ODHADY NÁVRATOVÝCH HODNOT
|
|
- Vojtěch Bezucha
- před 6 lety
- Počet zobrazení:
Transkript
1 ODHADY NÁVRATOVÝCH HODNOT KLIMATOLOGICKÝCH DAT Katedra aplikované matematiky Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Robust 2018
2 ÚVOD Velká pozornost v analýze extrémních dat (např. záplavy) je věnována odhadům T -leté úrovně (návratová hodnota, T -letá voda). Představa: úroveň opakující se v průměru jednou za T let.
3 ÚVOD Velká pozornost v analýze extrémních dat (např. záplavy) je věnována odhadům T -leté úrovně (návratová hodnota, T -letá voda). Představa: úroveň opakující se v průměru jednou za T let. Z pohledu statistiky: vysoký kvantil rozdělení náhodné veličiny (průtoku). ( u(t) = F ) T P (X > u(t)) = 1 F(u(T)) = 1 T
4 PŘÍKLAD Příklad: Roční maxima teploty vzduchu za období Stanice Liberec Návratová hodnota (roky) GEV rozdělení metoda max. věrohodnosti Maximální dosažená hodnota za sledované období 36.2.
5 ZÁKLADNÍ PRINCIPY Necht X 1, X 2,... jsou nezávislé stejně rozdělené náhodné veličiny s distribuční funkcí F. Necht M n = max(x 1,...,X n ). Předpokládejme, že existuje posloupnost reálných čísel a n > 0 a b n tak, že posloupnost (M n b n )/a n konverguje v distribuci, t.j. P ((M n b n )/a n x) = F n (a n x+b n ) G(x), n, pro nějakou nedegenerovanou d.f. G(x) Jestliže podmínka platí, říkáme, že F je ve sféře přitažlivosti G (maximum domain of attraction), F MDA(G).
6 ZÁKLADNÍ PRINCIPY FISHEROVA-TIPPETTOVA VĚTA (1928) Jestliže F MDA(G) potom { G je typu jedné z následujících tří d.f. 0, x 0 Fréchet Φ 1/γ (x) = exp ( x 1/γ), x > 0 γ > 0 { { } exp ( x) 1/γ, x 0 Weibull Ψ 1/γ (x) = 1 x > 0 γ > 0 Gumbel Λ(x) = exp( e x ), x R.
7 ZÁKLADNÍ PRINCIPY FISHEROVA-TIPPETTOVA VĚTA (1928) Jestliže F MDA(G) potom { G je typu jedné z následujících tří d.f. 0, x 0 Fréchet Φ 1/γ (x) = exp ( x 1/γ), x > 0 γ > 0 { { } exp ( x) 1/γ, x 0 Weibull Ψ 1/γ (x) = 1 x > 0 γ > 0 Gumbel Λ(x) = exp( e x ), x R. GNĚDĚNKO (1943) Limitní rozdělení je zobecněné rozdělení extrémních hodnot. { ( ) exp (1+γx) 1/γ γ 0 G(x) = G γ (x) = exp( e x ) γ = 0, kde 1+γx > 0 G je určena jednoznačně až na parametr polohy a měřítka.
8 METHOD OF BLOCK MAXIMA Předpokládáme, že data rozdělíme do bloků obsahující n (velké) hodnot, bereme maximum v každém bloku a využijeme limitní výsledek, t.j. GEV rozdělení. Užití limitního rozdělení: ( Mn b n P a n ) x G γ (x). y = a n x+b n P(M n y) G γ ( y bn a n ) = G γ,bn,a n (y). Parametry odhadneme, např. metodou maximální věrohodnosti
9 METHOD OF BLOCK MAXIMA pro γ = 0 L(b,a,γ) = mloga (1+1/γ) L(b,a) = mloga i=1 Neexistuje analytické řešení. m i=1 m i=1 [ 1+γ m ( ) zi b a ( log 1+γ ( zi b a ( )) zi b a )] 1/γ m {( zi b exp a i=1 )}.
10 PŘÍKLAD Příklad: Roční maxima teploty vzduchu za období Stanice Liberec Návratová hodnota (roky) GEV rozdělení metoda max. věrohodnosti Maximální dosažená hodnota za sledované období 36.2.
11 PŘÍKLAD Příklad: Roční maxima teploty vzduchu za období Stanice Liberec Návratová hodnota (roky) GEV rozdělení metoda max. věrohodnosti Gumbelovo rozdělení metoda max. věrohodnosti Maximální dosažená hodnota za sledované období 36.2.
12 L-MOMENTOVÁ METODA Pro malé a střední rozsahy výběrů odhady lepší vlastnosti než metoda maximální věrohodnosti např. simulační studie (Hosking, Wallis, Wood) ukazuje, že pro všechna k GEV z intervalu (-0.5,0.5) a rozsah výběru do 100 mají odhady menší či srovnatelnou střední kvadratickou chybu ve srovnání s odhady maximální věrohodností
13 L-MOMENTOVÁ METODA Necht X 1,X 2,...X n je náhodný výběr s distribuční funkcí F(x) a kvantilovou funkcí Q(u) a necht X 1:n X 2:n X n:n jsou pořádkové statistiky. L-momenty: EX j:r = λ r = 1 r 1 ( ) r 1 ( 1) k EX r k:r, r = 1,2,... r k k=0 r! (j 1)!(r j)! λ 1 = EX = x(f(x)) j 1 (1 F(x)) r j df(x) 1 λ 2 = 1 2 E(X 2:2 X 1:2 ) = λ 3 = 1 3 E(X 3:3 2X 2:3 +X 1:3 ) = 0 1 Q(u)du Q(u)(2u 1)du Q(u)(6u 2 6u+1)du
14 L-MOMENTOVÁ METODA Příklady L-momentů některých rozdělení: Rovnoměrné na (a,b) λ 1 = 1 2 (a+b),λ 2 = 1 6 (b a),τ 3 = 0,τ 4 = 0 Normální N(µ,σ 2 ) λ 1 = µ,λ 2 = σ π,τ 3 = 0,τ 4 = Gumbelovo rozdělení F(x) = exp[ exp( (x ξ)/α)] λ 1 = ξ +αγ,λ 2 = αlog2,τ 3 = , τ 4 = ,γ = konst. Zobecněné rozdělení F(x) = exp[ (1 k(x ξ)/α) k] 1 extrémních hodnot λ 1 = ξ +α(1 Γ(1+k))/k, (GEV) λ 2 = α(1 2 k )Γ(1+k)/k, τ 3 = 2(1 3 k )/(1 2 k ) 3,τ 4 =... k > 1, Γ(.) označuje gamma funkci
15 L-MOMENTOVÁ METODA Odhady: Výběrový L moment: r = 1,2,...,n. Speciálně: ( ) 1 n l r =... r 1 ( ) r 1 r 1 ( 1) k r k 1 i 1<i 2<...<i r n l 1 = 1 n i=1 k=0 X ir k :n, n X i, l 2 = 1 ( ) 1 n (Xi:n X j:n ) 2 2 i>j l 3 = 1 ( ) 1 n (Xi:n 2X j:n +X k:n ) 3 3 i>j>k l 4 = 1 ( ) 1 n (Xi:n 3X j:n +3X k:n X l:n ) 4 4 i>j>k>l
16 L-MOMENTOVÁ METODA Odhady paramterů L-momentová metoda Rovnoměrné na (a,b) â = l 1 3l 2,â = l 1 +3l 2 Normální N(µ,σ 2 ) ˆµ = l 1,= ˆσ = π 1/2 l 2 Gumbelovo rozdělení F(x) = exp[ exp( (x ξ)/α)] ˆξ = l 1 ˆαγ, ˆα = l 2 /log2 γ = konst. Zobecněné rozdělení F(x) = exp[ (1 k(x ξ)/α) k] 1 extrémních hodnot z = 2/(3+t 3 ) log2/log3, (GEV) ˆk = z z 2, ˆα = l 2ˆk/[(1 2 ˆk)Γ(1+ˆk)], ˆξ = l 1 + ˆα[Γ(1+ˆk) 1]/ˆk
17 PŘÍKLAD Příklad: Roční maxima teploty vzduchu za období Stanice Liberec Návratová hodnota (roky) GEV rozdělení metoda max. věrohodnosti L-momentová metoda Maximální dosažená hodnota za sledované období 36.2.
18 PŘÍKLAD Příklad: Roční maxima teploty vzduchu za období Stanice Liberec Návratová hodnota (roky) GEV rozdělení metoda max. věrohodnosti L-momentová metoda Gumbelovo rozdělení metoda max. věrohodnosti L-momentová metoda Maximální dosažená hodnota za sledované období 36.2.
19 POT METODA Necht X 1, X 2,... jsou nezávislé stejně rozdělené náhodné veličiny s ditr. funkcí F. Je "rozumné" zahrnovat všechny hodnoty překračující daný vysoký práh (threshold) u. Chování extrémních událostí je dáno podmíněnou pravděpodobností P (X i > y X i > u) a P (X i < y X i > u) H(y), u u end, zobecněné Paretovo rozdělení H(x) = 1 ( 1+γ ( x µ σ )) 1/γ γ 0 1 e (x µ σ ) γ = 0, kde 1+γ ( ) x µ σ > 0. Uvažujeme hodnoty větší než dostatečně vysoký práh (threshold) a předpokládáme, že asymptotický výsledek je přibližně pravdivý, tj. užijeme zobecněné Paretovo rozdělení jako vhodný model. Metoda je známa jako peaks-over-threshold (POT).
20 POT Příklad: Roční maxima teploty vzduchu za období Stanice Liberec Návratová hodnota (roky) GEV rozdělení metoda max. věrohodnosti L-momentová metoda POT treshold treshold Maximální dosažená hodnota za sledované období 36.2.
21 SRÁŽKY - LIBERECKO Kyselý, Jan ; Gaál, L. ; Picek, J. ; Schindler, M., 2013: Return periods of the August 2010 heavy precipitation in northern Bohemia (Czech Republic) in the present climate and under climate change, Journal of Water and Climate Change, 4, pp
22 SRÁŽKY - LIBERECKO
23 SRÁŽKY - LIBERECKO Stanice srpen 2010 roky (bez) roky (s) Hejnice Mníšek Chrastava Mařenice Bedřichov Liberec
24 SRÁŽKY - LIBERECKO Stanice srpen 2010 roky (bez) roky (s) Hejnice ( ) ( ) Mníšek ( ) ( ) Chrastava ( x10 6 ) ( ) Mařenice ( x10 6 ) ( ) Bedřichov ( ) ( ) Liberec ( ) ( )
25 SRÁŽKY - LIBERECKO
26 TREND V DATECH
27 ZÁVĚR?
28 Děkuji za pozornost.
ODHADY NÁVRATOVÝCH HODNOT PRO
ODHADY NÁVRATOVÝCH HODNOT PRO SRÁŽKOVÁ A TEPLOTNÍ DATA Katedra aplikované matematiky Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Novohradské statistické dny ÚVOD Velká pozornost
MODELOVÁNÍ CHVOSTŮ TEORIE EXTRÉMNÍCH ODHADY PARETOVA INDEXU. Jan Dienstbier HODNOT. contact:
MODELOVÁNÍ CHVOSTŮ TEORIE EXTRÉMNÍCH HODNOT ODHADY PARETOVA INDEXU Jan Dienstbier contact: dienstbi@karlin.mff.cuni.cz Univerzita Karlova MFF UK - KPMS Praha KPMS, 31.10. 2007 MODELOVÁNÍ CHVOSTŮ JAK TO
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Pravděpodobnost a statistika
Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly
Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Daniel Veselý. Katedra pravděpodobnosti a matematické statistiky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Daniel Veselý Teorie extremálních rozdělení ve financích Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce:
Základy teorie odhadu parametrů bodový odhad
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru
n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)
5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =
Intervalová data a výpočet některých statistik
Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!
Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k
Vlastnosti odhadů ukazatelů způsobilosti
Vlastnosti odhadů ukazatelů způsobilosti Jiří Michálek CQR při Ústavu teorie informace a automatizace AV ČR v Praze Úvod Ve výzkumné zprávě č 06 Odhady koeficientů způsobilosti a jejich vlastnosti viz
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ SPOJITÉ NÁH. VELIČINY Martina Litschmannová Opakování hustota pravděpodobnosti f(x) Funkce f(x) je hustotou pravděpodobností (na intervalu a x b), jestliže splňuje následující podmínky:
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
Přijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 24 Příklad (25 bodů) Spočtěte Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A M x 2 dxdy, kde M = {(x, y) R 2 ;
Bootstrap - konfidenční intervaly a testy
9. prosince 2008 Konfidenční intervaly obecně Máme data X 1...X n F,(iid), kde F neznáme. Konfidenční intervaly obecně Máme data X 1...X n F,(iid), kde F neznáme. Chceme odhadnout θ = t(f), např. t(f)
IDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
KVADRATICKÁ KALIBRACE
Petra Širůčková, prof. RNDr. Gejza Wimmer, DrSc. Finanční matematika v praxi III. a Matematické modely a aplikace 4. 9. 2013 Osnova Kalibrace 1 Kalibrace Pojem kalibrace Cíle kalibrace Předpoklady 2 3
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení
SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční
PRAVDĚPODOBNOST A STATISTIKA. Odhady parametrů Postačující statistiky
PRAVDĚPODOBNOS A SAISIKA Odhady parametrů SP3 Připomenutí pojmů Připomenutí pojmů z S1P a SP2 odhady Nechť X,, je náhodný výběr z rozdělení s distribuční funkcí. 1 X,, X ) ( 1 n Statistika se nazývá bodovým
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.
5. B o d o v é o d h a d y p a r a m e t r ů
5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme
M - ODHADY M - ODHADY
M - ODHADY Jan Voříšek 26. 10. 2009 Obsah Obecný případ Odhady polohy Odhady měřítka Optimally bounding the gross-error sensitivity Change-of-variance function Obecný případ Úvod Názem M-odhad je odvozen
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.
6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Brno University of Technology. Ing. Jan Holešovský. Metody odhadu parametrů rozdělení extrémního typu s aplikacemi
Vysoké učení technické v Brně Brno University of Technology Fakulta strojního inženýrství Faculty of mechanical engineering Ústav matematiky Institute of mathematics Ing. Jan Holešovský Metody odhadu parametrů
Poznámky k předmětu Aplikovaná statistika, 5.téma
Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné
MATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
FAKULTA STROJNíHO INŽENÝRSTVí ÚSTAV MATEMATIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNíHO INŽENÝRSTVí ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS STATISTIKA STATISTICS OF EXTREMES EXTRÉMNÍCH
EXTRÉMY V TEPLOTNÍCH ŘADÁCH
ROBUST 24 c JČMF 24 EXTRÉMY V TEPLOTNÍCH ŘADÁCH Monika Rencová Klíčová slova: Teorie extrémů, teplotní řady, tříparametrické Weibullovo rozdělení. Abstrakt: Ze statistického hlediska je užitečné studovat
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně
7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
Projekty - Úvod do funkcionální analýzy
Projekty - Úvod do funkcionální analýzy Projekt č. 1. Nechť a, b R, a < b. Dokažte, že prostor C( a, b ) = f : R R: f je spojitá na D(f) = a, b s metrikou je úplný. ρ(f, g) = max f(x) g(x) x a,b Projekt
BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni
BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X
jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.
Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment
Apriorní rozdělení. Jan Kracík.
Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
Oct 19th Charles University in Prague, Faculty of Mathematics and Physics. Multidimensional estimators. Základní pojmy.
Charles University in Prague, Faculty of Mathematics and Physics Oct 19th 2009 Influence Function Stejné jako pro jednorozměrný případ až na Θ R p. Influence Function IF (x; T, F) = lim h 0 T [(1 h)f +
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
Odhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
Univerzita Karlova v Praze procesy II. Zuzana. funkce
Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost
Náhodné vektory a matice
Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane
9. Vícerozměrná integrace
9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující
PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady
PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Matematika (KMI/PMATE)
Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program
Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí
0.1 Funkce a její vlastnosti
0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena
Radka Picková Transformace náhodných veličin
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Radka Picková Transformace náhodných veličin Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: Mgr Zdeněk
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Robustní statistické metody
Populární úvod Ústav teoretické fyziky a astrofyziky, MU Brno 28. říjen 2006, Vlašim O co jde? Robustní znamená: necitlivý k malým odchylkám od ideálních předpokladů na který je metoda odhadu optimalizována.
Faster Gradient Descent Methods
Faster Gradient Descent Methods Rychlejší gradientní spádové metody Ing. Lukáš Pospíšil, Ing. Martin Menšík Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava 24.1.2012 Ing. Lukáš Pospíšil,
Aplikace 2: Hledání informativních příznaků pro rozpoznávání
Aplikace : Hledání informativních příznaků pro rozpoznávání Sonogram štítné žlázy v podélném řezu zdravá lymfocitická thyroitida Zajímá nás, kolik se lze z dat dozvědět o třídě c a kde ta informace je.
Limita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
3 Bodové odhady a jejich vlastnosti
3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe
Matematika 4 FSV UK, LS Miroslav Zelený
Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek
Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3
Přijímací zkouška na navazující magisterské studium 2017
Přijímací zkouška na navazující magisterské studium 27 Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
Normální rozložení a odvozená rozložení
I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
LWS při heteroskedasticitě
Stochastické modelování v ekonomii a financích Petr Jonáš 7. prosince 2009 Obsah 1 2 3 4 5 47 1 Předpoklad 1: Y i = X i β 0 + e i i = 1,..., n. (X i, e i) je posloupnost nezávislých nestejně rozdělených
0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost
Vρ < πd 2 f y /4. π d 2 f y /4 - Vρ = 0
5 ZÁKLADY TOI SPOLHLIVOSTI 5.1 Základní úvahy Základní úlohou teorie spolehlivosti stavebních konstrukcí je rozbor zdánlivě jednoduché podmínky mezi účinkem zatížení a odolností konstrukce ve tvaru nerovnosti
Pravděpodobnost a statistika (BI-PST) Cvičení č. 4
Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015
Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ
Přijímací zkoušky z matematiky pro akademický rok 8/9 NMgr studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 3 4 5 Celkem Body Ke každému příkladu uved te
Matematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)