Okruhy a doporučená literatura písemné přijímací zkoušky - obor Přístroje a metody pro biomedicínu specifická část testu

Rozměr: px
Začít zobrazení ze stránky:

Download "Okruhy a doporučená literatura písemné přijímací zkoušky - obor Přístroje a metody pro biomedicínu specifická část testu"

Transkript

1 Okruhy oporučená litertur písemné přijímí zkoušky - oor Přístroje metoy pro iomeiínu speiiká část testu Mtemtik v rozshu klářského stui ooru Biomeiínský tehnik (BMT) n FBMI: A Diereniální počet unkí jené proměnné (posloupnosti, průěh unke, geometriká i yzikální interprete erive, iereniál, Tylorov ř). Posloupnosti, vlstnosti posloupností, limit posloupnosti.. Reálné unke jené reálné proměnné, vlstnosti, opere s unkemi, složená inverzní unke, limit spojitost unke, vlstnosti unkí spojitýh n uzvřeném intervlu, svislé šikmé symptoty gru unke.. Derive unke, erive složené unke, erive inverzní unke, L'Hospitlovo prvilo, erive vyššíh řáů, lokální gloální etrémy unke, průěh unke, 4. Diereniál jeho plike, Tylorův polynom. B Integrální počet unkí jené proměnné, plike určitého integrálu (geometriké yzikální plike, nevlstní integrál, ODR), Lpleov trnsorme.. Primitivní unke - neurčitý integrál, vlstnosti, metoy výpočtu, integrování rionálníh unkí rozkl n priální zlomky, integrování goniometrikýh unkí.. Určitý (Riemnnův) integrál, Newton Leinitzův vzore, plike, nevlstní integrál vlivem unke, vlivem meze.. Oyčejné iereniální rovnie (ODR). řáu, ormule úloh pro ODR, řešení ODR. řáu. metoou sepre proměnnýh, řešení lineární ODR metoou vrie konstnty. 4. Lpleov trnsorme zpětná Lpleov trnsorme, užití Lpleovy trnsorme pro řešení počáteční úlohy pro ODR n-tého řáu s konstntními koeiienty. Litertur: J. Tkle: Diereniální integrální počet unkí jené proměnné, skriptum ČVUT, 004 J. Tkle: Diereniální rovnie (Lpleov trnsorme), skriptum ČVUT, 005 J. Neustup: Mtemtik I, skriptum ČVUT, 006 S. Krčmr,. Mráz, J. Neustup: Sírk příklů z Mtemtiky I, skriptum ČVUT, 0 Vzorové příkl testy n stránkáh přemětů Diereniální počet lineární lger, Integrální počet, Mtemtik I, Mtemtik II, (www stránky):

2 Stuenti uou mít k ispozii tulky vzorů tk, jko u zkoušky z přemětu Integrální počet neo Mtemtik II, přípně nápověu uveenou u jenotlivého testu. Diereniální počet D. Tečn ke gru unke v oě A[,] má rovnii: ( ) e y y + y y + D. Intervly monotonie unke 5 ( ) 5 + jsou: je rostouí n,, 0, je klesjíí n,0,, je rostouí n,0,, ( ( ) ) je klesjíí n,, 0, ( ) je rostouí n,,, je klesjíí n, je rostouí n, ( ) je klesjíí n,,, D. Derive unke ( ) + je rovn: 5 + ( ) ( ) 5 + ( ) ( ) / / + ( ) + ( ) / / D4. Šikmou symptotou unke ( ) je přímk s rovnií: y + y + y + y + D5. Přiližná honot unke ( ) v oě 9. vypočtená pomoí iereniálu, je rovn: Nápově: ( ) ( 0) + ( 0)( 0) 7 (9) (9) 5 (9) 5 (9) D6. Funke () je lihou unkí právě tehy, kyž D, pltí ( ) ( ). D, pltí ( ) ( ). D, pltí ( ) ( ) 0. D, pltí ( ) ( ).

3 D7. Z přepoklu, že unke je spojitá v uzvřeném intervlu I, pltí: uvnitř intervlu I eistuje o, ve kterém je ()0. unke nývá v intervlu I svého minim i mim. má unke v intervlu I právě jeen kořen. má unke v intervlu I inlení o. D. Funke má v oě erivi rovnu A, právě kyž: ( + h) ( ) ( + h) ( ) lim A lim A h 0 h h 0 h lim ( ) lim ( ) A lim ( ) lim ( ) A D9. Má-li unke v oě klnou erivi, pk: je unke v oě klesjíí. je unke v oě rostouí. je unke v oě konstntní. je unke v oě nerostouí. D0. Je-li spojitá unke v oě má-li v oě lokální etrém, potom: ( ) 0. ( ) 0, neo v oě neeistuje. ( ) 0. ( ) 0, neo v oě neeistuje. Správné opověí:,,, 4, 5, 6, 7,, 9, 0 Opověná oso: RNDr. Ev Feuerstein, Ph.D., ev.euerstein@mi.vut.z (n tento emil lze směřovt všehny otzy týkjíí se prolemtiky speiikého ílčího okruhu pro oor Přístroje metoy pro iomeiínu (PMB) jko okruhu pro přijímí zkoušky (v tomto přípě mtemtik), neo v přípě nejsností u vzorového testu).

4 Integrální počet I. Integrál ( ) je roven ln ( + + C ln + + C ( ) rtg + C 4rtg + + C I. Určitý integrál ( + ) e je roven 0 e ( ) ( e ) e ( e ) ( ) I. Nevlstní integrál + 4 je roven ln ln 6 I4. Lpleovým orzem řešení úlohy y + 4y, y(0) 0, y (0) je unke 4 + p + p + p 4 + p I5. Ojem těles, které vznikne rotí křivky ( ) os kolem osy v mezíh o 0 o / je roven: 4 0 I6. Jsou-li unke g spojité n intervlu I, potom n intervlu I pltí. ( ) ( ) ( ) ( ) ( ) + ( ) g g g ( ) ( ) ( ) ( ) ( ) ( ) ( g ) ( ) ( g ) ( ) ( g ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) g g g g g g

5 I7. Integrál eistuje n uveenýh intervleh je roven: + + ln ln + C, (,,,,, ) ( ) ( ) ln ln + C, (,,,,, ) ( ) ( ) ln + ln + + C, (, ),(, ),(, ) ln + ln + + C, (, ),(, ),(, ) I. Je-li unke () integrovtelná n intervlu, jsou-li unke F G oě primitivními unkemi k unki n,, potom pltí: F ( ) G ( ) F ( ) G ( ) + C F ( ) G ( ) C F ( ) G ( ) C I9. Funke ( ) sin os je n R primitivní unkí k unki os sin os sin p + I0. Je-li Lpleův orz unke () t roven p. + p p. ( p + p p+. ( p +., potom Lpleův orz unke t () t je: Správné opověi,,, 4, 5, 6, 7,, 9, 0 Opověná oso: RNDr. Ev Feuerstein, Ph.D., ev.euerstein@mi.vut.z (n tento emil lze směřovt všehny otzy týkjíí se prolemtiky speiikého ílčího okruhu pro oor Přístroje metoy pro iomeiínu (PMB) jko okruhu pro přijímí zkoušky (v tomto přípě mtemtik), neo v přípě nejsností u vzorového testu).

Matematika v rozsahu bakalářského studia oboru Biomedicínský technik (BMT) na FBMI:

Matematika v rozsahu bakalářského studia oboru Biomedicínský technik (BMT) na FBMI: Temtiké okruhy, oporučená litertur vzorový test pro písemné přijímí zkoušky ooru Přístroje metoy pro iomeiínu speiiká část ooru (5 otázek z mtemtiky 5 otázek z iomeiíny) Mtemtik v rozshu klářského stui

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

Slovní úlohy na sjednocení dvou množin s neprázdným průnikem. II b III

Slovní úlohy na sjednocení dvou množin s neprázdným průnikem. II b III Slovní úlohy n sjenoení vou množin s neprázným průnikem Vennův igrm ( John Venn 1834 (Hull, Anglie) 1923 (Cmrige, Anglie) ) A V Životopis John Venn: http://www-groups.s.st-n..uk/ history/mthemtiins/venn.html

Více

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika Přijímcí řízení kemický rok 0/0 Bc. stuium Kompletní znění testových otázek mtemtik Koš Znění otázky Opověď ) Opověď ) Opověď c) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Integrální počet - III. část (určitý vlastní integrál)

Integrální počet - III. část (určitý vlastní integrál) Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)

Více

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které číslo oplníte

Více

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE ZÁKLADY MATEMATIKY 2. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE I. P íprvní úlohy. V této sérii pot ebujete znlost výpo t následujících úloh - otestujte si ji:. Vypo ítejte neur ité integrály: ) (x 2 x + ) 2 dx

Více

Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď 1. 1 Které číslo doplníte místo otazníku? ?

Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď 1. 1 Které číslo doplníte místo otazníku? ? Přijímí řízení kemiký rok 07/08 B. stuium Kompletní znění testovýh otázek mtemtik Koš Znění otázk Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 6 6? 6 86 8. Které

Více

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců Stvení sttik, 1.ročník klářského studi Tém 9 Těžiště Těžiště rovinných čr Těžiště jednoduchých rovinných orců Těžiště složených rovinných orců Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerit

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34. Vzdělávcí mteriál vytvořený v projektu OP VK Název školy: Gymnázium, Zářeh, náměstí Osvoození 20 Číslo projektu: Název projektu: Číslo název klíčové ktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro

Více

Integrální počet - II. část (určitý integrál a jeho aplikace)

Integrální počet - II. část (určitý integrál a jeho aplikace) Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)

Více

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název modulu: Zákldy mtemtiky Zkrtk: ZM Počet kreditů: Semestr: Z/L Mentor: Petr Dolnský Tutor: Petr Dolnský I OBSAH BALÍČKU STUDIJNÍCH OPOR: ) Skriptum:

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 16. ČERVNA 2012 Název zpracovaného celku: NOSNÍKY NOSNÍKY Nosníky jsou zpravidla přímá tělesa (pruty) uloţená na podporách nebo

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Petr Schreierová, Ph.D. Ostrv Ing. Petr Schreierová, Ph.D. Vsoká škol áňská Technická univerzit

Více

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA 1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA V této kpitole se ozvíte: co rozumíme lgebrickým výrzem; jk jsou efinovány zlomky jké záklní operce s nimi prováíme; jk je

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů 3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)

Více

matematika vás má it naupravidl

matematika vás má it naupravidl VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

POČÍTAČOVÁ PODPORA ZPRACOVÁNÍ TÝMOVÝCH PROJEKTŮ - MATHCAD

POČÍTAČOVÁ PODPORA ZPRACOVÁNÍ TÝMOVÝCH PROJEKTŮ - MATHCAD Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní POČÍTAČOVÁ PODPORA ZPRACOVÁNÍ TÝMOVÝCH PROJEKTŮ - MATHCAD Mathcad návody do cvičení Ing. Milada Hlaváčková, Ph.D. Ostrava 2011 Tyto studijní

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

FUNKCE SINUS A KOSINUS

FUNKCE SINUS A KOSINUS 203 FUNKCE SINUS A KOSINUS opis způsou použití: teorie k smostudiu (i- lerning) pro 3. ročník střední škol tehnikého změření, teorie ke konzultím dálkového studi Vprovl: Ivn Klozová Dtum vprování: 2. prosine

Více

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice Střední škol ohodu, řemesel, služe Zákldní škol, Ústí nd Lem, příspěvková orgnize Vzděláví středisko Trmie MATURITNÍ TÉMATA Předmět: Mtemtik Oor vzdělání: Ekonomik podnikání Školní rok: 0/06 Tříd: EKP

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

26 l Základní informace. 27 l RDLTS. 28 l DRUE. 29 l DRUF. 30 l DRUL. 31 l RDST

26 l Základní informace. 27 l RDLTS. 28 l DRUE. 29 l DRUF. 30 l DRUL. 31 l RDST 26 l Záklní informc 27 l RDLTS 28 l DRUE 29 l DRUF 30 l DRUL 31 l RDST Záklní informc 26 Ztížitlnost uzlového ou: Pro ztížitlnost uzlového (nulového) ou zpojní o hvězy j tř vzít o úvhy náslující skutčnosti,

Více

Šroubovací vázací body. Přehled

Šroubovací vázací body. Přehled Šrouoví vází oy Přhl 11 Šrouoví vází oy Šrouoví vází oy PLAW pwg wir proilit lph PLBW pwg wir proilit t PLAW 0,3 M8 x 1,25 300 PLAW 0,63 M10 x 1,5 630 PLAW 1 M12 x 1,75 1.000 PLAW 1,5 M16 x 2 1.500 PLAW

Více

Kótování na strojnických výkresech 1.část

Kótování na strojnických výkresech 1.část Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických

Více

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál) Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh

Více

Diferenciální počet. Spojitost funkce

Diferenciální počet. Spojitost funkce Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti

Více

Á Á Ě ÉŘ É Á Ú Á Í Ý Á Í Í Í Í Í Ý é řá á é á é ý ž é ů ř ů é ý é ř ý ý á ů á ř ř š ý á á á ř ý ř á ý ý á á á ř ý ř á ý ý á á ý áž ý ř ý ř á ý ý á á á ý ř ý ř á ý á á á ý Ť á ý ý ý á á á áž á ý ř á ý ý

Více

Vnit ní síly ve 2D - p íklad 2

Vnit ní síly ve 2D - p íklad 2 Vnit ní síly ve D - p íkld Orázek 1: Zt ºoví shém. Úkol: Ur ete nlytiké pr hy vnit níh sil n konstruki vykreslete je. e²ení: Pro výpo et rekí je vhodné si spojité ztíºení nhrdit odpovídjíím náhrdním emenem.

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

Á á úř š Ě ř ň á Š Š ú Áě Ú Í ý ú ěá á ě úř ř ř š ý é ě ú á á řá ě ě š ř ů á á ú ř ž á Žá á ě Ť é á ě á Ž Š Ú ú č š é É á ě á á áš č ě š ú ú ř ř á ú á Í č á ú ř Í ě ý é ě ě úč Í ť é ý ý ž á ě ý ý ť ý ů

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

MATEMATIKA I - vybrané úlohy ze zkoušek v letech

MATEMATIKA I - vybrané úlohy ze zkoušek v letech MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

6. Určitý integrál a jeho výpočet, aplikace

6. Určitý integrál a jeho výpočet, aplikace Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,

Více

Přijímací řízení akademický rok 2015/2016 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2015/2016 Bc. studium Kompletní znění testových otázek matematika Přijímcí řízení kemický rok 0/06 Bc. stuium Kompletní znění testových otázek mtemtik Koš Znění otázk Opověď ) Opověď ) Opověď c) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 7 6 8 6?. Které

Více

Studium termoelektronové emise:

Studium termoelektronové emise: Truhlář Michl 2. 9. 26 Lbortorní práce č.11 Úloh č. II Studium termoelektronové emise: Úkol: 1) Změřte výstupní práci w wolfrmu pomocí Richrdsonovy-Dushmnovy přímky. 2) Vypočítejte pro použitou diodu intenzitu

Více

Ť Ťě ř Ť á á ěř č Č č ě ě ř ů č Ů á ř ř ž ú ů ř á ř á Ž Č Č á Ě č á á ů ě Č á Úř á ěř á á á ř ě á č ě úř č á čá á á É Ť á ř Č ž ěř č ů ř č ž č ěř č ž č ěř á á č ž č ěř ěř ěř č ž č ěř ě ž á č ž č ů č ěř

Více

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty Fyzikální praktikum IV. Měření ryhlosti zvuku a Poissonovy konstanty - verze Úloha č. 9 Měření ryhlosti zvuku a Poissonovy konstanty 1) Pomůky: Kundtova trubie, mikrofon se sondou, milivoltmetr, měřítko,

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 0 8 3 4 U k á z k a k n i h

Více

1. LINEÁRNÍ APLIKACE OPERAČNÍCH ZESILOVAČŮ

1. LINEÁRNÍ APLIKACE OPERAČNÍCH ZESILOVAČŮ 1. LNEÁNÍ APLKACE OPEAČNÍCH ZESLOVAČŮ 1.1 ÚVOD Cílem laboratorní úlohy je seznámit se se základními vlastnostmi a zapojeními operačních zesilovačů. Pro získání teoretických znalostí k úloze je možno doporučit

Více

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

Hlavní body. Úvod do nauky o kmitech Harmonické kmity Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice

Více

Obsah na dnes Derivácia funkcie

Obsah na dnes Derivácia funkcie Johnnes Kepler Dec 2, 57- Nov 5, 63 Mtemtik I Prednášjúci: prof. RNDr. Igor Podlný, DrSc. http://www.tke.sk/podln/ # Osh n dnes Deriváci fnkcie 74 KAPITOLA 3. FUNKCE JEDNÉ PROMĚNNÉ Určitý integrál 8. Vlstnosti

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvšování kvlit výk tehnikýh oorů Klíčová ktivit IV Inove kvlitnění výk směřjíí k rovoji mtemtiké grmotnosti žáků středníh škol Tém IV Algeriké výr výr s moninmi odmoninmi Kpitol Vhodný společný násoek

Více

10 je 0,1; nebo taky, že 256

10 je 0,1; nebo taky, že 256 LIMITY POSLOUPNOSTÍ N Á V O D Á V O D : - - Co to je Posloupnost je parta očíslovaných čísel. Trabl je v tom, že aby to byla posloupnost, musí těch čísel být nekonečně mnoho. Očíslovaná čísla, to zavání

Více

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312 .. Vzálenost bou o přímk II Přepokl: Pegogiká poznámk: Průběh hoin honě závisí n tom, jk oolní jsou stuenti v oszování o vzorů, které je nejtěžší částí hoin. Dlším problémem pk mohou být rovnie s bsolutní

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

Ur itý integrál. Úvod. Denice ur itého integrálu

Ur itý integrál. Úvod. Denice ur itého integrálu V tomto lánku se budeme v novt ur itému integrálu, který dné funkci p i zuje íslo. My²lenk integrování pochází z geometrických poºdvk - zji² ování povrch, objem délek geometrických útvr. To znmená, ºe

Více

Seriál XXVII.III Aplikační

Seriál XXVII.III Aplikační Seriál XXVII.III Aplikční Seriál: Aplikční Tento díl seriálu bude tk trochu plikční. Minule jsme si pověděli úvod k vričním metodám ve fyzice, nyní bychom rádi nbyté znlosti plikovli n tři speciální přípdy.

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvšování kvlit výuk tehnikýh oorů Klíčová ktivit IV. Inove zkvlitnění výuk směřujíí k rozvoji mtemtiké grmotnosti žáků střeníh škol Tém IV.. Algeriké výrz, výrz s moninmi omoninmi Kitol Honot výrzu RNDr.

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 7.5.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: - Hodnocení: Mikrovlny Abstrakt V úloze je studováno šíření vln volným

Více

Mechanismy. Vazby členů v mechanismech (v rovině):

Mechanismy. Vazby členů v mechanismech (v rovině): Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 7.5.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: - Hodnocení: Mikrovlny Abstrakt V úloze je studováno šíření vln volným

Více

7. Integrální počet Primitivní funkce, Neurčitý integrál

7. Integrální počet Primitivní funkce, Neurčitý integrál 7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Matematická analýza KMA/MA2I 3. p edná²ka Primitivní funkce

Matematická analýza KMA/MA2I 3. p edná²ka Primitivní funkce Matematická analýza KMA/MAI 3. p edná²ka Primitivní funkce Denice a základní vlastnosti P íklad Uvaºujme následující úlohu: Najd te funkci F : R R takovou, ºe F () R. Kdo zná vzorce pro výpo et derivací

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

6 Extrémy funkcí dvou proměnných

6 Extrémy funkcí dvou proměnných Obsah 6 Extrémy funkcí dvou proměnných 2 6.1 Lokálníextrémy..... 2 6.2 Vázanélokálníextrémy.... 4 6.2.1 Metodyhledánívázanýchlokálníchextrémů..... 5 6.2.2 Přímédosazení..... 5 6.2.3 Lagrangeovametoda.....

Více

MUDr. Hana Dvořáková Ing. Ladislav Pyskatý - tajemník

MUDr. Hana Dvořáková Ing. Ladislav Pyskatý - tajemník 1 Zápis z jednání Rdy měst v Rychnově nd Kněžnou ze dne 21.9.2015 Přítomni: Mgr. Jn Drejslová Mgr. Rdek Jehličk JUDr. Miln Novák Ing. Ivn Skřítecká Mgr. Krel Štrégl Hn Plchá - zpisovtelk Omluven: Ing.

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

PARAMETRICKÁ STUDIE PRŮBĚHU RYCHLOSTI PROUDĚNÍ V PULTOVÉ DVOUPLÁŠŤOVÉ PROVĚTRÁVANÉ STŘEŠE NA VSTUPNÍ RYCHLOSTI

PARAMETRICKÁ STUDIE PRŮBĚHU RYCHLOSTI PROUDĚNÍ V PULTOVÉ DVOUPLÁŠŤOVÉ PROVĚTRÁVANÉ STŘEŠE NA VSTUPNÍ RYCHLOSTI PARAMETRICKÁ STUDIE PRŮBĚHU RYCHLOSTI PROUDĚNÍ V PULTOVÉ DVOUPLÁŠŤOVÉ PROVĚTRÁVANÉ STŘEŠE NA VSTUPNÍ RYCHLOSTI TOMÁŠ BARTOŠ, JAN PĚNČÍK Vysoké učení technické v Brně, Fakulta stavební, Veveří 331/95, 602

Více

Normalizace fyzikálních veličin pro číslicové zpracování

Normalizace fyzikálních veličin pro číslicové zpracování Noralzace fyzkálních velčn pro číslcové zpracování Vypracoval: Petr Kaaník Aktualzace: 15. října 2003 Kažý realzovaný říící systé usel projít vě hlavní stá. Nejprve je to vlastní návrh. Na záklaě ostupných

Více

Í Á Í Í Á Ě Ý Ó Ů Ů Í Ě Á Ř š Í ů Ž ď ý ů Ž á č Č ů ř ř Ú ý ř ý á ř č Í Á Í Í Ř š Í ů á ý ó ů č á á ý ý ů ý ř á á ů š ý á č ď á ř á ý ů á ř ď ž ý ý č š á á ď ý č á ů š ř ů Í ř š Í á Í á ý Ó ů á ó ů ř Š

Více

ř ý ý š Ě Á š Á š š š ž é ř ů é ý é š ý ý š ý š é ž é ř ž ř ý ž ý š ř ý ř ý ř ř ž ů ř é ň ů ý é ň ř ř ř ž ý é Ž Í ť ú ř é é Ď Ž é Š ř š Š ý ž ý Ě ž é Š ř š Š ý é ř ý š ý ů é ř é ž é š ř š Š ý ž é ř ž ý

Více

MECHANIKA TUHÉ TĚLESO

MECHANIKA TUHÉ TĚLESO Projekt Efektivní Učení Reformou oblastí gymnaziálního vzělávání je spolufinancován Evropským sociálním fonem a státním rozpočtem České republiky. Implementace ŠVP MECHANIKA TUHÉ TĚLESO Učivo - Tuhé těleso

Více

Ě Á Ě Í Ý ÚŘ Ž Í ÍÚŘ á ů ý ÍÍ ů š ř š á á ý ó ů ó š ř ů š š ý á ó ý ů á š ř ů ď Ř Í ÁŠ ý úř Ž ř á ď á á ř ř š ý á á ý á ů š ř ů á á ř š ý á ň á řá š ř ů á á řá ů á ř é ú řá é š ř ů á á ý á ž é ý éč Č á

Více

Nevlastní integrál. Úvod. Dosud jsme se zabývali Riemannovým integrálem, který je denován pro ohrani enou funkci

Nevlastní integrál. Úvod. Dosud jsme se zabývali Riemannovým integrálem, který je denován pro ohrani enou funkci Nevlsní inegrál Dosud jsme se zbývli Riemnnovým inegrálem, kerý je denován pro ohrni enou funki f() n uzv eném inervlu, b. Teno ur iý inegrál jsme zpisovli ve vru V omo lánku pon kud roz²í íme pojem Riemnnov

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď 1. 1 Které číslo doplníte místo otazníku: c

Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď 1. 1 Které číslo doplníte místo otazníku: c řijímaí řízení akaemiký rok 06/07 B. stuium Kompletní znění testovýh otázek matematika Koš Znění otázk Opověď a) Opověď ) Opověď ) Opověď ) Správná. Které číslo oplníte místo otazníku: 7 5 8 6 9 7?. Které

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

TEORETICKÝ VÝKRES LODNÍHO TĚLESA

TEORETICKÝ VÝKRES LODNÍHO TĚLESA TEORETICKÝ VÝKRES LODNÍHO TĚLESA BOKORYS (neboli NÁRYS) je jeden ze základních pohledů, ze kterého poznáváme tvar kýlu, zádě, zakřivení paluby, atd. Zobrazuje v osové rovině obrys plavidla. Uvnitř obrysu

Více

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Mgr. Věra Jeřábková, Mgr. Marie Chadimová Tematická oblast Matematika, Mnohoúhelníky, pokračování Ročník 2. Datum

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU. Ing. Aleš Hrdlička

VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU. Ing. Aleš Hrdlička VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU Ing. Aleš Hrdlička Katedra technické kybernetiky a vojenké robotiky Vojenká akademie v Brně E-mail: hrdlicka@c.vabo.cz Úvod Tento článek popiuje jednoduchou

Více

ě é Í ě ý ěř ý ěř ú ě é ř ěř ú é š ř ý ů ě ě ů ř ě é ú ž ú ú ž ě ý Ž ý ů ž š ú ž ě ý Ž ý ů ě ě ú ů ú ž ě ý ř ž ž ů ř ř ě é ú é ý ú ú é é š ě ř Ú ě ě ř š ě ú ě é ě é ě é ý ě ě ř ž é ř š ě ž ň Ž Ž š ě ě

Více

ř úř úř ř Č ř Ž ř ř Č ú ú ú ú Ž ř Č ř ó ř úř ř ř ř ř ř ř ú ř ř ú ř ř ř ř ú ú ř Č ř ř ř Č ú ř ú ř ú ú ú ú ř ú ř ř ř ř ř ó ř ř ř ř Ř ř ř úř ř ř ř ř ř Ž Ý Š Š ř ř ř ř ú ř ř ř ř Ý ř ř ř ú Ú Š ř É Ú ú ť ř úř

Více

Ú ř Č ř ů ř ř ů ř ř ů ú ú ú ř ú ř ř ů Č Ž ř ř ů ř ř úř ř ř ů ů ú ú ř ř ú ú ú ř ů ř ř ď ů ú ů ú ú ú ř úř ů ř ů ř ů ř Č ř ř ř ř ř ř ř ů ř ř ř ř ú ř ř ř ř Č ř ů ř ř ř ř ř ř ř ů ť ů ř úř ř ř ů ř ř ř Ž ř ř

Více

Ě Ř Ž ÁŘ Ě Ň Á Í Á ÁŽ ŮŽ ů Ž Ž ůž Ž ů ů Ž Ž Ž Ť Ž Ž Ž Ž ů ď ů ť ď ď Í Ž Ž Č ú ů Ž ď ú Ž Í ů Ž ú Ž Ž ů ů ů Ž ů Ž ů ť Ž Ž Ž Ž Ů ň ů ů Í Ž Ž ů ůž ť ÁŽ ť Í Ě Ř Č ů Ž Ž ů Ž ú Ž Í ÍÍ Ž Ž Ž Ž Ž Ž ů Ž Ž Ž Í Í

Více

Kód uchazeče ID:... Varianta: 15

Kód uchazeče ID:... Varianta: 15 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 15 1. V únoru byla zaměstnancům zvýšena mzda o 15 % lednové mzdy. Následně

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

PROUDĚNÍ V SEPARÁTORU S CYLINDRICKOU GEOMETRIÍ

PROUDĚNÍ V SEPARÁTORU S CYLINDRICKOU GEOMETRIÍ PROUDĚNÍ V SEPARÁTORU S CYLINDRICKOU GEOMETRIÍ Autoři: Ing. Zdeněk CHÁRA, CSc., Ústav pro hydrodynamiku AV ČR, v. v. i., e-mail: chara@ih.cas.cz Ing. Bohuš KYSELA, Ph.D., Ústav pro hydrodynamiku AV ČR,

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26 Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz

Více

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_9_ČT_1.09_ grafická minimalizace Střední odborná škola a Střední odborné učiliště,

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více