tatistické rozdelenia
|
|
- Jindřich Vopička
- před 6 lety
- Počet zobrazení:
Transkript
1 FYZ-230/00 Algoritmy vedeckotechnických výpo tov tatistické rozdelenia 1
2 Obsah Úvod, vlastnosti rozdelení pravdepodobnosti Rovnomerné rozdelenie Trojuholníkové rozdelenie Binomické rozdelenie Poissonovo rozdelenie Normálne rozdelenie Rozdelenie χ 2 Centrálna limitná veta Odhad veli iny 2
3 írenie chýb 3
4 Úvod Vlastnosti rozdelení pravdepodobnosti: P (x a, b ) = b a 1 = f(x) dx 1 = n i=1 P (x i) f(x) dx Distribu ná funkcia F (a) vyjadruje pravdepodobnos, ºe x a: F (a) = a f(x) dx n-tý moment rozdelenia α n je: α n = x n f(x) dx 4
5 Prvý moment nazývame stredná hodnota µ: µ = x = E(x) = xf(x) dx n-tý centrálny moment rozdelenia σ n je denovaný vzh adom na strednú hodnotu µ: σ n = (x µ) n f(x) dx Druhý centrálny moment nazývame disperzia D: D = σ 2 = (x µ) 2 f(x) dx Druhú odmocninu z disperzie D nazývame stredná kvadratická odchýlka Stredná hodnota a disperzia pre diskrétne hodnoty pravdepodobnosti: µ = N x j P (x j ), σ 2 = i=1 N (x j µ) 2 P (x j ) i=1 5
6 Marginálna hustota pravdepodobnosti f 1 (x) pre hustotu pravdepodobnosti dvoch náhodných premenných f(x, y): f 1 (x) = Stredná hodnota x v prípade f(x, y): f(x, y) dy µ x = xf 1 (x) dy =,, xf(x, y) dy dx Centrálny moment druhého rádu v prípade f(x, y): σ 2 x = σ 2 y =,,,, (x µ x ) 2 f(x, y) dy dx (y µ y ) 2 f(x, y) dy dx Kovariancia je zmie²aný centrálny moment druhého rádu, v prípade f(x, y): Cov(x, y) = Cov(y, x) =,, (x µ x )(y µ y )f(x, y) dy dx 6
7 Miera korelácií veli ín x, y: ρ xy = Cov(x, y) σ x σ y Ak dve náhodné veli iny x, y sú nezávislé, tak platí: ρ xy = 0 Kovariancia v prípade viacerých premenných: Cov(x i, x j ) =... (x i µ xi )(x j µ xj )f(x 1, x 2,..., x N ) dx n... dx 1 Variancia: Var(x i ) = Cov(x i, x i ) 7
8 Parametre rozdelení Pravdepodobnos alebo hustota pravdepodobnosti Stredná hodnota Stredná kvadratická odchýlka alebo disperzia 8
9 Rovnomerné rozdelenie Opisuje jav, ktorý má kon²tantnú hustotu pravdepodobnosti na kone nom intervale 0, x < a 1 f(x; a, b) = b a, x a, b 0, x > b Stredná hodnota: x = a+b 2 Disperzia: σ 2 = (b a)2 12 Získanie rozdelenia f(x; a, b), ak máme k dispozícii náhodnú veli inu rozdelením hustoty pravdepodobnosti na intervale 0, 1 : y s rovnomerným x = y(b a) + a Sú tom 2 náhodných veli ín s rovnomerným rozdelením hustoty pravdepodobnosti získane náhodnú veli inu s trojuholníkovým rozdelením hustoty pravdepodobnosti. 9
10 Rovnomerné rozdelenie f(x) 1 / (b - a) f(x) 0 a x b 10
11 Trojuholníkové rozdelenie f(x; a, b, c) = 0, x < a 2(x a), x a, c (b a)(c a) 2(b x) (b a)(b c), x c, b 0, x > b Stredná hodnota: x = a+b+c 3 11
12 Trojuholníkové rozdelenie f(x) 2 / (b - a) f(x) 0 a c b x 12
13 Binomické rozdelenie Ak veli ina môºe nadobudnú len 2 hodnoty (padne 6 pri hode kockou, hodnota javu je v intervale) a pravdepodobnos, ºe nadobudne hodnotu 1, je p, potom pravdepodobnos, ºe pri n pokusoch sa hodnota 1 realizuje p krát, je daná binomickým rozdelením. f(r; n, p) = n! r! (n r)! pr (1 p) n r r = 0, 1, 2,..., n p 0, 1 Stredná hodnota: r = np Disperzia: σ 2 = np(1 p) 13
14 Binomické rozdelenie, n = 10 p = 1 / 2 p = 1 / 6 p = f(r) r 14
15 Poissonovo rozdelenie Aproximácia binomického rozdelenia pre ve ký po et pokusov s kone nou strednou hodnotou µ = np Pre ve ké µ sa podobná na Gaussovo rozdelenie Popisuje javy, ktoré reprezentujú po et udalostí za jednotku asu po et rádioaktívnych rozpadov po et zákazníkov v obchode po et áut prechádzajúcich kriºovatkou f(k; µ) = µk e µ k! k = 0, 1, 2,... µ > 0 Stredná hodnota: µ Disperzia: σ 2 = µ 15
16 Poissonovo rozdelenie µ = 5 µ = 10 / 6 µ = f(k) k 16
17 Poissonovo rozdelenie v reálnej situácii Ladislaus Josephovich Bortkiewicz, 1898 Po as 20 rokov bolo v pruskej armáde v jednotke s 10 jazdcami 122 jazdcov ukopaných ko mi na smr. Treba zisti, i ide o náhodný jav. K dispozícii máme údaje o po te usmrtení na jednotlivých pozíciách pre v²etky roky. Máme 200 vojakorokov. V jednom vojakoroku môºe dôjs k viacerým usmrteniam (usmrtený vojak je nahradený novým). Stredný po et usmrtení na jeden vojakorok µ = 122/200 = 0,61. Pravdepodobnos k-usmrtení na jeden vojakorok, ak ide o náhodný jav: f(k; µ) = µk e µ k! k = 0, 1, 2,... µ = 0,61 17
18 # usmrtení / vojakorok pravdepodobnos # realizácií odhadnutý # realizácií Vypo ítané hodnoty sa zhodujú s nameranými. I²lo o náhodný jav (nie sabotáº). 18
19 Normálne rozdelenie (Gauss) Normálne rozdelenie je tieº nazývané Gaussovým rozdelením. Z poh adu spracovania experimentálnych dát je najdôleºitej²ím rozdelením. Jeho dôleºitos je daná aj centrálnou limitnou vetou. Hustota pravdepodobnosti: f(x; µ, σ) = 1 σ (x µ) 2 2π e 2σ 2 Stredná hodnota µ a disperzia σ 2 sú priamo parametre funkcie hustoty pravdepodobnosti. Získanie rozdelenia f(x; µ, σ), ak máme k dispozícii náhodnú veli inu y s Gaussovým rozdelením hustoty pravdepodobnosti so strednou hodnotou 0 a disperziou 1: x = yσ + µ 19
20 Normálne rozdelenie µ = 0, σ = 1 µ = 1, σ = 1 µ = 0, σ = 2 f(x) x 20
21 Rozdelenie χ 2 Nech x 1, x 2,..., x n sú nezávislé náhodné veli iny s Gassovským rozdelením hustoty pravdepodobnosti. Potom suma z = n (x i µ i ) 2 má rozdelenie χ 2 (chí kvadrát) s n stup ami vo nosti χ 2 (n). i=1 σ 2 i Hustota pravdepodobnosti: f(z, n) = z n 2 1 e z 2 2 n 2 Γ ( ) n 2 Stredná hodnota: z = n Disperzia: σ 2 = 2 n Pretoºe stredná hodnota pre n stup ov vo nosti je n, veli ina χ 2 /n nazývaná redukovaný χ 2 alebo χ 2 na stupe vo nosti je uºito ná pri ohodnotení konzistentnosti modelu interpretujúceho dáta a dát. 21
22 Rozdelenie χ 2 n = 2 n = 5 n = f(z) z 22
23 Centrálna limitná veta Ak máme postupnos náhodných premenných x i, ktoré sú rozdelené pod a rôznych rozdelení hustoty pravdepodobnosti s kone nými strednými hodnotami a disperziami, potom centrálna limitná veta tvrdí, ºe pre dostato ne ve ké n suma n i=1 x i má pribliºne Gaussovo rozdelenie hustoty pravdepodobnosti. 23
24 Odhad veli iny Ak máme súbor N nezávislých meraní x i veli iny s konkrétnou ale neznámou strednou veli inou µ a disperziou σ 2, potom pre odhad strednej hodnoty a disperzie platí: N ˆσ 2 = 1 N 1 N i=1 ˆµ = x = 1 N i=1 x i (x i x) 2 = 1 N 1 ( N ) x 2 i N x 2 i=1 Disperzia ˆµ: ˆσ 2 µ = ˆσ2 N 24
25 írenie chýb Majme nieko ko veli ín x 1, x 2,..., x N ktoré sú získané meraním a sú za aºených chybami σ 1, σ 2,..., σ N. Tieto veli iny pouºijeme na výpo et al²ej veli iny Y = f(x 1, x 2,..., x N ). Na²ou úlohou je nájs chybu veli iny Y. Budeme predpoklada, ºe chyby sú rozdelené Gaussovsky Obmedzíme sa na lineárne leny z Taylorovho rozvoja Úvaha pre jednu premennú x = µ x ± σ x Rozloºenie veli iny Y = f(x) do radu okolo bodu µ x : Y = f(µ x ) + f(x) x (x µ x ) x=µx Dostaneme: µ Y = f(µ x ) 25
26 σ 2 Y = E ( (Y µ Y ) 2) = E ( =µy {}}{ f(µ x ) + f(x) x (x µ x ) µ Y x=µx ) 2 = = f(x) x 2 E ( (x µ x ) 2) = f(x) x=µ x x 2 x=µ x σ 2 x Pre viacrozmerný prípad Y = f(x 1, x 2,..., x N ) Taylorov rozvoj Y = f(µ 1, µ 2,..., µ N ) + N i=1 f(x 1, x 2,..., x N ) x i (x i µ i ) x1=µ1,x2=µ2,...,xn =µ N Stredná hodnota Y : µ Y = f(µ 1, µ 2,..., µ N ) Disperzia: σ 2 Y = E ( (Y µ Y ) 2) = i,j ( ) ( ) f f Cov(x i, x j ) x i x j 26
27 Ak veli iny x 1, x 2,..., x N sú nezávislé, tak Cov(x i, x j ) = 0 pre i j, disperzia Y je: σ 2 Y = N i=1 σ 2 i f(x 1, x 2,..., x N ) x i 2 x1=µ1,x2=µ2,...,x N =µ N 27
28 írenie chýb príklad y = x 2 σ 2 y = σ 2 x ( ) x 2 2 x = σ 2 x (2x) 2 = σx4x 2 2 y = xx, budeme po íta s kaºdým x zvlá² : y = x L x R ( ) 2 ( ) 2 σy 2 = σx 2 xl x R x + σ 2 xl x R ( ) ( L x x = σ 2 R x x 2 R + x 2 L = σ 2 x x 2 + x 2) = σx2x 2 2 Chybný výsledok, veli iny x L a x R nie sú nezávislé! 28
Pravdepodobnosť. Rozdelenia pravdepodobnosti
Pravdepodobnosť Rozdelenia pravdepodobnosti Pravdepodobnosť Teória pravdepodobnosti je matematickým základom pre odvodenie štatistických metód. Základné pojmy náhoda náhodný jav náhodná premenná pravdepodobnosť
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Dvojmaticové hry. tefan Pe²ko. 18. april Katedra matematických metód, FRI šu
Katedra matematických metód, FRI šu 18. april 2012 ƒastej²ie neº s antagonistickými koniktami sa stretávame s koniktami, v ktorých kaºdý z inteligentných ú astníkov sleduje svoje záujmy, ktoré sú iasto
Vektor náhodných veli in - práce s více prom nnými
Vektor náhodných veli in - práce s více prom nnými 12. kv tna 2015 N kdy k popisu n jaké situace pot ebujeme více neº jednu náhodnou veli inu. Nap. v k, hmotnost, vý²ku. Mezi t mito veli inami mohou být
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)
5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
1 Rozptyl a kovariance
Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ
64 1 TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ OBLASŤ PRIJATIA A ZAMIETNUTIA HYPOTÉZY PRI TESTOVANÍ CHYBY I. A II. DRUHU Chyba I. druhu sa vyskytne vtedy, ak je hypotéza správna, ale napriek tomu je zamietnutá,
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Fyzika a as. Vladimír Balek. december u ím ierne diery a ve ký tresk na bratislavskom matfyze
u ím ierne diery a ve ký tresk na bratislavskom matfyze december 2015 téma fyziky: POHYB koná sa v ase, preto fyzika musí ma POJEM asu (o ase) téma fyziky: POHYB koná sa v ase, preto fyzika musí ma POJEM
AVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost
(8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo
MATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.
6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami
T i hlavní v ty pravd podobnosti
T i hlavní v ty pravd podobnosti 15. kv tna 2015 První p íklad P edstavme si, ºe máme atomy typu A, které se samovolným radioaktivním rozpadem rozpadají na atomy typu B. Pr m rná doba rozpadu je 3 hodiny.
Cvi ení 7. Docházka a testík - 15 min. Distfun 10 min. Úloha 1
Cvi ení 7 Úkol: generování dat dle rozd lení, vykreslení rozd lení psti, odhad rozd lení dle dat, bodový odhad parametr, centrální limitní v ta, balí ek Distfun, normalizace Docházka a testík - 15 min.
NMAI059 Pravděpodobnost a statistika
NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )
Pravděpodobnost a statistika
Pravděpodobnost a statistika Normální rozdělení a centrální limitní věta Vilém Vychodil KMI/PRAS, Přednáška 9 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 9) Normální rozdělení
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost
Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením
1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!
Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A st eda 19. listopadu 2015, 11:2013:20 ➊ (3 body) Pro diferenciální operátor ˆL je mnoºina W q denována p edpisem W q = { y(x) Dom( ˆL) : ˆL(y(x))
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně
7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností
Pravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
ŠTATISTIKA V EXCELI 2007
Jozef Chajdiak ŠTATISTIKA V EXCELI 2007 STATIS, Bratislava 2009, ISBN 978-80-85659-49-8, 304 strán A5,väzba V4. Excel sa stal každodenným nástrojom práce mnohých z nás. Jeho verzia 2007, okrem čiastkových
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
5. Odhady parametrů. KGG/STG Zimní semestr
Základní soubor Výběr, výběrový (statistický) soubor Náhodný výběr Princip Odhad neznámých parametrů základního souboru na základz kladě charakteristik výběru. Přecházíme z části na celek, zevšeobec eobecňujeme
Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP
IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Studentove t-testy. Metódy riešenia matematických úloh
Studentove t-testy Metódy riešenia matematických úloh www.iam.fmph.uniba.sk/institute/stehlikova Jednovýberový t-test z prednášky Máme náhodný výber z normálneho rozdelenia s neznámymi parametrami Chceme
Základy teorie odhadu parametrů bodový odhad
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru
charakteristiky KGG/STG Zimní semestr Základní statistické charakteristiky, Teoretická rozdělení 1
3. ZákladnZ kladní statistické charakteristiky rozdělení 1 charakteristiky Dva hlavní druhy základnz kladních charakteristik statistického souboru: charakteristiky úrovně,, polohy (středn ední hodnoty)
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 28. listopadu 2017, 9:2011:20 ➊ (8 bod ) Lze nebo nelze k rozhodnutí o stejnom rné konvergence ady ( 1) n+1 x ln(n) n 6 + n 2 x 4 na intervalu
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
i j, existuje práve jeden algebraický polynóm n-tého stupˇna Priamym dosadením do (2) dostávame:
0 Interpolácia 0 Úvod Hlavnou myšlienkou interpolácie je nájs t funkciu polynóm) P n x) ktorá sa bude zhodova t s funkciou fx) v n rôznych uzlových bodoch x i tj P n x) = fx i ) = f i = y i i = 0 n Niekedy
Vícerozměrná rozdělení
Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost
Příklady ke čtvrtému testu - Pravděpodobnost
Příklady ke čtvrtému testu - Pravděpodobnost 6. dubna 0 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a vyřešte příklad podobný. Tím se ujistíte, že příkladu
Rozhodovanie za rizika a neistoty. Identifikácia, analýza a formulácia rozhodovacích problémov
Rozhodovanie za rizika a neistoty Identifikácia, analýza a formulácia rozhodovacích problémov Rozhodovacie procesy v podniku Prednáška č. 2 Zuzana Hajduová Rozhodovanie za rizika a neistoty subjektívna
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Náhodné vektory a matice
Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane
5. B o d o v é o d h a d y p a r a m e t r ů
5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme
Zápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
NÁHODNÝ VEKTOR. 4. cvičení
NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.
Import Excel Univerzál
Import Excel Univerzál PRÍKLAD Ako jednoducho postupova pri importe akéhoko vek súboru z MS Excel do programu CENKROS plus, ktorý má podobu rozpo tu (napr. rozpo et vytvorený v inom programe)? RIEŠENIE
NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?
NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU
8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
Základy štatistiky. Charakteristiky štatistického znaku
Základy štatistiky Základy štatistiky Úvod Základné pojmy Popisná štatistika Triedenie Tabuľky rozdelenia početností Grafické znázornenie Charakteristiky štatistického znaku charakteristiky polohy (priemer,
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.
ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Poznámky k předmětu Aplikovaná statistika, 5.téma
Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
P íklad 1 (Náhodná veli ina)
P íklad 1 (Náhodná veli ina) Uvaºujeme experiment: házení mincí. Výsledkem pokusu je rub nebo líc, ºe padne hrana neuvaºujeme. Pokud hovo íme o náhodné veli in, musíme p epsat výsledky pokusu do mnoºiny
Design Experimentu a Statistika - AGA46E
Design Experimentu a Statistika - AGA46E Czech University of Life Sciences in Prague Department of Genetics and Breeding Summer Term 2015 Matúš Maciak (@ A 211) Office Hours: M 14:00 15:30 W 15:30 17:00
IDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
ODHADY NÁVRATOVÝCH HODNOT
ODHADY NÁVRATOVÝCH HODNOT KLIMATOLOGICKÝCH DAT Katedra aplikované matematiky Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Robust 2018 ÚVOD Velká pozornost v analýze extrémních
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
Semestrální písemka BMA3 - termín varianta A13 vzorové řešení
Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ SPOJITÉ NÁH. VELIČINY Martina Litschmannová Opakování hustota pravděpodobnosti f(x) Funkce f(x) je hustotou pravděpodobností (na intervalu a x b), jestliže splňuje následující podmínky:
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
Odhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy