podílu. Histogramem výskytu libovolného možného čísla při hodu kostkou je obdélník o výšce p =. (8) 6 Histogram součtu, rozdílu, součinu a podílu čísel dvou po sobě jdoucích hodech je zřejmý z obrázků, které byly vypočteny programem umožňujícím sčítání (obr.), odčítání (obr.2), násobení (obr.3) a dělení (obr.4) dvou libovolných histogramů. Obr.3: Výpočet pravděpodobnosti součin Obr.4: Výpočet pravděpodobnosti - podíl Obdobně lze postupovat při práci s jakýmkoliv histogramem, vyjadřující jakoukoliv náhodnou veličinu, vstupující do výpočtu. Nechť histogram B je libovolnou funkcí f histogramů A j, kde j nabývá hodnot od do n. Platí tedy B = f(a, A 2, A 3,, A j, A n ) (9) Každý histogram A j má i j intervalů, přičemž každý interval je omezen hodnotou a j,i zdola a hodnotou a j,i+ shora. Znamená to například, že v intervalu i j = budou hodnoty: a j, a j a j,2, (0) přičemž a j,2 = a j, + a j, ()

4 kde a a j,min a j = i j (2) V intervalu i j bude tedy obecně: a j,i a j a j,i+ (3) j, max (ij) Hodnoty a j v tomto intervalu označme dále a j. Obdobné atí pro histogram B. Je-li zde počet intervalů i, pak v i-tém intervalu nabývá histogram hodnot b i až b i+, (dále označované b (i) ), které jsou dány funkcí b (i) = f(a (i), a (i2) 2,, a (ij) j, a (in) n ) (4) pro danou kombinaci argumentů a (i), a (i2) 2,, a (ij) j, a (in) n. Stejné hodnoty b (i) však může být dosaženo i při jiných hodnotách (nebo alespoň některých) a (ij) j. Označíme-li možnou kombinaci l hodnot a (ij) j, pak lze obecně psát b (i) = f(a (i), a (i2) 2,, a (ij) j, a (in) n ) l (5) i Pravděpodobnost p bl výskytu b (i) (ij) je dána součinem pravděpodobnosti p aj výskytu hodnot a ij j. Platí tedy p i bl =( p (i) aj. p (i2) aj. p (i3) aj.. p (ij) aj.. p (in) aj ) (6) Pravděpodobnost výskytu všech možných kombinací (a i, a i2 2,, a ij j, a in n ) l, funkce f jejichž výsledkem je b (i) je pak ( i) p b = p l l= () i Počet intervalů i j v každém histogramu A j může být různý stejně jako počet intervalů i v histogramu B. Pro počet potřebných početních operací a potřebnou dobu výpočtu je přitom rozhodující a také podstatně ovlivňuje přesnost výpočtu. (7) Obr.5: Princip provádění numerických operací se dvěma useknutými histogramy.

5 Program, jehož algoritmus je založen na výše uvedených základech teorie pravděpodobnosti, byl vytvořen v programovacím jazyce Borland Delphi 6.0 a zatím byl použit pro řešení několika poměrně jednoduchých příkladů. Jedním z nich je např. součin histogramu, vyjadřujícího pevnost na mezi kluzu f y = 235 MPa ocelových válcovaných průřezů a histogramu s normálovým rozdělením. Výsledný histogram této matematické operace, provedené přímým pravděpodobvnostním výpočtem, je zobrazen na obr.7 a porovnán s výstupem z programu AntHill, pracujícím metodou SBRA (obr. 6), kde bylo provedeno simulací. Počet intervalů histogramu A vyjadřujícího napětí na mezi kluzu je 236 a počet intervalů histogramu B s normálovým rozdělením je 256. Pro histogram součinu A x B bylo nutno u toho výpočtu provézt 236 x 256 = početních operací. Výsledný histogram C obsahuje zvolených 024 intervalů. Výsledky dvou rozdílných postupů jsou srovnatelné. Například pro hodnotu f(z) = 250 je u metody SBRA kvantil 0, a u přímého pravděpodobnostního výpočtu 0, Pro velikost kvantilu P = 0,5 jsou výsledky prakticky totožné, u metody SBRA je f(z) = 284, a u přímého pravděpodobnostního výpočtu f(z) = 284, Provedeme-li metodou SBRA stejný výpočet opakovaně, budou se výsledky i při relativně velkém počtu simulací ( ) poněkud lišit. Důvodem je generování náhodných čísel nebo přesněji řečeno pseudonáhodných čísel, který je vždy omezený a při každé sérii simulací se vždy poněkud liší. U přímého pravděpodobnostního výpočtu je při stejné volbě intervalů výsledek vždý stejný. Obr.6: Součin dvou histogramů (program AntHill) 3. OPTIMALIZACE PŘÍMÉHO VÝPOČTU PRAVDĚPODOBNOSTI Pravděpodobnostní výpočty zejména složitějších úloh jsou náročné technicky i časově. Rozhodující jsou zde hlavně počty náhodných proměnných vstupujících do úlohy a počty zvolených intervalů každé proměnné. Pro danou úlohu je počet proměnných jednoznačně dán. Volba počtu intervalů každé proměnné je do značné míry volitelná. V zásadě by měla být taková, aby doba výpočtu byla zvládnutelná, a aby i zvyšování počtu intervalů nemělo významný vliv na výsledek. Předpokládáme přitom, že přesnost výpočtu s počtem intervalů roste.

6 Obr.7: Součin dvou histogramů (numerický výpočet) Je-li počet histogramů A j roven n a počet intervalů v histogramu A j je N j, pak počet intervalů v histogramu B bude principiálně N N. N 2. N 2. N 3.. N j.. N n (8) Počet početních operací je přitom úměrný součinu P = N. N 2. N 3.. N j.. N n (9) a pro N = N 2 = N 3 = = N j = = N n je P = (N j ) n (20) Je zřejmé, že není zpravidla důvod volit N > P, ale z praktických hledisek i při požadované přesnosti výpočtu bude často účelné volit: N << P. Bude-li např. n = 3 a N j = 00 je dle (20) P = (00) 3 = 0 6. Počet intervalů histogramu B pak může být také N = 0 6, ale zpravidla bude stačit volit počet N, tj. počet intervalů v histogramů B řádově menší. Pro N j = 000 je při stejném n = 3 P = (0) 9 a je zřejmé, že počet operací danému N j odpovídající podstatně roste a s ní též odpovídající doba výpočtu. Jednou z cest, jak počet operací a i současně dobu výpočtu snížit, je při výpočtu pravděpodobnosti p bl výskytu b (i) použití známého zákona komutativního a+b = b+a a zejména zákona asociativního např. a+b+c = (a+b)+c, pokud jej můžeme použít. Aikace distributivního zákona (a+b).c = a.c + b.c i v daném případě nepřichází pro výpočet p bl v úvahu, jak lze snadno dokázat. (Pravděpodobnost náhodného jevu (a+b).c je p = p a. p b. p c, pravděpodobnost jevu a.c + b.c je stejná, nelze ji určit jako součin dvou dvojic pravděpodobností p = (p a. p c ). (p b. p c ) = p a. p b. p 2 c. Je zřejmé, že výpočet p je chybný). Možnou aikaci asociativního zákona lze demonstrovat na následujícím příkladě. Nechť zatížení F představuje kombinaci nahodilých zatížení DL dlouhodobého, SL - krátkodobého zatížení a LL dlouhodobého. Každé z nich je vyjádřeno histogramem, ve kterém je počet intervalů N j = 28 = 2 7. Pokud tato zatížení působí ve stejném místě atí: F = DL + SL + LL (2)

7 Počet početních operací je P = (N j ) 3 = (2 7 ) 3 = 2 2 = Počet intervalů histogramu zatížení F však může být podstatně menší než N = Vždyť pravděpodobnost nabytí hodnot na okrajích histogramu, např. b je p b = v případě, když v každém intervalu bude stejná pravděpodobnost jevu b j. Zpravidla bude v krajních intervalech histogramu i o několik řádů menší. Počet intervalů N může být proto podstatně menší než P. Jestliže dle asociativního zákona sečteme nejdříve zatížení F = DL + SL, a vytvoříme histogram opět se 28 intervaly a pak této operaci odpovídá P = = 2 4. Celkové zatížení je pak dáno F = F +LL. Histogramy F a LL mají každý 28 intervalů a odpovídající počet operací je opět P 2 = 2 4. Celkový počet operací je pak P = P + P 2 = = 2 5 = , což je 64 krát méně než při nevyužití asociativního zákona, což se projeví na době výpočtu. Ukazuje se tedy výhodnost rozdělení a grupování početních operací při přímém výpočtu pravděpodobnosti, je-li to možné. Některé vstupní náhodné veličiny při pravděpodobnostních výpočtech mohou být statisticky závislé nebo dokonce funkčně závislé. Statistická závislost se prokazuje např. u pevnostních a přetvárných vlastností materiálů a je správné a také z hlediska optimalizace výpočtového času výhodné s ní počítat. Obdobně je tomu u průřezových charakteristik, kde průřezová ocha, moment setrvačnosti, průřezový modul atd. jsou přesnou funkcí geometrických rozměrů. Zde lze pak hovořit o funkční závislosti na geometrických rozměrech. Průřezové charakteristiky mají také náhodný charakter odpovídající náhodnému charakteru geometrických rozměrů, vzájemně jsou však závislé. Jisté pravděpodobnosti geometrických rozměrů profilu odpovídají stejné pravděpodobnosti pro ochu, moment setrvačnosti a průřezový modul. Takovéto náhodné veličiny by pak do pravděpodobnostního výpočtu měly vstupovat vzájemně vázaně a ne jako nezávislé vzájemně izolované náhodné veličiny. Lze-li nepřesnost profilu charakterizovat např. relativní délkovou chybou profilu ε [6], pak přibližně atí: A var = A N ( - 2ε), W var = W N ( - 3ε), I var = I N ( - 4ε) (22) až (24) kde A var, W var, I var jsou proměnné variabilní hodnoty průřezové ochy, průřezového modulu a momentu setrvačnosti, A N, W N, a I N jsou charakteristické hodnoty těchto veličin. Má-li každá v úvahu přicházející hodnota ε svou pravděpodobnost, mají stejnou pravděpodobnost hodnoty A var, W var, I var určené s touto relativní chybou. Vstupují-li do pravděpodobnostního výpočtu všechny tyto hodnoty, pak se (odpovídající vzájemně funkčně závislé hodnoty) volí se stejnou pravděpodobností. Tento postup je správný a přitom snižuje počet operací P, neboť funkčně závislé hodnoty se volí vždy současně. 4. POSUDEK SPOLEHLIVOSTI PRŮŘEZU Výše uvedené postupy pro matematické operace s histogramy byly rovněž aikovány při posudku spolehlivosti průřezu ve vrcholu oboustranně vetknutého parabolického oblouku, zatíženého ve vrcholu soustavou tří svislých osamělých břemen. Střednice oblouku je definována křivkou s rovnicí: 4. f. x y =.( l x), (25) 2 l kde f je vzepětí oblouku a l rozpětí oblouku (v daném případě je f = 4 m a l = 2 m). Vlastní posudek je proveden s použitím interakčního vzorce: N N Sd 2 + M M Sd, (26)

8 ve kterém figurují následující proměnné: 5. l. F N Sd = (normálová síla v posuzovaném průřezu) (27) 64. f 3 M Sd =. F. l (ohybový moment v posuzovaném průřezu) (28) 64 N M ( A. ) = f y. Avar (astická únosnost průřezu v prostém tlaku) (29) ( W. ) = f y. Wvar (astická únosnost průřezu v ohybu) (30) Proměnná F představuje kombinaci zatížení zmíněných tří osamělých břemen (DL stálé zatížení, SL krátkodobé nahodilé zatížení a LL dlouhodobé nahodilé zatížení), každé z nich je vyjádřeno extrémní hodnotou zatížení a histogramem (DL var, SL var a LL var ), vyjadřujícím jeho variabilitu: F = 50. DL + LL (3) var SLvar 35. var Průřezové charakteristiky A (průřezová ocha) a W (astický průřezový modul) a napětí na mezi kluzu f y jsou rovněž proměnlivé veličiny. V uvedeném demonstračním příkladě byl použit ocelový profil TH 36 s napětím na mezi kluzu f y = 295 MPa. Histogramy této náhodné veličiny byly vytvořeny na základě měření, zbývající byly použity z [3]. Posudek spolehlivosti průřezu byl proveden výpočtem pravděpodobnosti poruchy P f a jejím porovnáním s návrhovou pravděpodobností P d, danou normou ČSN Navrhování ocelových konstrukcí. Pravděpodobnost poruchy byla určena s pomocí funkce spolehlivosti SF, uvedeného tvaru: 2 N Sd M Sd SF = + (32) N M Vlastní výpočet pravděpodobnosti P f byl proveden numerickým výpočtem programem, vytvořeným v programovacím jazyce Borland Delphi 6.0. Výsledný graf funkce spolehlivosti a vypočtená pravděpodobnost poruchy je uvedena na obrázku 9. Výstup z programu AntHill, pracující metodou SBRA s použitím simulační techniky Monte Carlo, je uveden na obrázku 8. Obr.8: Posudek spolehlivosti průřezu (program AntHill)

9 Vypočtená pravděpodobnost poruchy v průřezu je při numerickém řešení a zvoleném počtu intervalů 28 Pf = 0,000002, což odpovídá obvyklé úrovni spolehlivosti. Při stejném počtu intervalů lze při opakovaném výpočtu získat naprosto stejný výsledek, který na počítači ipentium IV.4 MHz trvá 4 sekundy. Při výpočtu simulační technikou SBRA s použitím simulačních kroků trvá výpočet přibližně 5 minut. Vypočtená porucha pravděpodobnosti Pf se přitom rovná 0, a odpovídá zvýšené úrovni spolehlivosti. Při každém výpočtu se výsledná hodnota této pravděpodobnosti liší. Obr.9: Posudek spolehlivosti průřezu (numerický výpočet) 5. POSUDEK SPOLEHLIVOSTI STATICKY NEURČITÉHO OBLOUKU Jestliže u výše uvedeného příkladu byl při daném zatížení kritický průřez vždy ve stejném místě parabolického oblouku a to v jeho vrcholu, což posudek spolehlivosti značně zjednodušuje, pak v následujícím příkladě se kritický průřez musí vždy nalézt, neboť jeho pozice se mění dle zatížení. Kruhový dvoukloubový oblouk je zatížený dle schématu na obr.0 soustavou tří rovnoměrně spojitých zatížení. Součinitel ε 0. Maximální počet intervalů n <4;024> u použitých histogramů představuje další vstupní veličinu, která má významný vliv na rychlost a přesnost výpočtu. Obr.0: Schéma posuzovaného kruhového oblouku

10 Vlastní posudek je proveden v místě kritického průřezu opět s využitím funkce spolehlivosti (3). 2 N Sd M Sd SF = +, (33) N M kde N f.( A. A ) = y var je astická únosnost průřezu v prostém tlaku, M = f y.( W. Wvar ) astická únosnost průřezu v ohybu a N Sd, M Sd je účinek zatížení, vyjádřený vnitřními silami v posuzovaném průřezu a vypočtený silovou metodou s použitím numerické integrace (na polovině rozpětí oblouku byl počet diferencí 000) bez uvažování vlivu normálových sil. Obr.: Posudek spolehlivosti kruhového oblouku numerický výpočet Posudek spolehlivosti konstrukce byl proveden určením pravděpodobnosti poruchy P f a jejím porovnáním s návrhovou pravděpodobností P d, danou normou ČSN Vlastní výpočet pravděpodobnosti P f byl proveden aikačním programem, jehož výstup se vstupními údaji, výsledným grafem funkce spolehlivosti a vypočtenou pravděpodobností poruchy je uveden na obrázku. Ve výpočtu se nachází 5 proměnných veličin. Proměnná q představuje kombinaci zatížení tří rovnoměrných zatížení (DL stálé zatížení, LL dlouhodobé nahodilé zatížení a SL krátkodobé nahodilé zatížení), každé z nich je vyjádřeno extrémní hodnotou zatížení a histogramem (DL var, SL var a LL var ), vyjadřujícím jeho variabilitu: q = 30. DL + SL (34) var LLvar 48. var Variabilita možného pod a převálcování zvoleného průřezu IPE360 je vyjádřena histogramem dle vztahů (22) až (24) a proměnlivost napětí na mezi kluzu histogramem získaným na základě měření. Zbývající proměnné, vstupující do výpočtu, jsou již deterministické. Jedná se o rozpětí kruhového oblouku l = 2 m, jeho vzepětí f = 5 m a poměr zatížení ε = (stejná velikost vodorovného i svislého spojitého zatížení).

11 Srovnání strojových časů výpočtů (ipentium IV,.4 GHz) a dosažená přesnost vypočtené pravděpodobnosti poruchy P f je uvedena v tabulce. Tab.: Srovnání strojového času výpočtu a vypočtené pravděpodobnosti poruchy Pf v závislosti na maximálním počtu intervalů n n Strojový čas [s] Pravděpodobnost Pravděpodobnost n Strojový čas [s] poruchy P f poruchy P f 6 < 0, , < 0, , , , ZÁVĚRY Počet operací P je u přímého výpočtu pravděpodobnosti obdobou počtu simulací aikovaných v metodě Monte Carlo. Postup výpočtu vycházející ze stejných vstupů je však u předložené metody poněkud jiný. V metodě Monte Carlo náhodně vybíráme (generujeme) vždy jednu vstupní veličinu z každého souboru vstupních náhodných veličin dané funkce (z každého histogramu) a pro ně hledáme hodnotu dané funkce. Počet výběrů vždy jediné z každé vstupní veličiny funkce, přičemž vstupní veličiny musí být vybrány vždy z každého vstupního souboru (histogramu), je roven počtu numerických simulací. Je-li počet vstupních veličin n, pak tedy výběr jediné hodnoty a j (ij) z každého vstupního histogramu A j pro j = až n představují vstupy pro jednu simulaci. Při dostatečném počtu simulací je výsledkem např. histogram hledané funkce. Při přímém pravděpodobnostním výpočtu náhodné veličiny nevybíráme náhodně a negenerujeme je. Do výpočtu vstupují deterministicky, přímo dle námi zadaného algoritmu. Výsledek přitom může být kvalitativně stejný jako u metody Monte Carlo, např. histogram hledané funkce. Při stejných vstupních histogramech, při stejné funkci a při stejné volbě intervalů vstupních veličin, tj. při stejném počtu operací P je u přímého výpočtu pravděpodobnosti výsledek vždy stejný. U metody Monte Carlo se bude výsledek při stejných vstupech, stejné funkci i při stejném počtu simulací zpravidla poněkud lišit, neboť generované vstupní veličiny nebudou stejné, jsou vybrány náhodně a počet simulací je prakticky vždy konečný. Výpočetní postup pro numerické řešení pravděpodobnosti aikující matematické operace s histogramy je dle prvních zkušeností velice efektivní. Strojový čas výpočtu dosahuje minimálních hodnot (na počítači ipentium IV.4MHz se jednalo o několik sekund. Operace s histogramy umožňující přímý numerický výpočet pravděpodobnosti může být po dalším rozpracování významným kvalitativním krokem při určování spolehlivosti systémů. OZNÁMENÍ Příspěvek byl vypracován v rámci řešení projektů GA ČR 03/0/40 a 05/0/0783. LITERATURA [] Bronštejn, I.N., Semenďajev, K.A.: Příručka matematiky pre inžinierov a pre študujúcich na vysokých školách technických. Slovenské vydavateľstvo technickej literatúry, Bratislava 963. [2] Janas, P., Krejsa, M.: Numerický výpočet pravděpodobnosti užitím useknutých histogramů, Sborník konference Spolehlivost konstrukcí, str , Ostrava 2002, ISBN

12 [3] Marek, P., Guštar, M., Anagnos, T.: Simulation-Based Reliability Assessment for Structural Engineers. CRC Press Inc., Boca Raton, 995, ISBN [4] Marek, P., Haldar, A., Guštar, M. Tikalský, P. (editors): Euro-SiBRAM 2002, Mezinárodní kolokvium, Praha, červen 2002, ISBN [5] Teý, B., Novák, D.: Spolehlivost stavebních konstrukcí. CERM Brno, ISBN X. [6] Vokoun, S.: Rozptyl geometrických parametrů otevřených válcovaných profilů. VŠB-TUO, sborník studentských prací 2002, SEKCE IV.- Stavební mechanika, str.27-42, ISBN Oponentní posudek práce vypracoval Prof. RNDr. Zdeněk Dostál, CSc.

NUMERICKÝ VÝPOČET SPOLEHLIVOSTI OCELOVÉ KONSTRUKCE

NUMERICKÝ VÝPOČET SPOLEHLIVOSTI OCELOVÉ KONSTRUKCE UERICKÝ VÝPOČET SPOLEHLIVOSTI OCELOVÉ KOSTRUKCE Doc. Ing. Petr Janas, CSc. a Ing. artin Krejsa, Ph.D. Vysoká škola báňská Technická univerzita Ostrava, Fakulta stavební, Katedra stavební mechaniky, Ludvíka

Více

NUMERICKÝ VÝPOČET PRAVDĚPODOBNOSTI UŽITÍM USEKNUTÝCH HISTOGRAMŮ

NUMERICKÝ VÝPOČET PRAVDĚPODOBNOSTI UŽITÍM USEKNUTÝCH HISTOGRAMŮ III. ročník celostátní konference SPOLEHLIVOST KOSTRUKCÍ 33 Téma: Cesty k uatnění pravděpodobnostního posudku bezpečnosti, provozuschopnosti a trvanlivosti konstrukcí v normativních předpisech a v projekční

Více

VYUŽITÍ NAMĚŘENÝCH HODNOT PŘI ŘEŠENÍ ÚLOH PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM

VYUŽITÍ NAMĚŘENÝCH HODNOT PŘI ŘEŠENÍ ÚLOH PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM Proceedings of the 6 th International Conference on New Trends in Statics and Dynamics of Buildings October 18-19, 2007 Bratislava, Slovakia Faculty of Civil Engineering STU Bratislava Slovak Society of

Více

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ Ing. David KUDLÁČEK, Katedra stavební mechaniky, Fakulta stavební, VŠB TUO, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, tel.: 59

Více

Téma 8: Optimalizační techniky v metodě POPV

Téma 8: Optimalizační techniky v metodě POPV Téma 8: Optimalizační techniky v metodě POPV Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola báňská

Více

ANALÝZA SPOLEHLIVOSTI STATICKY NEURČITÉHO OCELOVÉHO RÁMU PRAVDĚPODOBNOSTNÍ METODOU SBRA

ANALÝZA SPOLEHLIVOSTI STATICKY NEURČITÉHO OCELOVÉHO RÁMU PRAVDĚPODOBNOSTNÍ METODOU SBRA III. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ 51 Téma: Cesty k uplatnění pravděpodobnostního posudku bezpečnosti, provozuschopnosti a trvanlivosti konstrukcí v normativních předpisech a v projekční

Více

VÝPOČET PRAVDĚPODOBNOSTI PORUCHY PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM

VÝPOČET PRAVDĚPODOBNOSTI PORUCHY PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM VI. KONFERENCE SPOLEHLIVOST KONSTRUKCÍ TÉMA: Od deterministického k pravděpodobnostnímu pojetí inženýrského posudku spolehlivosti konstrukcí 6.4.2005, Dům techniky Ostrava ABSTRACT VÝPOČET PRAVDĚPODOBNOSTI

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více

Metoda POPV, programový systém

Metoda POPV, programový systém Spolehlivost a bezpečnost staveb, 4.ročník bakalářského studia Téma 4 Metoda POPV, programový systém ProbCalc Princip metody Přímého optimalizovaného pravděpodobnost- ního výpočtu (POPV) Přehled optimalizačních

Více

POSUDEK PRAVDĚPODOBNOSTI PORUCHY OCELOVÉ NOSNÉ SOUSTAVY S PŘIHLÉDNUTÍM K MONTÁŽNÍM TOLERANCÍM

POSUDEK PRAVDĚPODOBNOSTI PORUCHY OCELOVÉ NOSNÉ SOUSTAVY S PŘIHLÉDNUTÍM K MONTÁŽNÍM TOLERANCÍM I. ročník celostátní konference SPOLEHLIVOST ONSTRUCÍ Téma: Rozvoj koncepcí posudku spolehlivosti stavebních konstrukcí 5..000 Dům techniky Ostrava ISBN 80-0-0- POSUDE PRAVDĚPODOBNOSTI PORUCHY OCELOVÉ

Více

METODOU SBRA Miloš Rieger 1, Karel Kubečka 2

METODOU SBRA Miloš Rieger 1, Karel Kubečka 2 OHYBOVÁ ÚNOSNOST ŽELEZOBETONOVÉHO MOSTNÍHO PRŮŘEZU METODOU SBRA Miloš Rieger 1, Karel Kubečka 2 Abstrakt The determination of the characteristic value of the plastic bending moment resistance of the roadway

Více

OPTIMALIZACE VÝPOČTU OPTIMALIZATION OF CALCULATION IN SOFTWARE PROBCALC. Abstract. 1 Úvod V PROGRAMOVÉM SYSTÉMU PROBCALC

OPTIMALIZACE VÝPOČTU OPTIMALIZATION OF CALCULATION IN SOFTWARE PROBCALC. Abstract. 1 Úvod V PROGRAMOVÉM SYSTÉMU PROBCALC OPTIMALIZACE VÝPOČTU V PROGRAMOVÉM SYSTÉMU PROBCALC OPTIMALIZATION OF CALCULATION IN SOFTWARE PROBCALC Petr Janas 1, Martin Krejsa 2, Vlastimil Krejsa 3 Abstract The paper briefly reviews the proposed

Více

SOFTWAROVÉ PROSTŘEDKY PRO APLIKACI PDPV

SOFTWAROVÉ PROSTŘEDKY PRO APLIKACI PDPV SOFTWAROVÉ PROSTŘEDKY PRO APLIKACI PDPV Petr JANAS, Doc., Ing., CSc., VŠB-TUO, L. Podéště 1875, 708 33 Ostrava - Poruba, tel.: (+420)597321308, fax : (+420)597321358, petr.janas@vsb.cz Martin KREJSA, Ing.,

Více

Téma 5: Přímý Optimalizovaný Pravděpodobnostní Výpočet POPV

Téma 5: Přímý Optimalizovaný Pravděpodobnostní Výpočet POPV Téma 5: Přímý Optimalizovaný Pravděpodobnostní Výpočet POPV Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola

Více

POSUDEK POLOTUHÝCH STYČNÍKŮ METODOU SBRA

POSUDEK POLOTUHÝCH STYČNÍKŮ METODOU SBRA IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 119 23.až 24.4.2003 Dům techniky Ostrava ISN 80-02-01551-7 POSUDEK POLOTUHÝCH STYČNÍKŮ METODOU SRA Abstract Vít

Více

POSUDEK SPOLEHLIVOSTI OCELOVÉ OBLOUKOVÉ VÝZTUŽE DLOUHÝCH DŮLNÍCH DĚL PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM

POSUDEK SPOLEHLIVOSTI OCELOVÉ OBLOUKOVÉ VÝZTUŽE DLOUHÝCH DŮLNÍCH DĚL PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM POSUDEK SPOLEHLIVOSTI OCELOVÉ OBLOUKOVÉ VÝZTUŽE DLOUHÝCH DŮLNÍCH DĚL PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM Doc. Ing. Petr Janas, CSc. 1, Ing. Martin Krejsa, Ph.D. 2 1 Katedra stavební mechaniky,

Více

Cvičení 3. Posudek únosnosti ohýbaného prutu. Software FREET Simulace metodou Monte Carlo Simulace metodou LHS

Cvičení 3. Posudek únosnosti ohýbaného prutu. Software FREET Simulace metodou Monte Carlo Simulace metodou LHS Spolehlivost a bezpečnost staveb, 4. ročník bakalářského studia (všechny obory) Cvičení 3 Posudek únosnosti ohýbaného prutu Software FREET Simulace metodou Monte Carlo Simulace metodou LHS Katedra stavební

Více

Cvičení 9. Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET. Software FREET Simulace metodou LHS

Cvičení 9. Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET. Software FREET Simulace metodou LHS Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia obor Konstrukce staveb Cvičení 9 Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET Software FREET Simulace metodou LHS

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.4

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.4 Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.4 Kristýna VAVRUŠOVÁ 1, Antonín LOKAJ 2 POŽÁRNÍ ODOLNOST DŘEVĚNÝCH KONSTRUKCÍ

Více

Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí

Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola

Více

Cvičení 8. Posudek spolehlivosti metodou SBRA. Prostý nosník vystavený spojitému zatížení

Cvičení 8. Posudek spolehlivosti metodou SBRA. Prostý nosník vystavený spojitému zatížení Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia obor Konstrukce staveb Cvičení 8 Posudek spolehlivosti metodou SBRA Prostý nosník vystavený spojitému zatížení Katedra stavební mechaniky

Více

1 ÚVOD - PRAVDĚPODOBNOST PORUCHY JAKO NÁHODNÁ VELIČINA

1 ÚVOD - PRAVDĚPODOBNOST PORUCHY JAKO NÁHODNÁ VELIČINA Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo, rok 2008, ročník VIII, řada stavební článek č. 33 Petr KONEČNÝ PŘESNOST ODHADU PRAVDĚPODOBNOSTI PORUCHY Abstrakt Článek

Více

PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2

PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2 PAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DÁTKOBETONOVÝCH SMĚSÍ Petr Janas 1 a Martin Krejsa 2 Abstract The paper reviews briefly one of the propose probabilistic assessment concepts. The potential of the propose

Více

Cvičení 2. Vyjádření náhodně proměnných veličin, Posudek spolehlivosti metodou SBRA, Posudek metodou LHS.

Cvičení 2. Vyjádření náhodně proměnných veličin, Posudek spolehlivosti metodou SBRA, Posudek metodou LHS. Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Cvičení 2 Vyjádření náhodně proměnných veličin, Posudek spolehlivosti metodou SBRA, Posudek metodou LHS. Zpracování naměřených dat Tvorba

Více

Cvičení 2. Posudek spolehlivosti metodou SBRA. Prostý nosník vystavený spojitému zatížení

Cvičení 2. Posudek spolehlivosti metodou SBRA. Prostý nosník vystavený spojitému zatížení Spolehlivost a bezpečnost staveb, 4. ročník bakalářského studia (všechny obory) Cvičení 2 Posudek spolehlivosti metodou SBRA Prostý nosník vystavený spojitému zatížení Katedra stavební mechaniky Fakulta

Více

Cvičení 4. Posudek únosnosti ohýbaného prutu. Aplikace PDPV programem ProbCalc Prosté zadání Efektivní zadání Informace k semestrálnímu projektu

Cvičení 4. Posudek únosnosti ohýbaného prutu. Aplikace PDPV programem ProbCalc Prosté zadání Efektivní zadání Informace k semestrálnímu projektu Spolehlivost a bezpečnost staveb, 4. ročník bakalářského studia (všechny obory) Cvičení 4 Posudek únosnosti ohýbaného prutu Aplikace PDPV programem ProbCalc Prosté zadání Efektivní zadání Informace k semestrálnímu

Více

PRAVDĚPODOBNOSTNÍ VÝPOČET ÚNOSNOSTI A PRUŽNÉ

PRAVDĚPODOBNOSTNÍ VÝPOČET ÚNOSNOSTI A PRUŽNÉ ODELOVÁNÍ V ECHANICE OSTRAVA, ÚNOR 007 PRAVDĚPODOBNOSTNÍ VÝPOČET ÚNOSNOSTI A PRUŽNÉ DEFORAČNÍ ENERGIE DŮLNÍ OBLOUKOVÉ VÝZTUŽE PROBABILISTIC SOLUTION OF ARCH SUPORTS CARRYING-CAPACITY AND ELASTIC STRAIN

Více

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ROZPTYL GEOMETRICKÝCH PARAMETRŮ OTEVŘENÝCH VÁLCOVANÝCH PROFILŮ SVOČ 2002

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ROZPTYL GEOMETRICKÝCH PARAMETRŮ OTEVŘENÝCH VÁLCOVANÝCH PROFILŮ SVOČ 2002 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ROZPTYL GEOMETRICKÝCH PARAMETRŮ OTEVŘENÝCH VÁLCOVANÝCH PROFILŮ SVOČ 22 Vypracoval: Stanislav Vokoun Konzultant: Doc. Ing. Petr Janas CSc.

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2007, ročník VII, řada stavební

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2007, ročník VII, řada stavební Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2007, ročník VII, řada stavební Miloš RIEGER 1 POSOUZENÍ SPOLEHLIVOSTI SPŘAŢENÝCH MOSTŮ NAVRŢENÝCH PODLE EC Abstract

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník VI, řada stavební

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník VI, řada stavební Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník VI, řada stavební Petr JANAS 1, Martin KREJSA 2, Vlastimil KREJSA 3 SOUČASNÉ MOŽNOSTI PŘÍMÉHO DETERMINOVANÉHO

Více

Cvičení 5. Posudek metodou POPV. Prostý nosník vystavený spojitému zatížení Příklady k procvičení

Cvičení 5. Posudek metodou POPV. Prostý nosník vystavený spojitému zatížení Příklady k procvičení Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Cvičení 5 Posudek metodou POPV Prostý nosník vystavený spojitému zatížení Příklady k procvičení Katedra stavební mechaniky Fakulta stavební,

Více

23.až Dům techniky Ostrava ISBN

23.až Dům techniky Ostrava ISBN IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 5 23.až 24.4.2003 Dům techniky Ostrava ISBN 80-02-01551-7 REÁLNÉ PEVNOSTNÍ HODNOTY KONSTRUKČNÍCH OCELÍ A ROZMĚROVÉ

Více

Téma 2 Simulační metody typu Monte Carlo

Téma 2 Simulační metody typu Monte Carlo Spolehlivost a bezpečnost staveb, 4.ročník bakalářského studia Téma 2 Simulační metody typu Monte Carlo Princip simulačních metod typu Monte Carlo Metoda Simulation Based Reliability Assessment (SBRA)

Více

Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí

Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební

Více

VÝVOJ METODY PDPV A JEJÍ UPLATNĚNÍ V PRAVDĚPODOBNOSTNÍCH ÚLOHÁCH

VÝVOJ METODY PDPV A JEJÍ UPLATNĚNÍ V PRAVDĚPODOBNOSTNÍCH ÚLOHÁCH Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č. 32 Petr JANAS 1, Martin KREJSA 2, Vlastimil KREJSA VÝVOJ METODY PDPV A

Více

SOUČASNÉ MOŽNOSTI METODY PDPV

SOUČASNÉ MOŽNOSTI METODY PDPV International Conference 70 Years of FCE STU, December 4-5, 2008 Bratislava, Slovakia SOUČASNÉ MOŽNOSTI METODY PDPV P. Janas 1, M. Krejsa 2 a V. Krejsa 3 Abstract The Direct Determined Fully Probabilistic

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 20

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 20 Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 20 Jakub VALIHRACH 1, Petr KONEČNÝ 2 PODMÍNKA UKONČENÍ PRAVDĚPODOBNOSTNÍHO

Více

1 ÚVOD - PRAVDĚPODOBNOST PORUCHY JAKO NÁHODNÁ VELIČINA

1 ÚVOD - PRAVDĚPODOBNOST PORUCHY JAKO NÁHODNÁ VELIČINA Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.23 Petr KONEČNÝ 1 VLIV POČTU PROMĚNNÝCH NA PŘESNOST ODHADU PRAVDĚPODOBNOSTI

Více

SOFTWAROVÁ APLIKACE PŘÍMÉHO DETERMINOVANÉHO PRAVDĚPODOBNOSTNÍHO VÝPOČTU (PDPV)

SOFTWAROVÁ APLIKACE PŘÍMÉHO DETERMINOVANÉHO PRAVDĚPODOBNOSTNÍHO VÝPOČTU (PDPV) SOFTWAROVÁ APLIKACE PŘÍMÉHO DETERMINOVANÉHO PRAVDĚPODOBNOSTNÍHO VÝPOČTU (PDPV) Doc. Ing. Petr Janas, CSc.; Ing. Martin Krejsa, Ph.D. VŠB - Technická univerzita Ostrava, Fakulta stavební, Ludvíka Podéště

Více

SYSTÉM SWITCH-EARTH PRO EFEKTIVNÍ MODELOVÁNÍ ZEMĚTŘESENÍ. Abstrakt. 1 Importance Sampling v metodě SBRA

SYSTÉM SWITCH-EARTH PRO EFEKTIVNÍ MODELOVÁNÍ ZEMĚTŘESENÍ. Abstrakt. 1 Importance Sampling v metodě SBRA SYSTÉM SWITCH-EARTH PRO EFEKTIVNÍ MODELOVÁNÍ ZEMĚTŘESENÍ V PROSTŘEDÍ SBRA-IMPORTANCE SAMPLING Pavel Praks 1, Leo Václavek, Radim Briš 3 Abstrakt Náhodný charakter účinků zemětřesení je v metodě SBRA vyjádřen

Více

Téma 4: Stratifikované a pokročilé simulační metody

Téma 4: Stratifikované a pokročilé simulační metody 0.007 0.006 0.005 0.004 0.003 0.002 0.001 Dlouhodobé nahodilé Std Distribution: Gumbel Min. EV I Mean Requested: 140 Obtained: 141 Std Requested: 75.5 Obtained: 73.2-100 0 100 200 300 Mean Std Téma 4:

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Průvodní zpráva ke statickému výpočtu

Průvodní zpráva ke statickému výpočtu Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství

Více

VÝPOČET ÚNOSNOSTI ZDĚNÉHO PILÍŘE ZESÍLENÉHO OCELOVOU BANDÁŽÍ POMOCÍ METODY SBRA

VÝPOČET ÚNOSNOSTI ZDĚNÉHO PILÍŘE ZESÍLENÉHO OCELOVOU BANDÁŽÍ POMOCÍ METODY SBRA IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posdek - porchy - havárie 39 23.až 24.4.2003 Dům techniky Ostrava ISBN 80-02-01551-7 VÝPOČET ÚNOSNOSTI ZDĚNÉHO PILÍŘE ZESÍLENÉHO OCELOVOU

Více

Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí

Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká

Více

POSUDEK SPOLEHLIVOSTI SOUSTAVY SLOUPŮ S UVÁŽENÍM PODDAJNOSTI VETKNUTÍ

POSUDEK SPOLEHLIVOSTI SOUSTAVY SLOUPŮ S UVÁŽENÍM PODDAJNOSTI VETKNUTÍ IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 23 23.až 24.4.2003 Dům techniky Ostrava ISBN 80-02-055-7 POSUDEK SPOLEHLIVOSTI SOUSTAVY SLOUPŮ S UVÁŽENÍM PODDAJNOSTI

Více

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č.

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č. Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č. 4 Antonín LOKAJ 1, Kristýna VAVRUŠOVÁ 2 DESTRUKTIVNÍ TESTOVÁNÍ VYBRANÝCH

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010 1 Jaká máme zatížení? 2 Co je charakteristická hodnota zatížení? 3 Jaké jsou reprezentativní hodnoty proměnných zatížení? 4 Jak stanovíme návrhové hodnoty zatížení? 5 Jaké jsou základní kombinace zatížení

Více

Libor Kasl 1, Alois Materna 2

Libor Kasl 1, Alois Materna 2 SROVNÁNÍ VÝPOČETNÍCH MODELŮ DESKY VYZTUŽENÉ TRÁMEM Libor Kasl 1, Alois Materna 2 Abstrakt Příspěvek se zabývá modelováním desky vyztužené trámem. Jsou zde srovnány různé výpočetní modely model s prostorovými

Více

Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017

Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017 Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním

Více

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů

Více

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN

Více

Téma 3 Metoda LHS, programový systém Atena-Sara-Freet

Téma 3 Metoda LHS, programový systém Atena-Sara-Freet Spolehlivost a bezpečnost staveb, 4.ročník bakalářského studia Téma 3 Metoda LHS, programový systém Atena-Sara-Freet Parametrická rozdělení Metoda Latin Hypercube Sampling (LHS) aplikovaná v programu Freet

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

MOŽNOSTI VYUŽITÍ METODY LHS PŘI NUMERICKÉM MODELOVÁNÍ STABILITY TUNELU

MOŽNOSTI VYUŽITÍ METODY LHS PŘI NUMERICKÉM MODELOVÁNÍ STABILITY TUNELU IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 173 3.až..3 Dům techniky Ostrava ISBN 8--1551-7 MOŽNOSTI VYUŽITÍ METODY LHS PŘI NUMERICKÉM MODELOVÁNÍ STABILITY

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Speciální numerické metody 4. ročník bakalářského studia. Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D.

Speciální numerické metody 4. ročník bakalářského studia. Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D. Speciální numerické metody 4. ročník bakalářského studia Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D. 1 Základní informace o cvičení Předmět: 228-0210/01 Speciální numerické metody

Více

Principy navrhování stavebních konstrukcí

Principy navrhování stavebních konstrukcí Pružnost a plasticita, 2.ročník bakalářského studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních materiálů

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

Příklad oboustranně vetknutý nosník

Příklad oboustranně vetknutý nosník Příklad oboustranně vetknutý nosník výpočet podle viskoelasticity: 4 L fˆ L w, t J t, t 384I 0 průhyb uprostřed co se změní v případě, fˆ že se zatížení M mění x t v čase? x Lx L H t t0 1 fl ˆ M fˆ 0,

Více

spolehlivosti stavebních nosných konstrukcí

spolehlivosti stavebních nosných konstrukcí Principy posuzování spolehlivosti stavebních nosných konstrukcí Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Ing. Martin Krejsa, Ph.D. Katedra stavební mechaniky Fakulta stavební Vysoká

Více

Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku

Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku Obsah. Úvod.... Popis řešené problematiky..... Konstrukce... 3. Výpočet... 3.. Prohlížení výsledků... 4 4. Dodatky... 6 4.. Newmarkova

Více

PRAVDĚPODOBNOSTNÍ POSUDEK NOSNÉ OCELOVÉ KONSTRUKCE S PŘESNOU DEFINICÍ REFERENČNÍ ÚROVNĚ

PRAVDĚPODOBNOSTNÍ POSUDEK NOSNÉ OCELOVÉ KONSTRUKCE S PŘESNOU DEFINICÍ REFERENČNÍ ÚROVNĚ II. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téa: Cesta k pravděpodobnostníu posudku bezpečnosti, provozuschopnosti a trvanlivosti konstrukcí..00 Dů techniky Ostrava ISBN 80-0-040-5 PRAVDĚPODOBNOSTNÍ

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních děl

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních děl STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních

Více

13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky

13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky 13. Zděné konstrukce Navrhování zděných konstrukcí Zděné konstrukce mají široké uplatnění v nejrůznějších oblastech stavebnictví. Mají dobrou pevnost, menší objemová hmotnost, dobrá tepelně izolační schopnost

Více

Systém rizikové analýzy při sta4ckém návrhu podzemního díla. Jan Pruška

Systém rizikové analýzy při sta4ckém návrhu podzemního díla. Jan Pruška Systém rizikové analýzy při sta4ckém návrhu podzemního díla Jan Pruška Definice spolehlivos. Spolehlivost = schopnost systému (konstrukce) zachovávat požadované vlastnos4 po celou dobu životnos4 = pravděpodobnost,

Více

Únosnost kompozitních konstrukcí

Únosnost kompozitních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

DEFORMACE PRVKŮ DŘEVĚNÝCH KONSTRUKCÍ

DEFORMACE PRVKŮ DŘEVĚNÝCH KONSTRUKCÍ IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 195 3.až 4.4.003 Dům techniky Ostrava ISBN 80-0-01551-7 DEFORMACE PRVKŮ DŘEVĚNÝCH KONSTRUKCÍ Abstract Antonín

Více

Stanovení nejistot při výpočtu kontaminace zasaženého území

Stanovení nejistot při výpočtu kontaminace zasaženého území Stanovení nejistot při výpočtu kontaminace zasaženého území Michal Balatka Abstrakt Hodnocení ekologického rizika kontaminovaných území představuje komplexní úlohu, která vyžaduje celou řadu vstupních

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

NK 1 Konstrukce. Volba konstrukčního systému

NK 1 Konstrukce. Volba konstrukčního systému NK 1 Konstrukce Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta

Více

P Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝM ROZPĚTÍM NÁSLEDUJÍCÍCH POLÍ

P Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝM ROZPĚTÍM NÁSLEDUJÍCÍCH POLÍ P Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝ ROZPĚTÍ NÁSLEDUJÍCÍCH POLÍ Projekt : FRVŠ 011 - Analýza metod výpočtu železobetonových lokálně podepřených desek Řešitelský

Více

Principy navrhování stavebních konstrukcí

Principy navrhování stavebních konstrukcí Pružnost a plasticita, 2.ročník bakalářského studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních materiálů

Více

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 8 Normové předpisy 2012 Spolehlivost konstrukcí,

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2011, ročník X1, řada stavební článek č.

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2011, ročník X1, řada stavební článek č. Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2011, ročník X1, řada stavební článek č. 16 Karel VOJTASÍK 1, Eva HRUBEŠOVÁ 2, Marek MOHYLA 3, Jana STAŇKOVÁ 4 ZÁVISLOST

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Stochastické modelování (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží

Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží EXPERIMENTÁLNÍ VÝZKUM KLENEB Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží 1 Úvod Při rekonstrukcích památkově chráněných a historických budov se často setkáváme

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu: Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul

Více

133YPNB Požární návrh betonových a zděných konstrukcí. 4. přednáška. prof. Ing. Jaroslav Procházka, CSc.

133YPNB Požární návrh betonových a zděných konstrukcí. 4. přednáška. prof. Ing. Jaroslav Procházka, CSc. 133YPNB Požární návrh betonových a zděných konstrukcí 4. přednáška prof. Ing. Jaroslav Procházka, CSc. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Zjednodušené

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ

MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ 20. Betonářské dny (2013) Sborník Sekce ČT1B: Modelování a navrhování 2 ISBN 978-80-87158-34-0 / 978-80-87158-35-7 (CD) MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ Jaroslav Navrátil 1,2

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

ENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU

ENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU P Ř Í K L A D Č. 4 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU Projekt : FRVŠ 011 - Analýza metod výpočtu železobetonových lokálně podepřených desek Řešitelský kolektiv : Ing. Martin

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A9 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Posuzování betonových sloupů Masivní sloupy

Více

Principy navrhování stavebních konstrukcí

Principy navrhování stavebních konstrukcí Pružnost a plasticita, 2.ročník kombinovaného studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních

Více