10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí
|
|
- Radka Matějková
- před 8 lety
- Počet zobrazení:
Transkript
1 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou dělení D = {x j } n j=0 rozumíme číslo ν(d) = mx{x j x j 1 ; j = 1,...,n}. Řekneme, že dělení D intervlu [,b] je zjemněním dělení D intervlu [,b], jestliže kždý dělící bod D je i dělícím bodem D. Definice. Necht f je omezená funkce definovná n intervlu [,b] D = {x j } n j=0 je dělení [,b]. Oznčme n S(f,D) = M j (x j x j 1 ), kde M j = sup{f(x);x [x j 1,x j ]}, S(f,D) = j=1 n m j (x j x j 1 ), kde m j = inf{f(x);x [x j 1,x j ]}, j=1 Definice. f(x) dx = inf{s(f, D); D je dělením intervlu [, b]}, f(x) dx = sup{s(f, D); D je dělením intervlu [, b]}. Řekneme, že omezená funkce f n intervlu [,b], < b, má Riemnnův integrál od do b, pokud f(x)dx = f(x)dx. Hodnot integrálu f od do b je rovn této společné hodnotě. Znčíme ji f(x)dx. Pokud > b, definujeme f(x)dx = f(x)dx, v přípdě, že = b, definujeme b b f(x)dx = 0. Oznčení. Množinu všech funkcí f : [,b] R, které mjí Riemnnův integrál od do b, znčíme R([,b]). Lemm Necht f je omezená funkce n intervlu [,b]. (i) Necht D, D jsou dělení [,b] D zjemňuje D. Pk pltí S(f,D) S(f,D ) S(f,D ) S(f,D) (ii) Necht D 1, D 2 jsou dělení intervlu [,b]. Pk pltí S(f,D 1 ) S(f,D 2 ).
2 (iii) Pltí f(x)dx f(x)dx. Důsledek Necht f je omezená n [,b], D 1 D 2 jsou dělení intervlu [,b]. Potom m(b ) S(f,D 1 ) f(x)dx kde m = inf{f(x); x [,b]} M = sup{f(x); x [,b]}. f(x)dx S(f,D 2 ) M(b ), Vět Necht f je omezená n [,b]. Pk pro kždé ε > 0 existuje δ > 0 tkové, že pro kždé dělení D intervlu [, b] splňující ν(d) < δ pltí: f(x)dx S(f,D) f(x)dx S(f,D) f(x)dx ε, f(x)dx + ε. Důsledek Necht f je omezená n [,b] {D n } n=1 je posloupnost dělení intervlu [,b] splňující lim n ν(d n ) = 0. Potom f(x)dx = lim n + S(f,D n), f(x)dx = lim n + S(f,D n). Vět 10.5 (kritérium existence Riemnnov integrálu). Necht f je omezená funkce n intervlu [,b]. Pk f R([,b]), právě když ε R,ε > 0 D, D je dělení intervlu [,b] : S(f,D) S(f,D) < ε. Definice. Řekneme, že funkce f je stejnoměrně spojitá n intervlu I, jestliže pltí ε > 0 δ > 0 x I y I : ( x y < δ f(x) f(y) < ε). Vět Necht funkce f je spojitá n omezeném uzvřeném intervlu [,b]. Pk f je stejnoměrně spojitá n [,b]. Vět Necht funkce f je spojitá n omezeném uzvřeném intervlu [,b]. Pk f je riemnnovsky integrovtelná n [,b]. Vět Necht funkce f je monotónní n omezeném uzvřeném intervlu [,b], < b. Pk f je riemnnovsky integrovtelná n [,b]. Vět 10.9 (vlstnosti Riemnnov integrálu). () Necht f,g R([,b]) α R. Potom f + g R([,b]), αf R([,b]) pltí (f + g) = f + g, αf = α (b) Necht f,g R([,b]) f g. Pk f g.
3 (c) Necht < b < c jsou reálná čísl. Pk pltí f R([,c]) f R([,b]) & f R([b,c]); je-li f R([,c]), pk c f = f + c (d) Necht f R([,b]). Pk f R([,b]) f f. Vět Necht J je nedegenerovný intervl f je funkce definovná n J splňující f R([α,β]) pro kždé α,β J. Necht c je libovolný pevně zvolený bod z J. Definujme n J funkci Potom pltí (i) F je spojitá n J, F(x) = c b f(t)dt. (ii) je-li x 0 bod spojitosti funkce f, pk F (x 0 ) = f(x 0 ). Důsledek (i) Jestliže je f spojitá n intervlu (,b), pk má n (,b) primitivní funkci. (ii) Necht f je spojitá n intervlu [,b],,b R F je funkce primitivní k f n (,b). Potom existují vlstní limity lim x + F(x), lim x b F(x) pltí f(t)dt = lim F(x) lim F(x). x b x + Vět Necht,b R, < b, f je funkce definovná n [,b]. Pk následující dvě tvrzení jsou ekvivlentní: (i) f R([,b]), (ii) existuje I R tkové, že pro kždé ε R, ε > 0, existuje δ R, δ > 0, splňující: je-li D = {x i } n i=0 dělení intervlu [,b], ν(d) < δ, t i [x i 1,x i ], i = 1,...,n, pk n f(t i )(x i x i 1 ) I < ε Newtonův integrál i=1 Definice. Řekneme, že Newtonův integrál funkce f n intervlu (,b), < b,,b R, existuje, jestliže f má n (,b) primitivní funkci (oznčme ji F ), limity lim x + F(x), lim x b F(x) existují jejich rozdíl je definován. Hodnotou Newtonov integrálu funkce f přes intervl (,b) pk rozumíme číslo (N) f(t)dt = lim F(x) lim F(x). x b x + Pokud (N) f(t)dt existuje vlstní, pk říkáme, že integrál je konvergentní. Není-li integrál konvergentní, říkáme, že je divergentní.
4 Oznčení. Množinu všech funkcí f : (, b) R, které mjí konvergentní Newtonův integrál od do b, znčíme N(,b). Vět (vlstnosti Newtonov integrálu). () Necht f,g N(,b) α R. Potom f + g N(,b), αf N(,b) pltí (f + g) = f + g, αf = α (b) Necht f,g N(,b) f g. Pk f g. (c) Necht < b < c + f N(,c). Potom f N(,b), f N(b,c) pltí c f = f + c b (d) Necht < b < c +, f N(,b), f N(b,c) f je spojitá v b. Potom f N(,c). Vět Necht funkce F je primitivní k f n (,b), G je primitivní ke g n (,b). Potom pokud je prvá strn definován. gf = [GF] b Gf, Vět (substituce pro určitý integrál). Necht ω : (α, β) (, b) splňuje ω((α, β)) = (, b) ω má vlstní nenulovou derivci n (α,β). Potom f(x)dx = pokud lespoň jeden z integrálů existuje. β α (f ω)(t) ω (t) dt, Vět (Bolzno-Cuchyov podmínk). Necht R F je definován n jistém prstencovém okolí bodu. Potom lim x F(x) existuje vlstní, právě když je splněn Bolzno-Cuchyov podmínk: ε R,ε > 0 δ R,δ > 0 x,y P(,δ) : F(x) F(y) < ε. Vět Necht f je omezená spojitá n omezeném intervlu (,b). Potom f N(,b). Vět Necht < < b +. Jestliže pro funkce f g pltí 0 f g n [,b), f je spojitá n [,b) g N(,b). Potom f N(,b). Vět (limitní srovnávcí kritérium). Necht < < b +. Jestliže pro nezáporné spojité funkce f g n [,b) pltí lim x b f(x)/g(x) = c (0, ), potom f N(,b), právě když g N(,b). Vět Necht,b R, < b, f : [,b] R je spojitá, g : [,b] R je nerostoucí, nezáporná spojitá n [,b]. Potom g() inf x [,b] f fg g() sup x [,b]
5 Vět (Abel-Dirichletovo kritérium). Necht < < b +, f : [, b) R je spojitá. Její primitivní funkci n (,b) oznčme F. Dále necht g : [,b) R je monotónní spojitá n [,b). Potom pltí (A) Jestliže f N(,b) g je omezená, potom fg N(,b). (D) Jestliže je F omezená n (,b) lim x b g(x) = 0, potom fg N(,b). Vět (první vět o střední hodnotě). Necht,b R, < b, f : [,b] R je spojitá, g : [,b] R je nezáporná, g N(,b) fg N(,b). Potom existuje ξ [,b] tkové, že fg = f(ξ) Vět (druhá vět o střední hodnotě). Necht,b R, < b, f : [,b] R je spojitá, g : [,b] R je monotónní spojitá n [,b]. Potom existuje ξ [,b] tkové, že 10.3 Aplikce určitého integrálu g. ξ fg = g() f + g(b) Definice. Křivkou budeme rozumět zobrzení ϕ : [,b] R n (n N,,b R, < b) tkové, že ϕ = (ϕ 1,...,ϕ n ) je třídy C 1, tj. ϕ i je spojité n [,b], i = 1,...,n, přičemž v krjních bodech [,b] symbol ϕ i(x) znčí příslušnou jednostrnnou derivci. Geometrickým obrzem křivky ϕ rozumíme množinu ϕ = ϕ([,b]) R n. Definice. Necht ϕ : [,b] R n je křivk. Délkou křivky ϕ rozumíme hodnotu L(ϕ) = sup{l(ϕ, D); D je dělení intervlu [, b]}, kde pro dělení D = {x j } k j=0 intervlu [,b] definujeme ξ L(ϕ,D) = k vzdálenost (ϕ(x j 1 ),ϕ(x j )). j=1 Lemm Necht,b R, < b, f = (f 1,...,f n ) : [,b] R n je spojitá (tj. f i je spojitá, i = 1,...,n). Potom pltí f := [ f 1,..., f n ] f. Vět (délk křivky). Necht ϕ = (ϕ 1,...,ϕ n ) : [,b] R n je křivk. Potom pltí L(ϕ) = (ϕ 1 ) (ϕ n) 2 (= ϕ ).
6 Vět (objem povrch rotčního těles). Necht f je spojitá nezáporná n intervlu [, b],,b R, < b. Oznčme Pk Je-li nvíc f spojitá n [,b], pk T = {[x,y,z] R 3 ; x [,b], y 2 + z 2 f(x)}. Objem (T) = π Povrch pláště (T) = 2π f(x) 2 dx. f(x) 1 + (f (x)) 2 dx. Vět (integrální kritérium). Necht f je nezáporná, nerostoucí spojitá n [n 0, + ), kde n 0 N. Necht pro posloupnost reálných čísel { n } n=1 pltí n = f(n) pro n n 0. Pk n 0 f(x)dx konverguje, právě když n konverguje. n=1 Vět (zbytek Tylorov polynomu v integrálním tvru). Necht,x R, < x, funkce f má v kždém bodě intervlu [,x] vlstní (n + 1)-ní derivci. Potom f(x) T f, n (x) = 1 n! f(n+1) (t)(x t) n dt. Vět (zvedení logritmu (Vět 5.1)). Existuje právě jedn funkce (znčíme ji log nzýváme ji přirozeným logritmem), která má tyto vlstnosti: (L1) D(log) = (0, + ) n tomto intervlu je log rostoucí, (L2) x,y (0, + ) : log xy = log x + log y, (L3) lim x 1 log x x 1 = 1.
6. Určitý integrál a jeho výpočet, aplikace
Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,
VíceVIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
Více5.5 Elementární funkce
5.5 Elementární funkce Lemm 5.20. Necht x R. Potom existuje kldné C R (závisející n x) tkové, že pro kždé n N h ( 1, 1) pltí (x + h) n x n nhx n 1 h 2 C n. Definice. Exponenciální funkci exp definujme
VíceIntegrální počet - III. část (určitý vlastní integrál)
Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)
Více2. Pokud nedojde k nejasnostem, budeme horní a dolní součty značit pouze
8. Určitý integrál 8.1. Newtonův integrál Definice 8.1 Buďte,b R. Řekneme,žeNewtonůvintegrálzfunkce fnintervlu(,b) existuje(znčímejej(n) f(x)dx),jestliže 1.existuje primitivní funkce F k f n intervlu(,
VíceIntegrální počet - II. část (určitý integrál a jeho aplikace)
Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)
VíceVIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu
VícePetr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)
VíceNEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
VíceV předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
VíceIntegrál a jeho aplikace Tomáš Matoušek
Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ
VíceOBECNÝ URČITÝ INTEGRÁL
OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,
Více7. Integrální počet Primitivní funkce, Neurčitý integrál
7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26
Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz
VíceR n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na
Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.
Více4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.
4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost
Víceintegrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.
Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze
Více1 Posloupnosti a řady.
1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže
Více26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
Vícef dx S(f, E) M(b a), kde D a E jsou
Přehled probrné látky z MAII, LS 2004/05 1. přednášk 21.2.2005. Opkování látky o primitivních funkcích ze závěru zimního semestru (23.-25. přednášk). Rozkld rcionální funkce n prciální zlomky. Popis hledání
Víceje jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.
10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány
VíceKapitola 1. Taylorův polynom
Kpitol Tylorův polynom Definice. Budeme psát f = o(g) v R, je-li lim x ( f )(x) =, f = O(g) g v R, je-li ( f ) omezená n nějkém U (). g Příkld. lim x (x + x + 3) 5 (x 5 x 3 + 7x 9) = lim x + o(x ) x x
Více10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
VíceDefinice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1
9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump
VíceIntegrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)
Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh
VíceLimity, derivace a integrály Tomáš Bárta, Radek Erban
Limity, derivce integrály Tomáš Bárt, Rdek Erbn Úvod Definice. Zobrzení(téžfunkce) f M Njemnožinuspořádnýchdvojic(x, y) tková,žekekždému xexistujeprávějedno y,žedvojice(x,y) f.tj.kždývzor xmáprávějedenobrz
Více2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
VícePrimitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
Více1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2.
1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2. Množinu komplexních čísel znčíme C. N množině C definujeme operce sčítání + jko v R 2 násobení. předpisem (x, y).(u,
Více+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
VíceFunkce jedné proměnné
Funkce jedné proměnné Lineární funkce f: y = kx + q, D f = R, H f = R, grf je přímk množin odů [x, y], x D f, y = f(x) q úsek n ose y, tj. od [0, q], k směrnice, k = tn φ = 2 2 1 1, A[ 1, 2 ], B[ 1, 2
VíceII. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)
. NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál
VíceLimita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
VíceDiferenciální počet. Spojitost funkce
Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti
Více17. Posloupnosti a řady funkcí
17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.
VícePokud tato primitivní funkce platí na více intervalech, zapisujeme to najednou ve tvaru
Definice tvrzení funce(integrál Nechť f je funce n intervlu I. Řeneme,žefunce Fjeprimitivnífuncefn I,jestližeje Fspojitán I,diferencovtelnánvnitřu I O F = fn I O. Nechť Fjeprimitivnífuncefnintervlu I.
VíceObecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
Více11. Číselné a mocninné řady
11. Číselné a mocninné řady Aplikovaná matematika III, NMAF072 M. Rokyta, KMA MFF UK ZS 2017/18 11.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 +
VíceI Diferenciální a integrální počet funkcí jedné proměnné 3
Obsh I Diferenciální integrální počet funkcí jedné proměnné 3 Preklkulus 5. Reálná čísl................................................ 5. Funkce jejich zákldní vlstnosti....................................3
VícePřehled základních vzorců pro Matematiku 2 1
Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,
VíceŘešené příklady k MAI III.
Řešené příkldy k MAI III. Jkub Melk 28. říjn 2007 1 Obsh 1 Metrické prostory 2 1.1 Teoretickéotázky.... 2 1.2 Metriky..... 4 1.3 Anlýzmnožin... 4 1.3.1 Uzávěry... 4 1.3.2 Zkoumejtenásledujícímnožiny....
VíceMatematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2
Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel
VíceZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.
VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální
VíceTexty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Více1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
VíceUčební text k přednášce Matematická analýza II (MAI055)
Učební text k přednášce Mtemtická nlýz II (MAI055) Mrtin Klzr 20. červn 2007 Přednášk pokrývá v letním semestru následující látku:. Riemnnův integrál. 2. Posloupnosti řdy funkcí, mocninné řdy Fourierovy
Více18 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
VíceI Diferenciální a integrální počet funkcí jedné proměnné 5
Obsh I Diferenciální integrální počet funkcí jedné proměnné 5 Preklkulus 7. Reálná čísl................................................ 7. Funkce jejich zákldní vlstnosti...................................
VíceMATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. IV. Základy integrálního počtu
MATEMATIKA I. prof. RNDr. Gejz Dohnl, CSc. IV. ákldy integrálního počtu 1 Mtemtik I. I. Lineární lgebr II. ákldy mtemtické nlýzy III. Diferenciální počet IV. Integrální počet 2 Mtemtik I. IV. Integrální
Více2.3 Aplikace v geometrii a fyzice Posloupnosti a řady funkcí Posloupnosti funkcí... 17
Obsh Derivce Integrály 6. Neurčité integrály.................. 6. Určité integrály....................3 Aplikce v geometrii fyzice............ 6 3 Posloupnosti řdy funkcí 7 3. Posloupnosti funkcí.................
VíceMatematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci
Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/
VícePřednáška 6, 6. listopadu 2013
Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,
VíceDefinice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
VíceINTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL
INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci
VíceText m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe
VíceTo je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.
STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To
VíceNEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Bylo uvedeno, že rozdíl F (b) F () funkčních hodnot primitivní funkce k
VíceMatematická analýza 1b. 9. Primitivní funkce
Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
VícePRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VíceMasarykova univerzita
Msrykov univerzit Přírodovědecká fkult Diplomová práce Web k témtu: Integrální počet Bc. Ev Schlesingerová Brno 9 Prohlášení Prohlšuji, že jsem tuto diplomovou práci npsl sm s použitím uvedené litertury.
VíceZ aklady funkcion aln ı anal yzy Kubr Milan 16. ˇ cervna 2005
Zákldy funkcionální nlýzy Kubr Miln 6. červn 2005 Obsh Metrické prostory.. Zákldní vlstnosti......................................2 Úplné, seprbilní kompktní prostory......................... 7.3 Zobrzení
VíceObsah na dnes Derivácia funkcie
Johnnes Kepler Dec 2, 57- Nov 5, 63 Mtemtik I Prednášjúci: prof. RNDr. Igor Podlný, DrSc. http://www.tke.sk/podln/ # Osh n dnes Deriváci fnkcie 74 KAPITOLA 3. FUNKCE JEDNÉ PROMĚNNÉ Určitý integrál 8. Vlstnosti
VíceMatematická analýza II NMAI055
Mtemtická nlýz II NMAI055 Robert Šáml (Prlelk Y) Pokrčování z MA1 Vět 4.1 (Jensenov nerovnost). Pokud je f konvexní n [, b], x 1,..., x n [, b] pltí λ 1,..., λ n [0, 1], n i=1 λ i = 1 (konvexní kombince);
VíceSpojitost a limita funkce
Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové
VícePRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VíceUr itý integrál. Úvod. Denice ur itého integrálu
V tomto lánku se budeme v novt ur itému integrálu, který dné funkci p i zuje íslo. My²lenk integrování pochází z geometrických poºdvk - zji² ování povrch, objem délek geometrických útvr. To znmená, ºe
VíceIV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
Více9. Vícerozměrná integrace
9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující
VíceFAKULTA STAVEBNÍ MATEMATIKA I MODUL 8 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL 8 URČITÝ INTEGRÁL STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Dněček, Oldřich Dlouhý,
Více17 Křivky v rovině a prostoru
17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,
Více9. Vícerozměrná integrace
9. Vícerozměrná integrace Tomáš Salač Ú UK, FF UK LS 2017/18 Tomáš Salač ( Ú UK, FF UK ) 9. Vícerozměrná integrace LS 2017/18 1 / 29 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných
VíceDefinice. Na množině R je dána relace ( R R), operace sčítání +, operace násobení a množina R obsahuje prvky 0 a 1 tak, že platí
1. Úvod 1.1. Výroky a metody důkazů Výrok je tvrzení, o kterém má smysl říci, že je pravdivé či ne. Vytváření nových výroků: Logické spojky & a, Implikace, Ekvivalence, Negace. Obecný kvatifikátor a existenční
VíceI. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet
I. Úvod I.1. Množiny Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Značení. Symbol x A značí, že element x je prvkem množiny A. Značení x
VícePetr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57
Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost
Více1. Úvod Výroková logika Množiny a množinové operace
1. Úvod 1.1. Výroková logika Výrok je tvrzení, o kterém má smysl říci, že platí (je pravdivé) nebo že neplatí (je nepravdivé). Definice. Negací A výroku A rozumíme výrok: Není pravda, že platí A. Konjukcí
VícePŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
VíceKapitola 7: Integrál.
Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci
VícePoznámka. Využití: věty o limitách, popisy intervalů: (, 0) = {x R : < x < 0} = {x R : x < 0}, (, + ) = R (otevřené i s ± ).
v 8--7 Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná č: délky, doplnění it, suprem/infim, řezy R \ Q ircionální čísl, π, e, ) C komplení čísl:
Více(5) Primitivní funkce
(5) Primitivní funkce Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (5) Primitivní funkce 1 / 20 Def: Primitivní funkce Definice Necht funkce f je definována na neprázdném otevřeném intervalu (a,
VíceVěta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak
Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná čísl C komplení čísl: { + jy :, y R}, j R \ Q ircionální čísl, π, e, ) Tvrzení Mezi kždými dvěm
VíceKŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t
KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá
VíceMATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy
MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika
VíceKapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Více1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
Vícemnožina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n,
Náplní předmětu bude klkulus R n R (přípdně R m ). Proč se zbývt funkcemi více proměnných? V prxi je čsto třeb uvžovt veličiny, které závisejí n více než jedné proměnné, npř. objem rotčního kužele závisí
VíceKapitola 8: Dvojný integrál 1/26
Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet
VíceOBECNOSTI KONVERGENCE V R N
FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce
VíceKapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
VíceMatematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
VícePetr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
VíceMatematika 5 FSV UK, ZS Miroslav Zelený
Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení
VíceNMAF061, ZS Písemná část zkoušky 16. leden 2018
Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6
Více6.1. Limita funkce. Množina Z má dva hromadné body: ±. Tedy Z ={+, }.
6.1. Limit funkce Číslo R nzveme hromdným bodem množiny A R, pokud v kždém jeho okolí leží nekonečně mnoho bodů z množiny A. Body z A, které neptří mezi hromdné body A, se nzývjí izolovné. Alterntivně
Více12.1 Primitivní funkce
Integrání počet. Primitivní funkce Již jsme definovli pojem derivce funkce, k funkci f(x) jsme hledli její derivci f (x). Nyní chceme ukázt opčný postup, tzn. k funkci f (x) njít funkci f(x). Přesněji,
Více22 Základní vlastnosti distribucí
M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající
VícePosloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
VíceVzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.
Vzdělávcí mteriál vytvořený v projektu OP VK Název školy: Gymnázium, Zářeh, náměstí Osvoození 20 Číslo projektu: Název projektu: Číslo název klíčové ktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro
VíceUrčete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je
Více(1) Limity. Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Limity 1 / 27
(1) Limity Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Limity 1 / 27 Proč studovat matematiku Zdroje: http://www.karlin.mff.cuni.cz/ pick/2018-10-02-prvni-prednaska-z-analyzy.pdf https://www.youtube.com/watch?v=6ec3ndnr86s
Více