Pravděpodobnost je Martina Litschmannová MODAM 2014

Rozměr: px
Začít zobrazení ze stránky:

Download "Pravděpodobnost je Martina Litschmannová MODAM 2014"

Transkript

1 ravděpodobnost je Martina Litschmannová MODAM 2014

2 Jak osedlat náhodu? Řecká mytologie: Bratři Zeus, oseidon, Hádes hráli v kostky astragalis. Zeus vyhrál nebesa, oseidon moře a Hádes peklo.

3 Jak osedlat náhodu? Jaká je šance, že hodíte-li kostkou, tak padne šestka?

4 Jak osedlat náhodu? Jaká je šance, že Wimbledon 2014 vyhraje? Rafael Nadal (1) Tomáš Berdych (6) Vincent Millot (200)

5 Jak osedlat náhodu? Jaká je šance, že pojišťovna vydělá na cestovním pojištění?

6 Náhodu nelze ovládnout, ale šanci na výskyt náhodných jevů lze odhadnout.

7 Čím se zabývá teorie pravděpodobnosti? okus děj, který probíhá, resp. nastává opakovaně za určitých, stejně nastavených, počátečních podmínek. Deterministické pokusy Za určitých počátečních podmínek se dostaví vždy stejný výsledek. X Náhodné pokusy ro určité počáteční podmínky existuje množina možných výsledků, přičemž jeden z nich nastane.

8 Základní pojmy teorie pravděpodobnosti Náhodný pokus děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž probíhá. Hod kostkou

9 Základní pojmy teorie pravděpodobnosti Náhodný pokus děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž probíhá. Stanovení množství cholesterolu v krvi

10 Základní pojmy teorie pravděpodobnosti Náhodný pokus děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž probíhá. Měření počtu požadavků za určité období

11 Základní pojmy teorie pravděpodobnosti Náhodný pokus děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž probíhá. Hod kostkou Náhodný jev tvrzení o výsledku náhodného pokusu. O pravdivosti tohoto tvrzení lze po ukončení pokusu rozhodnout. Značíme velkými písmeny (A, B, X, Y, ). adne šestka.

12 Základní pojmy teorie pravděpodobnosti Náhodný pokus děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž probíhá. Hod kostkou Náhodný jev tvrzení o výsledku náhodného pokusu. O pravdivosti tohoto tvrzení lze po ukončení pokusu rozhodnout. Značíme velkými písmeny (A, B, X, Y, ). adne sudé číslo.

13 Základní pojmy teorie pravděpodobnosti Náhodný pokus děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž probíhá. Stanovení množství cholesterolu v krvi Náhodný jev tvrzení o výsledku náhodného pokusu. O pravdivosti tohoto tvrzení lze po ukončení pokusu rozhodnout. Značíme velkými písmeny (A, B, X, Y, ). Zjištěná hodnota cholesterolu bude odpovídat normě. ro laika v oboru nutno specifikovat!!!

14 Základní pojmy teorie pravděpodobnosti Náhodný pokus děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž probíhá. Měření počtu požadavků za určité období Náhodný jev tvrzení o výsledku náhodného pokusu. O pravdivosti tohoto tvrzení lze po ukončení pokusu rozhodnout. Značíme velkými písmeny (A, B, X, Y, ). Během jedné hodiny bude vytvořeno více než 300 funkčních požadavků.

15 Základní pojmy Náhodný pokus konečný děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž probíhá Náhodný jev tvrzení o výsledku náhodného pokusu, o jehož pravdivosti můžeme po ukončení pokusu rozhodnout (značíme A, B, X, Y, ) Elementární jev ω jednotlivý výsledek náhodného pokusu (nelze jej vyjádřit jako sjednocení dvou různých jevů) Základní prostor Ω množina všech elementárních jevů Náhodný jev (jinak) libovolná podmnožina základního prostoru

16 Typy jevů adne 7. adne 6. adne méně než 7. Jev nemožný Jev náhodný Jev jistý Ω

17 Vybrané vztahy mezi jevy A Ω A Ω A Ω B B A doplněk jevu A průnik jevů A a B sjednocení jevů A a B A A B A B A Ω B 3 B 5 B 7 B jevy disjunktní B 1 B 2 B 4 B 6 úplná množina vzájemně disjunktních jevů Ω = n B i i=1, kde i j: B i B j = Ω

18 Co je to pravděpodobnost? Číselné vyjádření šance, že při náhodném pokusu daný jev nastane. 0 0,05 0,95 1 jev nemožný Ω jev jistý jev prakticky nemožný jev prakticky jistý Jak pravděpodobnost definovat?

19 očátky teorie pravděpodobnosti 17. století Jak rozdělit spravedlivě bank mezi hráče, byla-li série hazardních her ukončena předčasně? Blaise ascal ( ) zdroj: ierre de Fermat ( ) zdroj: kids.britannica.com

20 Klasická definice pravděpodobnosti (ierre Simon de Laplace, 1812) Založena na předpokladu, že náhodný pokus může mít n různých, avšak rovnocenných výsledků. Nechť Ω je množina n rovnocených elementárních jevů. ravděpodobnost jevu A, jenž je složen z m těchto elementárních jevů je: ( A) m n Mějme férovou hrací kostku. Jaká je pravděpodobnost, že padne 6? 1 Označme: A padne 6, pak ( A ). 6

21 Statistická definice pravděpodobnosti (Richard von Mises, počátek 20. století) ( A) lim n n( A) n očet realizací pokusu příznivých jevu A očet všech realizací pokusu Jaká je pravděpodobnost padnutí 6 na hrací kostce, nevíme-li, zda je tato kostka férová?

22 n A / n Statistická definice pravděpodobnosti 0,16 1/6 Relativní četnost jevu "padne 6" n ( A) lim n n( A) n

23 Geometrická pravděpodobnost Zobecnění klasické pravděpodobnosti pro případ, kdy počet všech možných výsledků náhodného pokusu je nespočetný. V rovině (případně na přímce nebo v prostoru) je dána určitá oblast Ω a v ní další uzavřená oblast A. ravděpodobnost jevu A, který spočívá v tom, že náhodně zvolený bod v oblasti Ω leží i v oblasti A je: A A Jaká je pravděpodobnost, že meteorit dopadl na pevninu?

24 Kolmogorovův axiomatický systém (Andrej Nikolajevič Kolmogorov, 1933) Definuje pojem pravděpodobnosti a její vlastnosti, neudává však žádný návod k jejímu stanovení. 1. ravděpodobnost každého jevu A je reálné číslo mezi 0 a 1 (včetně). 2. ravděpodobnost, že nějaký jev nastane (pravděpodobnost jevu jistého) je rovna ravděpodobnost, že nastane některý z navzájem se vylučujících jevů, je rovna součtu jejich pravděpodobností. A to pro každých spočetně mnoho jevů.

25 Vybrané vlastnosti pravděpodobnosti Nechť množina Ω obsahuje n elementárních jevů, nechť je pravděpodobnost na této množině, A a B jevy. otom platí : 1. 0 A 1 2. Ω = 1; = 0 3. A = 1 A 4. A B = A + B A B A, B disjunktní jevy A B = A + B 5. A B = A B. B A, B nezávislé jevy A B = A. B

26 1. an Ondra Hypoch tak dlouho obtěžoval lékaře, až mu lékař napsal prášky. V příbalovém letáku se Ondra dočetl, že mají dva možné nežádoucí účinky: a) vypadání zubů (15%), b) upadnutí palců na rukou (20%). Zároveň je v letáku napsáno, že nebyla prokázána závislost mezi výskytem jednotlivých typů nežádoucích účinků. S jakou pravděpodobností se bude moci Ondra po ukončení léčby kousnout do palce? (dle: Luboš ick; přednáška Dirichletovy šuplíčky na semináři OSMA)

27 Z Ondra bude mít po ukončení léčby zuby R Ondra bude mít po ukončení léčby prsty na rukou Z = 0,85, R = 0,80 S jakou pravděpodobností se bude moci Ondra po ukončení léčby kousnout do palce? Z = 0,15 Z = 0,85 Z R = 0,80 0,85 = 0,68 R = 0,80 R = 0,20

28 Věta o úplné pravděpodobnosti A B 3 B 5 B 7 B 1 B 2 B 4 B 6 n n n A = i=1 A B i = i=1 A B i = i=1 A B i B i

29 2. Ve třídě je 70% procent chlapců a 30% dívek. Dlouhé vlasy má 10% chlapců a 80% dívek. Jaká je pravděpodobnost, že náhodně vybraný student má dlouhé vlasy? 70% 30%

30 2. Ve třídě je 70% procent chlapců a 30% dívek. Dlouhé vlasy má 10% chlapců a 80% dívek. Jaká je pravděpodobnost, že náhodně vybraný student má dlouhé vlasy? 70% 30% 80% 20%

31 2. Ve třídě je 70% procent chlapců a 30% dívek. Dlouhé vlasy má 10% chlapců a 80% dívek. Jaká je pravděpodobnost, že náhodně vybraný student má dlouhé vlasy? 10% 90% 70% 30% 80% 20%

32 ravoúhlý Vennův diagram 10% 90% 70% 30% 80% 20%

33 DV DV D DV CH DV D D DV CH CH DV 0, 80, 3 01, 0, 7 0, 31 DV CH 0, 1 KV CH 0, 9 CH 0, 7 0,07 0,63 D 0, 3 0,24 DV D 0, 8 KV D 0, 2 0,06

34 Rozhodovací strom ohlaví Délka vlasů Studenti CH 0, 7 DV CH 0, 1 CH KV CH 0, 9 DV KV CH DV 0, 701, 0, 07 CH KV 0, 70, 9 0, 63 D 0, 3 D DV D 0, 8 DV D DV 0, 30, 8 0, 24 KV D 0, 2 KV D KV 0, 30, 2 0, 06

35 DV DV D DV CH DV D D DV CH CH DV 0, 24 0, 07 0, 80, 3 01, 0, 7 0, 31 ohlaví Délka vlasů Studenti CH 0, 7 DV CH 0, 1 CH KV CH 0, 9 DV KV CH DV 0, 701, 0, 07 CH KV 0, 70, 9 0, 63 D 0, 3 D DV D 0, 8 DV D DV 0, 30, 8 0, 24 KV D 0, 2 KV D KV 0, 30, 2 0, 06

36 Bayesův teorém Thomas Bayes ( ) zdroj: B k A A B A k i A Bk A B i

37 2. Ve třídě je 70% procent chlapců a 30% dívek. Dlouhé vlasy má 10% chlapců a 80% dívek. A) Jaká je pravděpodobnost, že náhodně vybraný student je chlapec? 70 % Apriorní pravděpodobnost

38 2. Ve třídě je 70% procent chlapců a 30% dívek. Dlouhé vlasy má 10% chlapců a 80% dívek. B) Náhodně vybraný student má dlouhé vlasy. Jaká je pravděpodobnost, že náhodně vybraný student je chlapec? Aposteriorní pravděpodobnost

39 DV 0, 80, 3 01, 0, 7 0, 31 CH DV CH DV 0, 07 0, 226 DV 0, 31 Studenti CH 0, 7 D 0, 3 Daný stav DV CH 0, 1 CH D KV CH 0, 9 DV D 0, 8 Výsledek testu DV KV DV CH DV 0, 701, 0, 07 CH KV 0, 70, 9 0, 63 D DV 0, 30, 8 0, 24 KV D 0, 2 KV D KV 0, 30, 2 0, 06

40 2. Ve třídě je 70% procent chlapců a 30% dívek. Dlouhé vlasy má 10% chlapců a 80% dívek. B) Náhodně vybraný student má dlouhé vlasy. Jaká je pravděpodobnost, že náhodně vybraný student je chlapec? CH DV CH DV DV 0, 07 0, 31 0, 226 Aposteriorní pravděpodobnost

41 3. V jednom městě jezdí 85% zelených taxíků a 15% modrých. Svědek dopravní nehody vypověděl, že nehodu zavinil řidič modrého taxíku, který pak ujel. Testy provedené za obdobných světelných podmínek ukázaly, že svědek dobře identifikuje barvu taxíku v 80% případů a ve 20% případů se mýlí. A) Jaká je pravděpodobnost, že viník nehody skutečně řídil modrý taxík? B) ak byl nalezen další nezávislý svědek, který rovněž tvrdí, že taxík byl modrý. Jaká je nyní pravděpodobnost, že viník nehody skutečně řídil modrý taxík? Úlohu prezentovali psychologové Kahneman a Tversky (Anděl; Matematika náhody; 2007)

42 Označme: M taxík byl modrý Z taxík byl zelený SM 1 (SZ 1 ) první svědek viděl modrý (zelený) taxík SM 2 (SZ 2 ) druhý svědek viděl modrý (zelený) taxík

43 SM SM M SM Z SM M M SM Z Z SM 0,800,15 0,200,85 0, 29 1 SM Z 20 SZ Z , 1 0, Z 0, 85 0,17 0,68 M 0, 15 0,12 0,03 SM M 0, 80 SZ M ,

44 M SM SM M SM 0,12 0,17 0, ,4138 SM Z 20 SZ Z , 1 0, Z 0, 85 0,17 0,68 M 0, 15 0,12 0,03 SM M 0, 80 SZ M ,

45 M SM SM M SM 0,12 0,17 0, ,4138 Daný stav (před výpovědi svědků) Výsledek výpovědi 1. svědka M 0, 15 SM M 0, 80 M 1 SM 1 SM M 0,150,80 0, 12 1 Taxi Z 0, 85 Z SZ M , SM Z , SZ 1 SM 1 SZ M 0,150,20 0, 03 1 SM Z 0,850,20 0, 17 1 SZ Z , SZ 1 SZ Z 0,850,80 0, 68 1

46 Situace před výpovědi prvního svědka: M = 0, 15, Z = 0,15 Situace po výpovědi prvního svědka: M SM 1 = 0, 4138, Z SM 1 = 0,5862

47 4. V jednom městě jezdí 85% zelených taxíků a 15% modrých. Svědek dopravní nehody vypověděl, že nehodu zavinil řidič modrého taxíku, který pak ujel. Testy provedené za obdobných světelných podmínek ukázaly, že svědek dobře identifikuje barvu taxíku v 80% případů a ve 20% případů se mýlí. A) Jaká je pravděpodobnost, že viník nehody skutečně řídil modrý taxík? B) ak byl nalezen další nezávislý svědek, který rovněž tvrdí, že taxík byl modrý. Jaká je nyní pravděpodobnost, že viník nehody skutečně řídil modrý taxík? Úlohu prezentovali psychologové Kahneman a Tversky (Anděl; Matematika náhody; 2007)

48 M1SM 2 SM 2 0, 4482 SM SM 2 M1 2 0,3310 0,4482 0,7386 M1 0, 4138 Taxi Z1 0, 5862 Daný stav (po výpovědi 1. svědka) SM M 0, 80 M1 Z1 2 1 SZ M 0, SM Z 0, Výsledek výpovědi 2. svědka SM 2 SZ 2 SM 2 SM M 0, SZ M 0, SM Z 0, SZ Z 0, SZ 2 SZ Z 0,

49 M SM 1 SM 2 = M SM 1 SM 2 SM 1 SM 2 = 0,15 0,8 0,8 0, ,15 0,8 0,8 + 0,85 0,2 0,2 Taxi Daný stav (před výpovědi svědků) M 0, 15 Z 0, 85 SM M 0, 80 M Z 1 SZ M , SM Z , SZ Z , Výsledek výpovědi 1. svědka SM 1 SZ 1 SM 1 SZ 1 Výsledek následné výpovědi 2. svědka 0,80 0,20 0,80 0,20 0,20 0,80 0,20 SM 2 SZ 2 SM 2 SZ 2 SM 2 SZ 2 SM 2 0,80 SZ 2

50 Situace před výpovědi prvního svědka: M = 0, 1500, Z = 0,8500 Situace po výpovědi prvního svědka: M SM 1 = 0, 4138, Z SM 1 = 0,5862 Situace po výpovědi druhého svědka: M SM 1, SM 2 = 0, 7386, Z SM 1, SM 2 = 0,2614

51 Záleží na tom, zda svědkové vypovídali postupně nebo současně?

52 M SM 1 SM 2 = M SM 1 SM 2 SM 1 SM 2 = 0,15 0,64 0,15 0,64+0,85 0,04 0,7386 Daný stav Výsledek po výpovědi (před výpovědi svědků) svědků 0,15 M 0,64 0,16 0,16 SM 1 SM 2 SM 1 SZ 2 Taxi 0,04 SZ 1 SM 2 SZ 1 SZ 2 0,85 Z 0,04 0,16 0,16 0,64 SM 1 SM 2 SM 1 SZ 2 SZ 1 SM 2 SZ 1 SZ 2

53 Situace před výpovědi prvního svědka: M = 0, 1500, Z = 0,8500 Situace po výpovědi prvního svědka: M SM 1 = 0, 4138, Z SM 1 = 0,5862 Situace po výpovědi druhého svědka (následně vypovídajícího): M SM 1, SM 2 = 0, 7386, Z SM 1, SM 2 = 0,2614 Situace po výpovědi dvou svědků vypovídajících zároveň: M SM 1, SM 2 = 0, 7386, Z SM 1, SM 2 = 0,2614

54 4. Rodina má dvě děti. A) Jaká je pravděpodobnost, že mají dvě dcery? ředpokládejme, že pravděpodobnost narození dívky je stejná jako pravděpodobnost narození chlapce.

55 4. Rodina má dvě děti. A) Jaká je pravděpodobnost, že mají dvě dcery? ředpokládejme, že pravděpodobnost narození dívky je stejná jako pravděpodobnost narození chlapce.

56 4. Rodina má dvě děti. A) Jaká je pravděpodobnost, že mají dvě dcery? ředpokládejme, že pravděpodobnost narození dívky je stejná jako pravděpodobnost narození chlapce.

57 4. Rodina má dvě děti. A) Jaká je pravděpodobnost, že mají dvě dcery? ředpokládejme, že pravděpodobnost narození dívky je stejná jako pravděpodobnost narození chlapce. DD = 1 4

58 4. Rodina má dvě děti. Jedno z nich je dívka. B) Jaká je pravděpodobnost, že mají dvě dcery? ředpokládejme, že pravděpodobnost narození dívky je stejná jako pravděpodobnost narození chlapce.

59 4. Rodina má dvě děti. Jedno z nich je dívka. B) Jaká je pravděpodobnost, že mají dvě dcery? ředpokládejme, že pravděpodobnost narození dívky je stejná jako pravděpodobnost narození chlapce.

60 4. Rodina má dvě děti. Jedno z nich je dívka. B) Jaká je pravděpodobnost, že mají dvě dcery? ředpokládejme, že pravděpodobnost narození dívky je stejná jako pravděpodobnost narození chlapce.

61 4. Rodina má dvě děti. Jedno z nich je dívka. B) Jaká je pravděpodobnost, že mají dvě dcery? ředpokládejme, že pravděpodobnost narození dívky je stejná jako pravděpodobnost narození chlapce. DD = 1 3

62 4. Rodina má dvě děti. Jedno z nich se jmenuje Kleopatra. C) Jaká je pravděpodobnost, že mají dvě dcery? 62 odst. 1 zákona o matrikách: Matriční úřad nezapíše jméno, pokud je mu známo, že toto jméno užívá žijící sourozenec, mají-li sourozenci společné rodiče. 10 Dle MVČR (kdejsme.cz) a ČSÚ: K D i = 0, Označme: K D i CH i DK i DK i dítě je pojmenováno Kleopatra i - té dítě je dívka i té dítě je chlapec i té dítě je dívka a jmenuje se Kleopatra D i K i té dítě je dívka a nejmenuje se Kleopatra D i K DK i = K D i D i = 0, ,5 = 0, DK i = K D i D i = 0, ,5 = 0,499999

63 1. dítě 0, CH 1 0, , DK 1 DK 1

64 CH 1 0, , dítě 2. dítě 0, , , CH 2 0, DK 1 DK 1

65 CH 1 0, , DK 1 0, dítě 2. dítě 0, , , , , , CH 2 CH 2 DK 1

66 dvě dcery jedno dítě je Kleopatra (dvě dcery, z nichž jedna z nich je Kleopatra) = jedno z dětí je Kleopatra CH 1 0, , DK 1 0, DK 1 1. dítě 2. dítě 0, , , , , , , , CH 2 CH 2 CH 2

67 dvě dcery jedno dítě je Kleopatra (dvě dcery, z nichž jedna z nich je Kleopatra) = jedno z dětí je Kleopatra CH 1 0, , DK 1 0, DK 1 1. dítě 2. dítě 0, , , , , , , , CH 2 CH 2 CH 2

68 dvě dcery jedno dítě je Kleopatra (dvě dcery, z nichž jedna z nich je Kleopatra) = jedno z dětí je Kleopatra CH 1 0, , DK 1 0, DK 1 1. dítě 2. dítě 0, , , , , , , , CH 2 CH 2 CH 2

69 dvě dcery jedno dítě je Kleopatra = ( DK 1 DK 1 ) ( CH 1 DK 1 CH 1 DK 1 ) 1. dítě 2. dítě CH 1 0, , DK 1 0, DK 1 0, , , , , , , , CH 2 CH 2 CH 2

70 dvě dcery jedno dítě je Kleopatra = 0, , , , ( CH 1 DK 1 CH 1 DK 1 ) 1. dítě 2. dítě CH 1 0, , DK 1 0, DK 1 0, , , , , , , , CH 2 CH 2 CH 2

71 dvě dcery jedno dítě je Kleopatra = 0, , , , , , , , , , , , CH 1 0, , DK 1 0, DK 1 1. dítě 2. dítě 0, , , , , , , , CH 2 CH 2 CH 2

72 dvě dcery jedno dítě je Kleopatra = 0, , = 0, CH 1 0, , DK 1 0, DK 1 1. dítě 2. dítě 0, , , , , , , , CH 2 CH 2 CH 2

73 ro srovnání dvě dcery jedno dítě je Marie 0, 493 Dle MVČR (kdejsme.cz) a ČSÚ: M D = ,054037

74 Rodina má dvě děti. ravděpodobnost, že rodina má 2 dcery je Víme, že jedno z dětí je dcera. ravděpodobnost, že rodina má 2 dcery je Víme, že jedno z dětí se jmenuje Kleopatra. ravděpodobnost, že rodina má 2 dcery je 0,

75 A co tenhle? Dokážete najít řešení? ředpokládejme, že test na zjištění drog má senzitivitu 99% a specificitu 99%. To znamená, že test správně identifikuje skutečného uživatele drog v 99% případů a že test vyloučí osobu, která drogy neužívá rovněž v 99% případů. ředpokládejme, že ve škole, která se rozhodla testovat své studenty na užívání drog je prevalence 0,5%. Tj. jen 0,5% ze všech studentů drogy skutečně bere. Student Fajfka měl test pozitivní. Jaká je pravděpodobnost, že student Fajfka skutečně užívá drogy? Jak by se tato pravděpodobnost změnila, pokud by opakovaný (nezávislý) test vyšel také pozitivní?

76 Děkuji za pozornost!

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Pravděpodobnost je Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM, 24. 1. 2017 Čím se zabývá teorie pravděpodobnosti? Pokus děj, který probíhá, resp. nastává opakovaně

Více

PRAVDĚPODOBNOST JE. Martina Litschmannová

PRAVDĚPODOBNOST JE. Martina Litschmannová RAVDĚODOBNOST JE Martina Litschmannová Čím se zabývá teorie pravděpodobnosti? Teorie pravděpodobnosti je matematická disciplína popisující zákonitosti týkající se náhodných jevů, tj. používá se k modelování

Více

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není

Více

Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 27. září 2018 Teorie pravděpodobnosti Teorie pravděpodobnosti je odvětvím matematiky, které studuje matematické modely náhodných pokusu, tedy zabývá se

Více

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení

Více

Statistické vyhodnocování experimentálních dat. Mgr. Martin Čada, Ph.D.

Statistické vyhodnocování experimentálních dat. Mgr. Martin Čada, Ph.D. Statistické vyhodnocování experimentálních dat Mgr. Martin Čada, Ph.D. - Ústav fyziky a biofyziky, PřF JU - E-mail: mcada@prf.jcu.cz - Tel.: 266052418 - Organizace výuky, zkouška, zápočet - Přednášky a

Více

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy Teorie pravděpodobnosti Náhodný pokus skončí jedním z řady možných výsledků předem nevíme, jak skončí (náhoda) příklad: hod kostkou, zítřejší počasí,... Pravděpodobnost zkoumá náhodné jevy (mohou, ale

Více

Pravděpodobnost vs. Poměr šancí. Pravděpodobnostní algoritmy: Bayesova věta. Bayesova teorie rozhodování. Bayesova věta (teorém) Vzorec. ...

Pravděpodobnost vs. Poměr šancí. Pravděpodobnostní algoritmy: Bayesova věta. Bayesova teorie rozhodování. Bayesova věta (teorém) Vzorec. ... ravděpodobnostní algoritmy: Bayesova věta Fantasy is hardly an escape from reality. It is a way of understanding it. LLoyd Alexander ravděpodobnost vs. oměr šancí ravděpodobnost - poměr počtu jedinců surčitým

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 1. KAPITOLA - PRAVDĚPODOBNOST 2.10.2017 Kontakt Mgr. Jana Sekničková, Ph.D. jana.seknickova@vse.cz Katedra softwarového inženýrství Fakulta

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných

Více

Jaroslav Michálek A STATISTIKA

Jaroslav Michálek A STATISTIKA VUT BRNO FAKULTA STROJNÍHO INŽENÝRSTVÍ Jaroslav Michálek PRAVDĚPODOBNOST A STATISTIKA BRNO 2006 preprint Kapitola 1 Úvod Prudký rozvoj výpočetní techniky, jehož jsme v posledních desetiletích svědky, podstatně

Více

Drsná matematika IV 7. přednáška Jak na statistiku?

Drsná matematika IV 7. přednáška Jak na statistiku? Drsná matematika IV 7. přednáška Jak na statistiku? Jan Slovák Masarykova univerzita Fakulta informatiky 2. 4. 2012 Obsah přednášky 1 Literatura 2 Co je statistika? 3 Popisná statistika Míry polohy statistických

Více

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015)

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015) III Pravděpodobnost Pravděpodobnost Podmíněná p. Úplná p. Odkud se bere pravděpodobnost? 1. Pravděpodobnost, že z balíčku zamíchaných karet vytáhmene dvě esa je přibližně 0:012. Modely a teorie. 2. Pravděpodobnost,

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

2. přednáška - PRAVDĚPODOBNOST

2. přednáška - PRAVDĚPODOBNOST 2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.

Více

Teorie pravěpodobnosti 1

Teorie pravěpodobnosti 1 Teorie pravěpodobnosti 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodný jev a pravděpodobnost Každou zákonitost sledovanou v přírodě lze zjednodušeně charakterizovat jako

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

Cvičení ze statistiky - 4. Filip Děchtěrenko

Cvičení ze statistiky - 4. Filip Děchtěrenko Cvičení ze statistiky - 4 Filip Děchtěrenko Minule bylo.. Dokončili jsme deskriptivní statistiku Tyhle termíny by měly být známé: Korelace Regrese Garbage in, Garbage out Vícenásobná regrese Pravděpodobnost

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2016/2017 Tutoriál č. 1: Kombinatorika, úvod do teorie pravděpodobnosti Jan Kracík jan.kracik@vsb.cz Kombinatorika Kombinatorika

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost

Více

Teoretická rozdělení

Teoretická rozdělení Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika

Více

Sada 1 Matematika. 16. Úvod do pravděpodobnosti

Sada 1 Matematika. 16. Úvod do pravděpodobnosti S třední škola stavební Jihlava Sada 1 Matematika 16. Úvod do pravděpodobnosti Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 -

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Definice P(A/B) pravděpodobnost nastoupení jevu A za předpokladu, že nastal jev B (P(B) > 0) definujeme vztahem

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Kde se vzala pravděpodobnost? Jaroslav Horáček

Kde se vzala pravděpodobnost? Jaroslav Horáček Kde se vzala pravděpodobnost? Jaroslav Horáček Pravděpodobnost Mezi veřejností synonymum pro neurčitost Mihlo se kolem ní spousta význačných matematiků Starověk a středověk málo materiálů Jeden z mála

Více

Metody zpracování fyzikálních měření

Metody zpracování fyzikálních měření etody zpracování fyzikálních měření Jakub Čížek katedra fyziky nízkých teplot Tel: 9 788 jakub.cizek@mff.cuni.cz http://physics.mff.cuni.cz/kfnt/vyuka/metody/obsah.html Doporučená literatura: D.S. Silva,

Více

Distribuční funkce je funkcí neklesající, tj. pro všechna

Distribuční funkce je funkcí neklesající, tj. pro všechna Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Práce s

Více

Podmíněná pravděpodobnost

Podmíněná pravděpodobnost odmíněná pravděpodobnost 5. odmíněná pravděpodobnost 5.. Motivace: Opakovaně nezávisle provádíme týž náhodný pokus a sledujeme nastoupení jevu A v těch pokusech, v nichž nastoupil jev H. odmíněnou relativní

Více

1. Pravděpodobnost a statistika (MP leden 2010)

1. Pravděpodobnost a statistika (MP leden 2010) 1. Pravděpodobnost a statistika (MP leden 2010) Pravděpodobnost pojmy 1. Diskrétní pravděpodobnostní prostor(definice, vlastnosti, příklad). Diskrétní pravděpodobnostní prostor je trojice(ω, A, P), kde

Více

pravděpodobnosti a Bayesova věta

pravděpodobnosti a Bayesova věta NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU

Více

Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec

Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec Pravděpodobnostn podobnostní charakteristiky diagnostických testů, Bayesův vzorec Prof.RND.Jana Zvárov rová,, DrSc. Motivace V medicíně má mnoho problémů pravěpodobnostní charakter prognóza diagnoza účinnost

Více

Diskrétní rozdělení Náhodná veličina má diskrétní rozdělení pravděpodobnosti, jestliže existuje seznam hodnot

Diskrétní rozdělení Náhodná veličina má diskrétní rozdělení pravděpodobnosti, jestliže existuje seznam hodnot Rozdělení Náhodná veličina Náhodná veličina je vyjádření výsledku náhodného pokusu číselnou hodnotou. Jde o reálnou funkci definovanou na množině. Rozdělení náhodné veličiny udává jakých hodnot a s jakou

Více

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina III Přednáška Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina Pravděpodobnost při existenci neslučitelných hypotéz Věta Mějme jev. Pokud H 1,H 2, : : :,H n tvoří úplnou skupinu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Poznámky k předmětu Aplikovaná statistika, 1. téma

Poznámky k předmětu Aplikovaná statistika, 1. téma Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.

Více

Motivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma

Motivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.

Více

Přednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky

Přednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky řednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky Statistika vychází z pravděpodobnosti odmíněná pravděpodobnost, Bayesůvvzorec Senzitivita, specificita, prediktivní hodnoty Frekventistická

Více

1 Zadání Zadání- Náboj 2010 Úloha1.Kvádrsdélkamihran1, a,2amápovrch54.najdětehodnotučísla a.

1 Zadání Zadání- Náboj 2010 Úloha1.Kvádrsdélkamihran1, a,2amápovrch54.najdětehodnotučísla a. Úloha1.Kvádrsdélkamihran1, a,2amápovrch54.najdětehodnotučísla a. Úloha2.Pomocíprávětříosmičekalibovolnýchzesymbolů+,,,/, vytvořtečíslo3.jedensymbol můžete použít i víckrát. Úloha3.Vejtekmělknihuzteoriemnožin,jejížlistybylyčíslovanépostupně0,1,2,3,...

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometire Gradovaný řetězec úloh Téma: obsahy a obvody mnohoúhelníků, grafy funkcí s absolutní

Více

Přednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky

Přednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky řednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky Statistika vychází z pravděpodobnosti odmíněná pravděpodobnost, Bayesův vzorec Senzitivita, specificita, prediktivní hodnoty Frekventistická

Více

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru.

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. Varianta I 1. Definujte pravděpodobnostní funkci. 2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. 3. Definujte Fisher-Snedecorovo rozdělení.

Více

Obsah. Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Pravděpodobnost. Pravděpodobnost. Děj pokus jev

Obsah. Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Pravděpodobnost. Pravděpodobnost. Děj pokus jev Obsah Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Definice pojmů Náhodný jev Pravděpodobnost Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi;-) roman.biskup(at)email.cz

Více

Cvičení 1. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 1. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 1 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Diskrétní rozdělení Vilém Vychodil KMI/PRAS, Přednáška 6 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 6) Diskrétní rozdělení Pravděpodobnost a

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla Ramseyovy věty Martin Mareš Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla na mé letošní přednášce z Kombinatoriky a grafů I Předpokládá, že čtenář se již seznámil se základní

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA Poslední aktualizace: 29. května 200 STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY Pro zdárné absolvování předmětu doporučuji věnovat pozornost zejména příkladům označenými hvězdičkou. Příklady

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Posloupnosti a jejich konvergence

Posloupnosti a jejich konvergence a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály.

Více

Informační a znalostní systémy

Informační a znalostní systémy Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných

Více

Vysoké učení technické v Brně. Fakulta strojního inženýrství. Matematika. Příručka pro přípravu k přijímacím zkouškám

Vysoké učení technické v Brně. Fakulta strojního inženýrství. Matematika. Příručka pro přípravu k přijímacím zkouškám Vysoké učení technické v Brně Fakulta strojního inženýrství Matematika Příručka pro přípravu k přijímacím zkouškám Doc. PaedDr. Dalibor Martišek, Ph.D. RNDr. Milana Faltusová 5 Autoři: Lektorovala: Doc.

Více

Seminář z matematiky. jednoletý volitelný předmět

Seminář z matematiky. jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Seminář z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je koncipován pro přípravu studentů k úspěšnému zvládnutí profilové (školní)

Více

Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka

Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus

Více

Příprava na vyučování oboru Člověk a jeho svět s cíli v oblasti OSV

Příprava na vyučování oboru Člověk a jeho svět s cíli v oblasti OSV Příprava na vyučování oboru Člověk a jeho svět s cíli v oblasti OSV Název učební jednotky (téma) Příbuzenské vztahy v rodině Stručná anotace učební jednotky Žáci zjišťují informace od spolužáků a zapisují

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor016 Vypracoval(a),

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Úvod do teorie pravděpodobnosti Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel.

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Základy teorie pravděpodobnosti Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Poznámka: Výsledek pokusu není předem znám (výsledek

Více

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení šesté aneb Podmíněná pravděpodobnost Statistika (KMI/PSTAT) 1 / 13 Pravděpodobnost náhodných jevů Po dnešní hodině byste měli být schopni: rozumět pojmu podmíněná pravděpodobnost

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

Vybrané kapitoly z pravděpodobnosti

Vybrané kapitoly z pravděpodobnosti Vybrané kapitoly z pravděpodobnosti Martina Litschmannová Ostrava 2011 VŠB TU Ostrava, Fakulta elektrotechniky a informatiky Úvod Mílí čtenáři, skripta Vybrané kapitoly z pravděpodobnosti a Úvod do statistiky

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC 22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se

Více

Pravděpodobnost a statistika pro SŠ

Pravděpodobnost a statistika pro SŠ Pravděpodobnost a statistika pro SŠ RNDr. Blanka Šedivá, Ph.D., katedra matematiky, Fakulta aplikovaných věd Západočeské univerzity v Plzni sediva@kma.zcu.cz 28. března 2012 Počátky teorie pravděpodobnosti

Více

Bayesovská klasifikace digitálních obrazů

Bayesovská klasifikace digitálních obrazů Výzkumný ústav geodetický, topografický a kartografický Bayesovská klasifikace digitálních obrazů Výzkumná zpráva č. 1168/2010 Lubomír Soukup prosinec 2010 1 Úvod V průběhu nedlouhého historického vývoje

Více

Rozhodovací procesy v ŽP HRY A SIMULAČNÍ MODELY

Rozhodovací procesy v ŽP HRY A SIMULAČNÍ MODELY Rozhodovací procesy v ŽP HRY A SIMULAČNÍ MODELY Teorie her proč využívat hry? Hry a rozhodování varianty her cíle a vítězné strategie (simulační) Modely Operační hra WRENCH Cv. Katedra hydromeliorací a

Více

9. Úvod do teorie PDR

9. Úvod do teorie PDR 9. Úvod do teorie PDR A. Základní poznatky o soustavách ODR1 Diferenciální rovnici nazveme parciální, jestliže neznámá funkce závisí na dvou či více proměnných (příslušná rovnice tedy obsahuje parciální

Více

ZÁKLADY TEORIE PRAVDĚPODOBNOSTI

ZÁKLADY TEORIE PRAVDĚPODOBNOSTI ZÁKLDY TEORIE RVDĚODOBNOSTI 1 Vytvořeno s podporou projektu růřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND.

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND. Pravděpodobnostn podobnostní charateristiy diagnosticých testů, Bayesův vzorec Prof.RND RND.Jana Zvárov rová,, DrSc. Náhodný pous, náhodný n jev Náhodný pous: výslede není jednoznačně určen podmínami,

Více

1)! 12 a) 14 a) K = { 1 }; b) K = { 6 }; c) K ={ 2 }; d) K ={ 3 }; e) K ={ 4 }; f) K = 0 ! ; N; 17 a) K =N; b) K ={ 2; 3;

1)! 12 a) 14 a) K = { 1 }; b) K = { 6 }; c) K ={ 2 }; d) K ={ 3 }; e) K ={ 4 }; f) K = 0 ! ; N; 17 a) K =N; b) K ={ 2; 3; Kombinatorika Peníze, nebo život? Kombinatorická pravidla) 7 a) NE b) ANO c) ANO d) NE e) ANO f) ANO [vínová zlatý potisk] [vínová stříbrný potisk] [vínová bílý potisk] [fialová zlatý potisk] [fialová

Více

3 PRAVDĚPODOBNOST. Základní vztahy: Pravděpodobnost negace jevu A: P A 1 P A

3 PRAVDĚPODOBNOST. Základní vztahy: Pravděpodobnost negace jevu A: P A 1 P A 3 RAVDĚODOBNOST Základní vztahy: ravděpodobnost negace jevu A: A 1 A ravděpodobnost sjednocení jevů A,B: A B A B A B - pro disjunktní (neslučitelné) jevy A, B: A B A B ravděpodobnost průniku jevů A, B:

Více

Mendelova zemědělská a lesnická univerzita v Brně Institut celoživotního vzdělávání Fakulta regionálního rozvoje a mezinárodních studií

Mendelova zemědělská a lesnická univerzita v Brně Institut celoživotního vzdělávání Fakulta regionálního rozvoje a mezinárodních studií Mendelova zemědělská a lesnická univerzita v Brně Institut celoživotního vzdělávání Fakulta regionálního rozvoje a mezinárodních studií STATISTIKA pro TZP Modul : Pravděpodobnost a náhodné veličiny Prof

Více

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23 Obsah Předmluva... 15 I. Objektivní pravděpodobnosti 1. Pravděpodobnost a relativní četnosti... 23 1.1 Úvod... 23 1.2 Základy frekvenční interpretace... 24 1.2.1 Pravděpodobnost a hromadné jevy... 24 1.2.2

Více

1. MATEMATICKÉ MODELY ROZHODOVACÍCH SITUACÍ

1. MATEMATICKÉ MODELY ROZHODOVACÍCH SITUACÍ Markl: Matematické modely rozhodovacích situací /nhry.doc/ Strana. MATEMATICKÉ MODELY ROZHODOVACÍCH SITUACÍ Popis obecné rozhodovací situace (rozhodovacího procesu) vyžaduje zadání následujících údajů:.

Více

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana.

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana. Trosečníci Adam, Barry, Code a Dan zapoměli po čase kalendář. Začali se dohadovat, který den v týdnu vlastně je. Každý z nich řekl svůj názor: A: Dnes je úterý nebo zítra je neděle B: Dnes není úterý nebo

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška první Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

Diskrétní matematika. DiM /01, zimní semestr 2018/2019 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení. STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA I

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA I PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA I RNDr. Tomáš Mrkvička, Ph.D. 16. března 2009 Literatura [1] J. Anděl: Statistické metody, Matfyzpress, Praha 1998 [2] V. Dupač, M. Hušková: Pravděpodobnost a matematická

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více