Seriál: Kdysi dávno v jedné galaxii...

Rozměr: px
Začít zobrazení ze stránky:

Download "Seriál: Kdysi dávno v jedné galaxii..."

Transkript

1 Seiál: Kdysi dávno v jedné galaxii... V minulém díle jsme zlehka naťukli fakt, že všechny objekty, co nad našimi hlavami vidíme pouhým okem, jsou až na tři výjimky v naší Galaxii. Zmíněné výjimky jsou malé satelitní galaxie Velké a Malé Magellanovo mačno a spiální galaxie v Andomedě, M31. Díky páci Edwina Hubblea dneska už jistojistě víme, že se jedná vzdálené hvězdné ostovy 1. Vidličkový diagam Podíváme-li se na nějaký pěkný přehled galaxií 2, zjistíme, že galaxie ozhodně nejsou jedna jako duhá. Toho si při pozoováních všiml i Hubble a ozřadil galaxie do dvou kategoií eliptické ané galaxie a pozdní spiální galaxie. Předpokládal, že stuktua galaxií je evoluční efekt a vytvořil tzv. vidličkový diagam. Samostatnou kategoii mimo vidličkový diagam tvoří nepavidelné galaxie (označené I, jako iegula, pěkným příkladem nepavidelné galaxie je Malé Magellanovo mačno). Ob. 1: Vidličkový diagam podle E. Hubblea. Elipické ané galaxie jsou označeny písmenem E, spiální pozdní galaxie jsou označeny písmenem S. Duhé (a případně jakékoliv další) písmeno značí jemnější ozlišení tvau. Obázek ve vlastnictví Space Telescope Science Institute. S postupem času se zjistilo, že není nutně pavda, že spiální galaxie jsou pozdní a eliptické ané. Galaktická mofologie závisí na mnoha paametech, nicméně teoie v tomto směu ozhodně není jednotná. Je zřejmé, že velkou oli budou v tomto případě hát galaktické sážky 1 Ačkoliv ještě v pvní polovině dvacátého století byla podstata galaxií neznámá. Ve staší liteatuře je často najdete označené jako spiální nebo eliptické mlhoviny. 2 Třeba na stánkách Hubble Heitage Team 1

2 a kanibalismus (pohlcování menších galaxií a slapové thání sousedních galaxií). Do detailního vysvětlování tvoby nebo zániku spiálních amen se tedy adši nebudeme pouštět. Popis omezíme na čistou fenomenologii (i ta je víc než složitá). Jak popsat galaxii Podíváme-li se na ůzné galaxie, zjistíme, že se v jejich mofologii opakují někteé znaky. Spiální amena, středové zjasnění nebo podivné kuhy a příčky. Eliptické galaxie typicky nevykazují příliš mofologických stuktu. Jediné, co lze popsat je jejich elipticita ε = 1 β/α, kde α, esp. β je velká, esp. malá poloosa elipsy pomítnuté na nebeskou sféu. Hubbleova klasifikace se vyjadřuje jako 10ε, přičemž galaxie, kde by ε > 0.7 nebyly pozoovány, poto klasifikace končí u E7. U spiálních galaxií najdeme stuktuu mnohem zajímavější. Středové zjasnění se nazývá galaktická výduť (bulge), obklopuje ji disk. Po mofologické třídy je důležitý pomě luminosit výdutě a disku (L bulge /L disc ). Pokud je tento pomě přibližně 0,3, pozoujeme těsně namotanou spiálu a galaxii nazveme Sa. Po pomě přibližně 0,05 pozoujeme volnější amena, třída se nazývá Sc. Když se tefíme někam mezi, nazveme třídu galaxií Sb. Kom disku a výdutě můžeme pozoovat i příčku (v současné době věříme, že naše galaxie má příčku). Pokud ji pozoujeme, přidáme do názvu galaxie B. (Galaxie bez příčky se často značí A a pokud existuje jen náznak příčky, jedná se o AB.) V klasifikaci můžeme jít ještě dál. Můžeme popsat, zda se v galaxii nachází kuh (ing, značeno ), jaká spektální třída hvězd je v nich dominantní (A, F, G, K podle odpovídajících spektálních tříd hvězd, O a B nikdy nejsou převažující, stejně tak M). Dále lze popsat úhel natočení číslem 1 (přímý pohled, face on) až 7 (pohled zboku, edge on). Galaxii v Andomedě tak klasifikujeme jako ks5 (převažují hvězdy spektální třídy K, jedná se o spiálu a má poměně vysokou inklinaci). Výjimku z klasifikace tvoří galaxie S0, tzv.čočkové galaxie (lenticula), kteé jsou z mofologického hlediska stále velkou záhadou. Kom zmíněných mofologických znaků můžeme pozoovat ještě hvězdné halo, ve kteém se nachází kulové hvězdokupy, a poslední, neviditelnou složku, sféické halo temné hmoty. Kom popisu mofologického se můžeme pokusit i o popis analytický. Poč jenom pokusit? Galaxie jsou obecně velmi komplexní systémy, kteé je analyticky pakticky nemožné popsat. V podstatě veškeé infomace, kteé o galaxiích máme jsou výsledkem pozoování a numeických simulací. Jednou z mála popsatelných veličin je distibuce plošného jasu. Abychom ji mohli popsat, musíme si zadefinovat pá pojmů. Jedním z nich je isofota (isophote), oblast s konstantním počtem vyzařovaných fotonů. Isofoty potřebujeme po nadefinování poloměu galaxie, neboť pokud nemáme ostý okaj (což galaxie ostatně nemá), je poměně těžké ho učit. Polomě, kteý budeme potřebovat se jmenuje efektivní polomě e, což je pojektovaný polomě, ve kteém je obsáhnuta plocha, kteá emituje polovinu celkového vyzařování galaxie. Po výdutě spiálních galaxií a eliptické galaxie jde povchová jasnost napsat ve fomě tzv. de Vacouleova pofilu, ( ( ) ) 1/4 µ() = µ e + 8,3268 1, e 2

3 Ob. 2: Isofoty eliptické a spiální galaxie oientované edge on. Převzato z Intoduction to Cosmology, J.V. Nalika, Cambidge Univesity Pess. kde µ značí povchový jas. Obecnější je tzv. Sésicův pofil ( ( ) ) 1/n µ() = µ e + 8,3268 1, e kde jsou tři volné paamety n, µ e a e. Záměnou těchto paametů se můžeme pokusit popsat i složitější stuktuy (všimněme si, že de Vacouleův pofil je v podstatě jen konkétní případ Sésicova pofilu). Co k ůzným jasnostem v galaxii přispívá? Nic jiného než ozložení hvězd. Hustota hvězd v halu je menší než v disku a poto se nám disk bude zdát jasnější. Tento fakt umíme popsat veličinami integální a difeenciální počet hvězd. Buď n M (M, S, Ω, ) (jednotka pc 3 mag 1 ) hustota hvězd s absolutní hvězdnou velikostí v intevalu M, M + dm s atibutem S (kupříkladu daná luminositní třída), kteé leží v postoovém úhlu Ω ve vzdálenosti. Počet hvězd vyhovujících našim paametům spočítáme jako n(s,, Ω) = n M (M, S, Ω, )dm. Změníme-li integační meze a omezíme-li integovaný inteval na 0, d, dostaneme počet hvězd, kteé se nachází mezi námi a daným objektem. Použijeme-li dv = Ω 2 d, tedy ( d ) N M (M, S, Ω, d) = n M (M, S, Ω, )Ω 2 d dm, 0 získáme vzoec po integální počet hvězd. Difeenciací toho vztahu získáme zpět n M (M, S, Ω, ), n(s,, Ω)dM = 1 dn M dm. Ω 2 d V tuto chvíli si musíme uvědomit, že hvězdy se stejnou absolutní hvězdnou velikostí se nám budou jevit ůzně jasné, budou-li v ůzných vzdálenostech. Limitní vzdálenost d můžeme nahadit zdánlivou hvězdnou velikostí m a vyjádříme počet hvězd N M (M, S, Ω, m)dm. Pokud vzoste limitní hvězdná velikost jen lehce, limitní vzdálenost vzoste podle ní a do postoového úhlu se vleze více hvězd, konkétně ( ) N M (M, S, Ω, m) dm dm. dm 3

4 Pomocí toho si nadefinujeme difeenciální počet hvězd A M (M, S, Ω, m)dmdm def = N M (M, S, Ω, m) dmdm, dm kde se hvězdy nachází nejen v intevalu absolutních hvězdných velikostí, ale i v intevalu zdánlivých velikostí. Tyto vztahy jsou samozřejmě hodně idealizované, neboť nebeou v úvahu přítomnost pachu a plynu mezi pozoovanou galaxií a pozoovatelem. Rotační křivky Výše zmíněné vztahy umí galaxii popsat tak, jak ji vidíme, ale jsou nedostatečné, mají-li popsat základní kinematiku galaxie. Jako všechno ve vesmíu, i galaxie otují 3. K tomu, abychom zjistili, jak otují, se používají otační křivky. Pozoováním bylo zjištěno, že otační křivky jsou si nápadně podobné a nezáleží, zda pozoujeme spiální, eliptickou nebo čočkovou galaxii. Ob. 3: Rotační křivky galaxií. Na y-ové ose je otační ychlost, na x-ové ose vzdálenost od středu galaxie. Pokud se jednotlivé křivky začnou poovnávat s typem galaxií nebo jejich jasností, objeví se koelace. Se vzůstající luminositou v B filtu oste otační ychlost stměji a dosahuje vyšší maximální ychlosti V max. Máme-li stejnou luminositu v B filtu, ané spiální galaxie budou mít vyšší V max než pozdní typ. Hodnota V max může být ůzná, ale tva křivky vždy zůstává. Toto se stalo jedním z důkazů existence temné hmoty Jak je výše zmíněno, existuje koelace mezi V max a L platící po spiální galaxie. Rotaci galaxie lze změřit pomocí mapování neutálního vodíku obsaženého ve spiálních amenech galaxie. Část galaxie, kteá se přibližuje k nám bude posunuta do modé části spekta a vzdalující se do čevené. Takový případ je ideální po použití vztahu po Doppleův efekt, kde λ je ozdíl vlnových délek, kde se detekoval maximální tok zčevenalých a zmodalých fotonů z pozoované galaxie. λ v λ klid c = V sin i, c 3 Naše Slunce oběhlo střed galaxie cca 21kát. Jeden oběh se nazývá galaktický ok a tvá přibližně 220 miliónů let. 4

5 kde v je adiální ychlost, i je inklinační úhel mezi pozoovatelem a směem kolmým na galaktickou ovinu a V je otační ychlost. Koelace mezi otační ychlostí a absolutní hvězdnou velikostí (nebo luminositou) se nazývá Tullyho-Fisheova elace. Jedná se o empiický závě, po jednotlivé Hubbleovy typy galaxií se závislost liší. M B = 9,95 log 10 V max + 3,15 M B = 10,2 log 10 V max + 2,71 M B = 11,0 log 10 V max + 3,31 typ Sa, typ Sb, typ Sc. Jak již bylo výše zmíněno chceme něco zjistit o kinematice. Po takový případ je pěkné odhadnout hmotnost objektu, kteý se hýbe a zkusit zjistit, zdali umíme alespoň přibližně dojít k empiickým vztahům. Můžeme si jednoduše napsat Newtonův gavitační zákon a dostředivou sílu, kteé dáme do ovnosti (hvězdy se dží na více či méně stabilních tajektoiích). Hmotnost hvězdy je m, vzdálenost od středu galaxie a hmotnost galaxie obsažené v poloměu je M. mv 2 = GM m 2 M = V 2 G, def kde za V můžeme dosadit i V max. Po zjednodušení zavedeme konstantu C ML = L /M a můžeme vyjádřit luminositu V 2 L = C ML G. Pokud uvažujeme, že všechny spiály mají stejnou povchovou jasnost v centu galaxie, def můžeme zavést další konstantu C SB = L/ 2, díky kteé se ve vztahu po hmotnost zbavíme poloměu. Luminositu následně přepíšeme, L = C2 ML C SB V 4 max G 2 = CV 4 max, kde jsme všechny konstanty schovali do C. Máme-li luminositu, můžeme si odvodit i absolutní hvězdnou velikost. Vzpomeneme si na Pogsonovu ovnici a píšeme L M = M Sun 2,5 log 10, L Sun M = 10 log 10 V max + konst. Uvedený vztah je poovnatelný s empiicky naměřenými elacemi. Deviace vznikají v důsledku příliš ideálních předpokladů (V = konst a konstantní povchová jasnost v centu galaxie). Nahlédnutí do temna Výše jsme zmínili, že ploché otační křivky jsou jedním z důkazů o existenci temné hmoty. To můžeme zkusit podpořit jednoduchým výpočtem. Vyjdeme z výsledku poovnání gavitační síly a dostředivé síly (označení zachováváme), mv 2 = GM m 2, M = V 2 G. 5

6 Vztah deivujeme podle, neboť chceme aby platil i po infinitesimální intevaly, dm d = V 2 G. Dále si uvědomíme, že máme sféicky symetický systém, kteý by měl splňovat nějaký pěkný zákon zachování, kupříkladu hmotnosti dm d = 4π 2 ϱ. Dáme-li oba vztahy do ovnosti, dojdeme k vyjádření hustoty hmoty ve vnějších částech galaxie ϱ() = V 2 4πG. 2 Poč vnější části? Když bychom uvažovali malá, zjistíme, že hustota diveguje, což nikde nebylo pozoováno. A samotný důkaz existence temné hmoty? Ve vztahu po hustotu vidíme závislost 2, což neodpovídá ozložení hvězd v galaxii, kde z pozoování pofilů jasnosti byla učena závislost na 3,5. Po vysvětlení se použil neviditelný hmotný komponent pojevující se pouze gavitačně, temná hmota. Pomocí simulací byl upaven i vztah po hustotu, aby byl bán v úvahu i střed galaxie. Vztah ϱ 0 ϱ CDM () = ( ( 1 + a) ) 2 a je dnes znám jako cold dak matte, tedy chladná temná hmota. a je volitelný paamet, stejně jako ϱ 0. Blízko středu galaxie se tento pofil chová jako 1/, ve většině galaktického hala jako 1/ 2 a na samé haně galaktického hala jako 1/ 3. Vzhledem k možnosti volby paametu se tento pofil ukázal jako univezální po všechny galaxie, nezávisle na jejich typu. Fyzikální koespondenční seminář je oganizován studenty UK MFF. Je zastřešen Oddělením po vnější vztahy a popagaci UK MFF a podpoován Ústavem teoetické fyziky UK MFF, jeho zaměstnanci a Jednotou českých matematiků a fyziků. Toto dílo je šířeno pod licencí Ceative Commons Attibution-Shae Alike 3.0 Unpoted. Po zobazení kopie této licence, navštivte 6

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal 4. konfeence o matematice a fyzice na VŠT Bno, 15. 9. 25 Faktály ve fyzice Oldřich Zmeškal Ústav fyzikální a spotřební chemie, Fakulta chemická, Vysoké učení technické, Pukyňova 118, 612 Bno, Česká epublika

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ

Více

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1

Více

Příklady elektrostatických jevů - náboj

Příklady elektrostatických jevů - náboj lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém

Více

Učební text k přednášce UFY102

Učební text k přednášce UFY102 Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy

Více

1.7.2 Moment síly vzhledem k ose otáčení

1.7.2 Moment síly vzhledem k ose otáčení .7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá

Více

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el.

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el. Aplikace Gaussova zákona ) Po sestavení základní ovnice elektostatiky Základní vlastnosti elektostatického pole, pobané v minulých hodinách, popisují dvě difeenciální ovnice : () ot E konzevativnost el.

Více

Výfučtení: Vzdálenosti ve vesmíru

Výfučtení: Vzdálenosti ve vesmíru Výfučtení: Vzdálenosti ve vesmíru Není jednotka jako jednotka Na měření rozměrů nebo vzdáleností různých objektů je nutné zavést nějakou jednotku vzdálenosti. Jednou ze základních jednotek soustavy SI

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu

Více

2.1 Shrnutí základních poznatků

2.1 Shrnutí základních poznatků .1 Shnutí základních poznatků S plnostěnnými otujícími kotouči se setkáváme hlavně u paních a spalovacích tubín a tubokompesoů. Matematický model otujících kotoučů můžeme s úspěchem využít např. i při

Více

v 1 = at 1, (1) t 1 = v 1

v 1 = at 1, (1) t 1 = v 1 Příklad Statující tyskové letadlo musí mít před vzlétnutím ychlost nejméně 360 km/h. S jakým nejmenším konstantním zychlením může statovat na ozjezdové dáze dlouhé,8 km? Po ychlost v ovnoměně zychleného

Více

Konstrukční a technologické koncentrátory napětí

Konstrukční a technologické koncentrátory napětí Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem

Více

Kinematika. Hmotný bod. Poloha bodu

Kinematika. Hmotný bod. Poloha bodu Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

Cvičení z termomechaniky Cvičení 6.

Cvičení z termomechaniky Cvičení 6. Příklad 1: Pacovní látkou v poovnávacím smíšeném oběhu spalovacího motou je vzduch o hmotnosti 1 [kg]. Počáteční tlak je 0,981.10 5 [Pa] při teplotě 30 [ C]. Kompesní pomě je 7, stupeň zvýšení tlaku 2

Více

k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající

k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající Vlastnosti kmitajíího dipólu Podle klasiké teoie je nejefektivnějším zdojem elektomagnetikého záření kmitajíí elektiký dipól. Intenzita jeho záření o několik řádů převyšuje intenzity ostatníh zdojů záření

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

OBSAH 1. Úvod Záření hvězd Teorie záření hvězd Základní vztahy teorie záření hvězd Příklady k teorii záření

OBSAH 1. Úvod Záření hvězd Teorie záření hvězd Základní vztahy teorie záření hvězd Příklady k teorii záření OBSAH Úvod Záření hvězd Teoie záření hvězd Základní vztahy teoie záření hvězd Příklady k teoii záření hvězd 6 Základy hvězdné spektoskopie Teoie základů hvězdné spektoskopie Základní vztahy hvězdné spektoskopie

Více

Seminární práce z fyziky

Seminární práce z fyziky Seminání páce z fyziky školní ok 005/006 Jakub Dundálek 3.A Jiáskovo gymnázium v Náchodě Přeměny mechanické enegie Přeměna mechanické enegie na ovnoamenné houpačce Název: Přeměna mechanické enegie na ovnoamenné

Více

Profily eliptických galaxíı

Profily eliptických galaxíı Profily eliptických galaxíı Pozorování a modely Filip Hroch, Kateřina Bartošková, Lucie Jílková ÚTFA, MU, Brno 26. říjen 2007 O galaxíıch Galaxie? gravitačně vázaný systém obsahuje hvězdy, hvězdokupy,

Více

Geometrická optika. Aberace (vady) optických soustav

Geometrická optika. Aberace (vady) optických soustav Geometická optika Abeace (vady) optických soustav abeace (vady) optických soustav jsou odchylky zobazení eálné optické soustavy od zobazení ideální optické soustavy v důsledku abeací není obazem bodu bod,

Více

DYNAMIKA HMOTNÉHO BODU

DYNAMIKA HMOTNÉHO BODU DYNAMIKA HMOTNÉHO BODU Součást Newtonovské klasická mechanika (v

Více

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Evopský sociální fond Paha & EU: Investujeme do vaší budoucnosti F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Asi nejznámějším konzevativním polem je gavitační silové pole Ke gavitační

Více

ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ

ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ V celé této kapitole budeme předpokládat, že se pohybujeme v neomezeném lineáním homogenním izotopním postředí s pemitivitou = 0, pemeabilitou = 0 a měnou vodivostí.

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná

Více

do strukturní rentgenografie e I

do strukturní rentgenografie e I Úvod do stuktuní entgenogafie e I Difakce tg záření na kystalu Metody chaakteizace nanomateiálů I RND. Věa Vodičková, PhD. Studium kystalové stavby Difakce elektonů, neutonů, tg fotonů Kystal ideální mřížka

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Z VAŠICH ZKUŠENOSTÍ. Písemná maturitní zkouška z fyziky v Bavorsku

Z VAŠICH ZKUŠENOSTÍ. Písemná maturitní zkouška z fyziky v Bavorsku Z VAŠICH ZUŠENOSTÍ Písemná matuitní zkouška z fyziky v avosku Pet Mazanec *, Gymnázium Sušice V poslední době k učitelské veřejnosti začínají přicházet zpávy o chystaných změnách v oganizaci matuitních

Více

Galaxie Vesmír velkých měřítek GALAXIE. Základy astronomie Galaxie 1/47

Galaxie Vesmír velkých měřítek GALAXIE. Základy astronomie Galaxie 1/47 GALAXIE Základy astronomie 2 16.4.2014 Galaxie 1/47 Galaxie 2/47 Galaxie 3/47 Hubbleův systém klasifikace 1936 1924 Hubble rozlišil okraje blízkých galaxií, identifikoval v nich hvězdy klasifikace zároveň

Více

Newtonův gravitační zákon

Newtonův gravitační zákon Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační

Více

Trivium z optiky Vlnění

Trivium z optiky Vlnění Tivium z optiky 7 1 Vlnění V této kapitole shnujeme základní pojmy a poznatky o vlnění na přímce a v postou Odvolávat se na ně budeme často v kapitolách následujících věnujte poto vyložené látce náležitou

Více

Kinematika tuhého tělesa

Kinematika tuhého tělesa Kinematika tuhého tělesa Pet Šidlof TECHNICKÁ UNIVERZITA V LIERCI Fakulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ESF CZ.1.07/2.2.00/07.0247 Reflexe požadavků

Více

Klíčové pojmy Vypište hlavní pojmy: b) Tíhová síla. c) Tíha. d) Gravitační zrychlení. e) Intenzita gravitačního pole

Klíčové pojmy Vypište hlavní pojmy: b) Tíhová síla. c) Tíha. d) Gravitační zrychlení. e) Intenzita gravitačního pole Pojekt Efektivní Učení Refomou oblastí gymnaziálního vzdělávání je spolufinancován Evopským sociálním fondem a státním ozpočtem České epubliky. GRAVITAČNÍ POLE Teoie Slovně i matematicky chaakteizujte

Více

Gravitační a elektrické pole

Gravitační a elektrické pole Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole

Více

ASTRONOMIE. Slunce. atmosféra Slunce. Stavba Slunce. Sluneční vítr. Sluneční skvrny

ASTRONOMIE. Slunce. atmosféra Slunce. Stavba Slunce. Sluneční vítr. Sluneční skvrny ASTRONOMIE Slunce Hvězda, jejímž nitu pobíhají temonukleání eakce (jáda vodíku se spojují v jáda helia). Uvolněná enegie postupuje k slunečnímu povchu a je vyzařována do okolí. Teplota v nitu je 5 mil

Více

Cavendishův pokus: Určení gravitační konstanty,,vážení Země

Cavendishův pokus: Určení gravitační konstanty,,vážení Země Cavendishův pokus: Učení gavitační konstanty,,vážení Země Jiří Kist - Mendlovo gymnázium, Opava, SO@seznam.cz Teeza Steinhatová - gymnázium J. K. Tyla Hadec Kálové, SteinT@seznam.cz 1. Úvod Abstakt: Cílem

Více

I. kolo kategorie Z9

I. kolo kategorie Z9 68. očník Matematické olympiády I. kolo kategoie Z9 Z9 I 1 Najděte všechna kladná celá čísla x a y, po kteá platí 1 x + 1 y = 1 4. Nápověda. Mohou být obě neznámé současně větší než např. 14? (A. Bohiniková)

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

Diferenciální operátory vektorové analýzy verze 1.1

Diferenciální operátory vektorové analýzy verze 1.1 Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě

Více

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických

Více

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele OPT/AST L07 Korekce souřadnic malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů výška pozorovatele konečný poloměr země R výška h objektu závisí na výšce s stanoviště

Více

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H.

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H. 7 Vlnovody Běžná vedení (koaxiální kabel, dvojlinka) jsou jen omezeně použitelná v mikovlnné části kmitočtového spekta. S ůstem kmitočtu přenášeného signálu totiž významně ostou ztáty v dielektiku těchto

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

Úloha IV.4... ach ta tíže

Úloha IV.4... ach ta tíže Úloha IV.4... ach ta tíže 4 body; průměr 22; řešilo 42 studentů Určete jaké je tíhové zrychlení na povrchu neutronové hvězdy v závislosti na rovnoběžce. Jak velká slapová síla by působila na předmět vysoký

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘIN MGNETIZMUS III Elektický potenciál Obsah 3 ELEKTRICKÝ POTENCIÁL 31 POTENCIÁL POTENCIÁLNÍ ENERGIE 3 ELEKTRICKÝ POTENCIÁL V HOMOGENNÍM POLI 4 33 ELEKTRICKÝ POTENCIÁL ZPŮSOENÝ ODOVÝMI NÁOJI 5 331

Více

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19 34 Elektomagnetické pole statické, stacionání, nestacionání zásady řešení v jednoduchých geometických stuktuách, klasifikace postředí (lineaita, homogenita, dispeze, anizotopie). Vypacoval: Onda, otja@seznam.cz

Více

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas Řešení úlo kajskéo kola 58 očníku fyzikální olympiády Kategoie B Auto úlo: J Tomas a) Doba letu střely od okamžiku výstřelu do zásau označíme t V okamžiku výstřelu se usa nacází ve vzdálenosti s měřené

Více

Fyzikální korespondenční seminář UK MFF 22. II. S

Fyzikální korespondenční seminář UK MFF  22. II. S Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku

Více

základy astronomie 2 praktikum 5 Dynamická paralaxa hvězd

základy astronomie 2 praktikum 5 Dynamická paralaxa hvězd základy astronomie praktikum Dynamická paralaxa hvězd 1 Úvod Dvojhvězdy jsou nenahraditelným zdrojem informací ze světa hvězd. Nejvýznamnější jsou z tohoto pohledu zákrytové dvojhvězdy, tedy soustavy,

Více

Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot

Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný

Více

Goniometrické rovnice

Goniometrické rovnice Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u

Více

5. Elektromagnetické kmitání a vlnění

5. Elektromagnetické kmitání a vlnění 5. Elektomagnetické kmitání a vlnění 5.1 Oscilační obvod Altenáto vyábí střídavý poud o fekvenci 50 Hz. V paxi potřebujeme napětí ůzných fekvencí. Místo fekvence používáme pojem kmitočet. Různé fekvence

Více

Seriál II.II Vektory. Výfučtení: Vektory

Seriál II.II Vektory. Výfučtení: Vektory Výfučtení: Vektory Abychom zcela vyjádřili veličiny jako hmotnost, teplo či náboj, stačí nám k tomu jediné číslo (s příslušnou jednotkou). Říkáme jim skalární veličiny. Běžně se však setkáváme i s veličinami,

Více

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky Rovnice přímky vypsané příklady Zdroj: Vše kromě příkladu 3.4: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=parametrickevyjadre ni Příklady 3.5 a 3.7-1 a 3: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=obecnarovnice

Více

Hvězdy se rodí z mezihvězdné látky gravitačním smrštěním. Vlastní gravitací je mezihvězdný oblak stažen do poměrně malého a hustého objektu

Hvězdy se rodí z mezihvězdné látky gravitačním smrštěním. Vlastní gravitací je mezihvězdný oblak stažen do poměrně malého a hustého objektu Hvězdy se rodí z mezihvězdné látky gravitačním smrštěním. Vlastní gravitací je mezihvězdný oblak stažen do poměrně malého a hustého objektu kulovitého tvaru. Tento objekt je nazýván protohvězda. V nitru

Více

L2 Dynamika atmosféry I. Oddělení numerické předpovědi počasí ČHMÚ 2007

L2 Dynamika atmosféry I. Oddělení numerické předpovědi počasí ČHMÚ 2007 L2 Dynamika atmosféy I Oddělení nmeické předpovědi počasí ČHMÚ 2007 Plán přednášky Dynamika atmosféy Sostava ovnic Zákony zachování Vlny v atmosféře, příklady oscilací Příklady instabilit Rotjící sořadný

Více

B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo.

B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo. B. Výpočetní geometie a počítačová gafika 9. Pomítání., světlo. Pomítání Převedení 3D objektu do 2D podoby je ealizováno pomítáním, při kteém dochází ke ztátě infomace. Pomítání (nebo též pojekce) je tedy

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/ Střední půmyslová šola a Vyšší odboná šola technicá Bno, Soolsá 1 Šablona: Inovace a zvalitnění výuy postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechania, pužnost pevnost Záladní duhy namáhání,

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

K přednášce NUFY080 Fyzika I prozatímní učební materiál, verze 01 Keplerova úloha Leoš Dvořák, MFF UK Praha, Keplerova úloha

K přednášce NUFY080 Fyzika I prozatímní učební materiál, verze 01 Keplerova úloha Leoš Dvořák, MFF UK Praha, Keplerova úloha K řednášce NUFY080 Fyzika I ozatímní učební mateiál, veze 01 Keleova úloha eoš Dvořák, MFF UK Paha, 014 Keleova úloha Chceme sočítat, jak se ohybuje hmotný bod gavitačně řitahovaný nehybným silovým centem.

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Modely produkčních systémů. Plánování výroby. seminární práce. Autor: Jakub Mertl. Xname: xmerj08. Datum: ZS 07/08

Modely produkčních systémů. Plánování výroby. seminární práce. Autor: Jakub Mertl. Xname: xmerj08. Datum: ZS 07/08 Modely podukčních systémů Plánování výoby seminání páce Auto: Jakub Metl Xname: xmej08 Datum: ZS 07/08 Obsah Obsah... Úvod... 3 1. Výobní linky... 4 1.1. Výobní místo 1... 4 1.. Výobní místo... 5 1.3.

Více

POHYB BODU V CENTRÁLNÍM POLI SIL

POHYB BODU V CENTRÁLNÍM POLI SIL POHYB BODU V CENTRÁLNÍM POLI SIL SPECIFIKCE PROBLÉMU Centální siloé pole je takoé pole sil, kdy liboolném bodě postou nositelka síly působící na pohybující se bod pochází peným bodem postou (tz centem

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... nezbedné fotony 1 bodů; (chybí statistiky) Spolu se zadáním úlohy vám přišly polarizační brýle. Máte tedy polarizační filtry. Když je dáte za sebe tak, aby směry jejich polarizace byly na

Více

5. Světlo jako elektromagnetické vlnění

5. Světlo jako elektromagnetické vlnění Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, dynamika Pohybová ovnice po

Více

O tom, co skrývají centra galaxíı. F. Hroch. 26. březen 2015

O tom, co skrývají centra galaxíı. F. Hroch. 26. březen 2015 Kroužíme kolem černé díry? O tom, co skrývají centra galaxíı F. Hroch ÚTFA MU, Brno 26. březen 2015 Kroužíme kolem černé díry? Jak zkoumat neviditelné objekty? Specifika černých děr Objekty trůnící v centrech

Více

GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU

GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU Integální počet funkcí jedné eálné poměnné - 4. - GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU PŘÍKLAD Učete plochu pod gfem funkce f ( x) = sinx n intevlu,. Ploch pod gfem nezáponé funkce f(x) se n intevlu,

Více

Vzdálenost středu Galaxie

Vzdálenost středu Galaxie praktikum Vzdálenost středu Galaxie Připomínám každému, kdo bude měřit hvězdný vesmír, že hvězdné kupy jsou signální světla. Ukazují cestu do centra Galaxie i na její okraje... Kulové hvězdokupy jsou svého

Více

Délka kružnice (obvod kruhu) II

Délka kružnice (obvod kruhu) II .10.7 Déla užnice (obvod uhu) II Předpolady: 01006 Př. 1: Bod je od středu užnice ( ;cm) vzdálen 7 cm. Uči početně vzdálenost z bodu do bodu, teý je tečným bodem tečny užnice jdoucí z bodu. vůj výslede

Více

Slapový vývoj oběžné dráhy. Michaela Káňová, Marie Běhounková Geodynamický seminář

Slapový vývoj oběžné dráhy. Michaela Káňová, Marie Běhounková Geodynamický seminář Slapový vývoj oběžné dráhy Michaela Káňová, Marie Běhounková Geodynamický seminář 20. 5. 2015 Problém dvou těles v nebeské mechanice: dva hmotné body + gravitační síla = Keplerova úloha m keplerovská rychlost

Více

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE. Planetární geografie seminář

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE. Planetární geografie seminář MASARYKOA UNIERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE květen 2008 I Měření vzdáleností ve vesmíru 1) ýpočet hodnoty pc a ly ze známé AU a převod těchto hodnot. 1 AU = 150 10 6 km Z definice paralaxy

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu EKONOMIKA V ZEMĚMĚŘICTVÍ A KATASTRU číslo úlohy 1. název úlohy NEMOVITOSTÍ Analýza

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

vzhledem k ose kolmé na osu geometrickou a procházející hmotným středem válce. c) kužel o poloměru R, výšce h, hmotnosti m

vzhledem k ose kolmé na osu geometrickou a procházející hmotným středem válce. c) kužel o poloměru R, výšce h, hmotnosti m 8. Mechanika tuhého tělesa 8.. Základní poznatky Souřadnice x 0, y 0, z 0 hmotného středu tuhého tělesa x = x dm m ( m) 0, y = y dm m ( m) 0, z = z dm m ( m) 0. Poznámka těžiště tuhého tělesa má v homogenním

Více

Sluneční plachetnice. 1. Trocha historieequation Chapter 1 Section 1. 2. Pohyb v gravitačním poli

Sluneční plachetnice. 1. Trocha historieequation Chapter 1 Section 1. 2. Pohyb v gravitačním poli Sluneční plachetnice 1. Tocha histoieequation Chapte 1 Section 1 O plachetnici poháněné tlakem slunečního záření, kteá letí napříč sluneční soustavou, snily desítky spisovatelů a fyziků. Mezi nejznámějšími

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Kategorie mladší. Řešení 3. kola VI. ročník. Úloha 3A

Kategorie mladší. Řešení 3. kola VI. ročník. Úloha 3A Kategoie mladší Úloha A Sůví table Když Anička přeloží papí na polovinu, jeho tloušťku t tím zdvojnásobí. Nová tloušťka t je pak ovna t. Po duhém přeložení bude nová tloušťka t ovna t = t, po třetím přeložení

Více

Hydraulika podzemních vod

Hydraulika podzemních vod Hydaulika podzemních vod STOUPACÍ ZKOUŠKY - vyhodnocení stavu po skončení čepací zkoušky - měří se tzv. zbytkové snížení (původní hladina hladina po skončení čepání v libovolném čase po skončení odběu)

Více

I. Statické elektrické pole ve vakuu

I. Statické elektrické pole ve vakuu I. Statické elektické pole ve vakuu Osnova:. Náboj a jeho vlastnosti 2. Coulombův zákon 3. Intenzita elektostatického pole 4. Gaussova věta elektostatiky 5. Potenciál elektického pole 6. Pole vodiče ve

Více

pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese,

pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, Změny souřadnic nebeských těles pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy vlastní pohyb max. 10 /rok, v průměru 0.013 /rok pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, nutace,

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Fyzikální koepondenční eminář MFF UK Úloha I.4... něo je tu nakřivo 6 bodů; půmě 3,1; řešilo 6 tudentů Pozoovatel e nahází na lodi na otevřeném moři ve výše h nad hladinou. Je vzdálen d od vodoovného zábadlí

Více

Dynamika vázaných soustav těles

Dynamika vázaných soustav těles Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

Duktilní deformace, část 1

Duktilní deformace, část 1 uktilní defomace, část uktilní (plastická) defomace je taková defomace, při níž se mateiál defomuje bez přeušení koheze (soudžnosti). Plasticita mateiálu záleží na tzv. mezi plasticity (yield stess) -

Více

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava

Více

Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony

Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony Astronomové při sledování oblohy zaznamenávají především úhly a pozorují něco, co se nazývá nebeská sféra. Nicméně, hvězdy nejsou od Země vždy

Více

4.3.2 Goniometrické nerovnice

4.3.2 Goniometrické nerovnice 4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

Kreslení elipsy Andrej Podzimek 22. prosince 2005

Kreslení elipsy Andrej Podzimek 22. prosince 2005 Kreslení elipsy Andrej Podzimek 22. prosince 2005 Kreslení elipsy v obecné poloze O co půjde Ukázat přesný matematický model elipsy Odvodit vzorce pro výpočet souřadnic důležitých bodů Nalézt algoritmus

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace

Více