Přednáška 09. Smyk za ohybu
|
|
- Lubomír Marek
- před 6 lety
- Počet zobrazení:
Transkript
1 Přednáška 09 Smk a ohbu Vnitřní síl na nosníku ve vtahu k napětí Smkové napětí pro obdélníkový průře Smkové napětí pro obecný průře Smkové ochabnutí Svar, šroub, spřahovací trn Příklad Copright (c) 2011 Vít Šmilauer Cech Technical Universit in Prague, Facult of Civil Engineering, Department of Mechanics, Cech Republic Permission is granted to cop, distribute and/or modif this document under the terms of the GNU Free Documentation License, Version 1.2 or an later version published b the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. cop of the license is included in the section entitled "GNU Free Documentation License" found at 1
2 Motivace ohýbaný nosník f=20 kn/m, šířka obdélníkového průřeu 0,1 m Nosník modelován jako úloha rovinné napjatosti 1 m 1,5 m 2,5 m 0,5 m Normálové napětí x x Smkové napětí x M = /2=40 knm σ x (=0.25)=9,6 MPa M = /8=62,5 knm W el = 0,1 0,52 =4,1666 e-3 m 3 6 σ x (=0,25)=15 MPa Přesné řešení 1,5 MPa Deformace většen 200x, E=210 GPa, n=0,3. 2
3 Ilustrace vniku smkových napětí, rovnováha Dva oddělené nosník x Spolupůsobící nosník x x Každá část nosníku musí být v rovnováe, výslednice napětí jsou N x, V, M. x x x x N x = M = x d x d N x V M V N x V = x d 3
4 Rovnováha smková síla měnou normálové síl f x N N r T : T N =0 rovnováha na všrafované části L R b = fl 2 x x M =Nr, N = M r M = fl2 8, N= fl2 8r =R b ohbový moment L 4r =T vtah mei T a R b x = x Dlouhé níké nosník L 4r,T R b Krátké a vsoké nosník L 4r,T R b porušení nutné třmínk nutné vtužení 4
5 Podmínka rovnováh na elementárním kvádru x x x x X =0 Pro nosník ohýbaný poue okolo hlavní centrální os a atížený svisle: x x,, = M x x = x x = dm x = V x dx x = V x 2 2 C 1 na okrajích průřeu je smkové napětí nulové 5
6 Smkové napětí obdélníkový průře τ x ( x,,h/2)=0 C 1 = V ( x) h2 8 τ x ( x,, h/2)=0 C 1 = V ( x) h2 8 b h = 1 12 bh3 τ x = V (x) 2 2 V (x) Kontrola: h2 τ x (x,, )d= 1,5V (x) bh 8 = 1,5V (x) bh h/ 2 b h / 2 [ 2 ] 1 4 h 2 [ ] h 2 d= 1,5V (x) h [ h 2 h 2 4 (h/2)3 3 h 2 4( h /2)3 3 2] h = 1,5V ( x) 2 h h 3 =V (x) 6
7 Smkové napětí obdélníkový průře h x,max = 3 2 x x = 3 2 V x elastick b τ x ( x, )= 1,5V (x) bh x x = V x bh [ ] h 2 elastick =V x plastický stav Kontrola:V x = x d= V x =V x Smkové napětí vniká v důsledku posouvající síl. Jinými slov: Změna normálových napětí po délce prutu vtváří posouvající sílu a smková napětí. 7
8 Smkový tok pro obecný průře konstantního průřeu x Dx x sx xs = sx t sx =b sx b ře xs s Souřadnice s může mít libovolnou orientaci po průřeu. Často souhlasí s osami,. Souřadnici s volíme tak, ab ře bl co nejužší a předpoklad rovnoměrného smkového napětí τ sx na řeu tím bl co nejlépe splněn, vi dále. Podmínka rovnováh t sx D x= τ sx d x : (σ x D σ x )d σ x d t sx D x=0 s x d Dx x x d t sx = D σ x D x d, x 0, t sx= σ x x d Změna normálových napětí po délce prutu vtváří smkový tok a smkové napětí. 8
9 Obecný vorec pro smkový tok Odvoení platí poue pro hlavní centrální os, x x,, = M x x x,, x M x I = dm x dx dm x = V x dx I V x I t sx = σ x x d=v ( x) d V (x) I d S S S S Statické moment oddělených částí k hlavním centrálním osám. t sx = V (x)s V (x) S I, τ sx =τ xs = t sx b, τ xs= V (x) S V (x)s b bi 9
10 Příklad smkové napětí v tenkostěnném průřeu 200 mm F=103,91 kn 50 x 125 mm 175 mm Těžiště C s -střed smku mm V 3 m 103,91 kn 350 mm =0,0375 m 2 =4,453125e 4 m 4 I =2,140625e 4 m S 1,2 =0,35 0,05 0,1=1,75e-3 m 3 S 3 =S 1,2 0,05 0,075 2 /2=1,89e-3 m 3 S 4,5 = 0,2 0,05 ( 0,15)=1,5e-3m 3 τ 1 xs = V 1,2 S =1,167 MPa, τ 2 0,35 I xs = V 1,2 S =8,167 MPa 0,05 s τ 3 xs = V 3 S =8,823 MPa 0,05 τ 4 xs =7,000 MPa, τ 5 xs =1,75MPa 10
11 Příklad smkové napětí v tenkostěnném průřeu τ xs =τ x 1,75 7,00 8,823 1,167 8,167 MPa V = x d Simulace pomocí metod konečných prvků (MKP), napětí spojitě vhlaeno do ulů (skok v napětí jsou ve vkreslení ignorován) 11
12 Příklad smkové napětí v tenkostěnném průřeu τ xs =τ x 2,625 0,14 Nereálné průměrné napětí S 6 =0,15 0,05 0,1=7,5e-4 m 3 S 7 =0,075 0,05 ( 0,15)= 5,625e-4 m 3 0,14 7 2,625 MPa τ 6 xs = V 6 S =3,500 MPa 0,05 τ 7 xs = V 7 S = 2,625MPa 0,05 s V = x d =0 6 3,500 0,14 0,14 Nereálné průměrné napětí Napětí v polovině světlé šířk části pásnice, průměrná hodnota e vorce 1,75 MPa 3,500 MPa 12
13 Příklad smkové napětí v tenkostěnném průřeu Dominantní smková napětí τ x 2,625 MPa F= kn anedbáno 2,625 MPa τ x Boční pohled (pokud b části nosníku nespolupůsobil) anedbáno 7,00 MPa 8,823 x x x anedbáno 8,167 τ x anedbáno 3,500 3,500 MPa 13
14 Smkové ochabnutí (shear lag) Nerovnoměrné rodělení normálového napětí, které vniká vlivem smkové poddajnosti určitých oblastí konstrukce. Důležité u krátkých nosníků a tenkostěnných profilů. Zjednodušený výpočet běžně uvažuje efektivní průře s vloučením málo spolupůsobících částí. σ x σ x Spolupůsobící šířka desk σ x 100 kn Délka konol 10 m, Roměr betonové desk 4,4x10x0,2 m, šířka žebra 0,4 m, světlá výška žebra 0,8 m, E=30 GPa, n=0,3, deformace 100x většen. 14
15 Příklad určete průběh τ x u trojúhelníkového průřeu h b d s τ x 2 o 3 2 V τ x (s)= V S (s) d d τ x (s) =0 s= h ds 2 τ x (h/2)= 3V bh = 3 2 = 12V s(h s) bh 3 V Rovnoramenný trojúhelník = 1 36 bh3, d s = b h s S s = 1 2 s d s 2 3 h 2 3 s = bs2 3h h s Pon.: Napětí τ x nejsou nulová. 15
16 400 mm Příklad určete smková napětí od síl V 250 mm T τ xs = V (x) S bi, V = 22 kn I = 1 12 (0,35 0,053 0,05 0,25 3 )=6,875e-5 m 4 S 1,2 =0,1 0,05 0,075=3,75e-4 m S 3 =S 1,2 0,4 0, =5,0e-4 m 3 V τ x τ 1 xs = 0,022 3,75e-4 = 2,40 MPa 0,05 I τ x Nulové τ 2 xs = 0,022 3,75e-4 = 0,30 MPa 0,4 I τ 3 xs = 0,022 5,0e-4 = 0,40 MPa 0,4 I 2,40 MPa 16
17 400 mm Příklad určete smková napětí od posouvající síl V mm T τ xs = V ( x)s, V bi =200 kn =4,73e-4 m 4 S 1,2 =0,25 0,05 0,117=1,46e-3 m 3 τ x 4,95 MPa S 3 =S 1,2 0,05 0,0922 =1,67e-3 m 3 2 S 4 =0,1 0,05 ( 0,117)= 5,85e-4 m 3 4 4,95 MPa τ x 2,47 12,35 MPa 14,12 τ 1 xs = 0,2 1,46e-3 =2,47 MPa 0,25 τ 2 xs = 0,2 1,46e-3 =12,35 MPa 0,05 τ 3 xs = 0,2 1,67e-3 =14,12 MPa 0,05 V =200 kn τ 4 xs = 0,2 ( 5,85e-4) = 4,95 MPa 0,05 17
18 Příklad určete smkové napětí v koutovém svaru Vužijte výsledk minulého příkladu a uvažujte tloušťku svaru 4 mm. 2 2,47 12,35 MPa τ x 14,12 Svar musí přenést smkový tok: t x =12,35 0,05=2,47 0,25=0,618 MN/m' Svar na jeden běžný metr nosníku musí ted přenést 618 kn/m'. Na jeden svar připadá polovina, tj. 309 kn/m'. Smkové napětí v nebepečném řeu : 2 a=4 mm nebepečný ře τ = t x 2a = 0, ,004 = 0,309 =77,25 MPa 0,004 18
19 Příklad určete smkovou sílu na jeden spřahovací trn 2 τ x 2,47 12,35 MPa 14,12 Vužijte výsledků minulého příkladu. Trn opět musí přenést smkový tok: t x =12,35 0,05=2,47 0,25=0,618 MN/m' Na jeden trn připadá smková síla: F =618 0,2=123,6 kn Ocelový hmoždík Bulldog F F v=0,2 m M. Patrick: Universit of Western Sdne 19
20 Oták 1. Nakreslete průběh posouvající síl pro nosník, který je atížen poue koncovými moment a tím je v rovnováe. Proč nevniká posouvající síla ani smkové napětí? Vsvětlete na modelu nosníku, který je složen vrstviček elastických vláken. 2. Kolikrát se větší průhb nosníku, pokud se obdélníkový průře usmkne v rovině procháející jeho těžištěm? 3. Při výpočtu smkového toku se snažíme vést co nejužší ře. Vsvětlete, jaké důsledk může mít nerespektování této ásad. 4. Při atížení nosníku posouvající silou V vnikají napětí τ x. Kterou sílu dostaneme integrací τ x po průřeu? Ukažte průře, kde vnikají i τ x. 5. Co je smkové ochabnutí? Uveďte příklad úloh, kd se musí smkové ochabnutí uvažovat. 6. Nakreslete průběh smkového napětí τ x na kruhovém průřeu. Dokažte, že výsledný průběh napětí má parabolický průběh. 7. Ukažte průře, kde v těžišti nevniká největší smkové napětí. Existuje takový průře pro smkový tok? Vtvořeno 04/2011 v OpenOffice 3.2, Ubuntu 10.04, Vít Šmilauer, ČVUT. Poděkování patří ejména M. Jiráskovi a inspiraci jeho přednáškami. 20
Integrální definice vnitřních sil na prutu
Přednáška 04 Integrální definice vnitřních sil Ohb prutu v rovinách x, x Šikmý ohb Kombinace normálové síl s ohbem Poloha neutrální os Jádro průřeu Příklad Copright (c) 011 Vít Šmilauer Cech Technical
Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu
Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in
Rovnoměrně ohýbaný prut
Přednáška 02 Prostý ohb Hpotéa o achování rovinnosti průřeu Křivost prutu, vtah mei momentem a křivostí Roložení napětí při ohbu Pružný průřeový modul Vliv teplot na křivost Copright (c) 2011 Vít Šmilauer
Platnost Bernoulli Navierovy hypotézy
Přednáška 03 Diferenciální rovnice ohybu prutu Platnost Bernoulli Navierovy hypotézy Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Příklady Copyright (c) 011 Vít Šmilauer
Platnost Bernoulli Navierovy hypotézy
Přednáška 0 Platnost Bernoulli Navierovy hypotézy Diferenciální rovnice ohybu prutu Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Vliv teploty na průhyb a křivost prutu Příklady
Jednoosá tahová zkouška betonářské oceli
Přednáška 06 Nepružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram N, M Příklady Copyright
SMA2 Přednáška 09 Desky
SMA Přednáška 09 Desk Měrné moment na deskách Diferenciální rovnice tenké izotropní desk Metod řešení diferenciální rovnice desk Přibližné řešení obdélníkových desek Příklad Copright (c) 01 Vít Šmilauer
Přednáška 10. Kroucení prutů
Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení
Kinematická metoda výpočtu reakcí staticky určitých soustav
Kinematická metoda výpočtu reakcí staticky určitých soustav 1) Uvolnění jednoho stupně volnosti odpovídající reakci, kterou chceme určit (vytvoření kinematického mechanismu o jednom stupni volnosti). Zavedení
Princip virtuálních posunutí (obecný princip rovnováhy)
SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical
Přednáška 08. Obecná trojosá napjatost
Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace
Jednoosá tahová zkouška betonářské oceli
Přednáška 06 epružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram, M Příklady Copyright (c)
Vícerozměrné úlohy pružnosti
Přednáška 07 Víceroměrné úlohy Rovinná napjatost a deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro úlohu rovinné napjatosti Příklady Copyright (c) 0 Vít Šmilauer Cech Technical University
Přednáška 10. Kroucení prutů
Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení
Princip virtuálních posunutí (obecný princip rovnováhy)
SMA Přednáška 5 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tahtlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) Vít Šmilauer Czech Technical University
Vícerozměrné úlohy pružnosti
Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical
Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např.
: 4 2 R 1 1 R 2 0,8 R 3 : 8 0 R 1 1 R 2 0,8 R 3 : 2 1 R 1 2 R 2 0 R 3 [2 1 0,8 ] 0 1 0,8 1 2 0 A Vbrané metod řešení soustav rovnic Podmínk rovnováh či ekvivalence vedou často na soustavu rovnic, např.
Přednáška 10. Kroucení prutů
Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení Příklady Copyright
Redukční věta princip
SA Přednáška 4 Redukční věta Staticky neurčité příhradové konstrukce Spojité nosníky Uzavřené rámy Oecné vlastnosti staticky neurčitých konstrukcí Copyright (c) Vít Šmilauer Czech Technical University
Princip virtuálních prací (PVP)
Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu
Téma 7 Smyková napětí v ohýbaných nosnících
Pružnost a plasticita,.ročník bakalářského studia Téma 7 Smková napětí v ohýbaných nosnících Základní vtah a předpoklad řešení Výpočet smkového napětí vbraných průřeů Dimenování nosníků namáhaných na smk
Smyková napětí v ohýbaných nosnících
Pružnost a plasticita, 2.ročník kominovaného studia Smková napětí v ohýaných nosnících Základní vtah a předpoklad řešení ýpočet smkového napětí odélníkového průřeu Dimenování nosníků namáhaných na smk
SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady
SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,
Rekapitulace princip virtuálních sil pro tah/tlak
SMA Přednáška Doplňková virtuální práce momentů Metody integrace dvou spojitých funkcí Doplňková virtuální práce posouvajících sil Vliv rovnoměrné a nerovnoměrné teploty Formulace principu virtuálních
Statika 2. Smyk za ohybu a prostý smyk. Miroslav Vokáč 12. listopadu ČVUT v Praze, Fakulta architektury.
4. přednáška a prostý smyk Miroslav Vokáč miroslav.vokac@cvut.c ČVUT v Prae, Fakulta architektury 12. listopadu 2018 Věta o vájemnosti tečných napětí x B τ x (B) x B τ x (B) Věta o vájemnosti tečných napětí:
Pružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady
SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,
Normálová napětí při ohybu - opakování
Normálová napětí při ohbu - opakování x ohýbaný nosník: σ x τ x Průřeová charakteristika pro normálová napětí a ohbu je moment setrvačnosti nebo něj odvoený modul průřeu x - / /= Ed W m + σ x napětí normálové
Složené soustavy v rovině, stupně volnosti
Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové
Normálová napětí v prutech namáhaných na ohyb
Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené
Vnitřní síly v prutových konstrukcích
Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m
Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)
SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University
Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)
SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University
Stupně volnosti a vazby hmotných objektů
Stupně volnosti a vazby hmotných objektů Reálnou konstrukci či její části idealizujeme výpočetním modelem, který se obvykle skládá z objektů typu hmotný bod model prvku na který působí svazek sil (často
Přednáška 01 PRPE + PPA Organizace výuky
Přednáška 01 PRPE + PPA Organizace výuky Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny Út 8.30 9.45 St 14.00 15.45, B286, PRPE (Stav. Inženýrství) + PPA (Arch. a stavitelství) přednáška
Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice
Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost
Přednáška 05. Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady
Přednáška 05 Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady Copyright (c) 011 Vít Šmilauer Czech Technical University in Prague,
Přednáška 02. License" found at
Přenáška 02 Prostý ob Hpotéa o acování rovinnosti průřeu Křivost prutu, vta mei momentem a křivostí Roložení napětí při obu Pružný průřeový moul Příkla Coprigt (c) 2011 Vít Šmilauer Cec Tecnical Universit
Statika 2. Excentrický tlak za. Miroslav Vokáč 6. prosince ČVUT v Praze, Fakulta architektury. Statika 2. M.
6. přednáška Miroslav Vokáč miroslav.vokac@cvut.c ČVUT v Prae, akulta architektury 6. prosince 2018 Průběh σ x od tlakové síly v průřeu ávisí na její excentricitě k těžišti: e = 0 e < j e = j e > j x x
Přednáška 01 Úvod + Jednoosá napjatost
Přednáška 01 Úvod + Jednoosá napjatost Pružnost a pevnost A (PRA) Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St 9.15-11.30 Webové stránky předmětu https://mech.fsv.cvut.cz/student/
Rovinná napjatost a Mohrova kružnice
Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují
Téma 6 Normálová napětí v prutech namáhaných na ohyb
Pružnost a plasticita,.ročník bakalářského studia Téma 6 Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené
Název materiálu: Hydrostatická tlaková síla a hydrostatický tlak
Reg.č. CZ.1.07/1.4.00/21.1720 Příjemce: Základní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspěvková organizace Název projektu: Kvalitní podmínky- kvalitní výuka Název materiálu:
Přibližné řešení úloh mechaniky
SMA Přednáška 1 Přibližné metody řešení úloh mechaniky Funkcionál energie Metoda konečných prvků Konečněprvkové programy EduBeam Časté problémy při řešení pomocí MKP Příklady Copyright (c) 1 Vít Šmilauer
* Modelování (zjednodušení a popis) tvaru konstrukce. pruty
2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,
Pružnost, pevnost, plasticita
Pružnost, pevnost, plasticita Pracovní vere výukového skripta 22. února 2018 c Milan Jirásek, Vít Šmilauer, Jan Zeman České vsoké učení technické v Prae Fakulta stavební Katedra mechanik hákurova 7 166
Rastrová reprezentace geoprvků model polí Porovnání rastrové a vektorové reprezentace geoprvků Digitální model terénu GIS 1 153GS01 / 153GIS1
GIS 1 153GS01 / 153GIS1 Martin Landa Katedra geomatiky ČVUT v Praze, Fakulta stavební 14.11.2013 Copyright c 2013 Martin Landa Permission is granted to copy, distribute and/or modify this document under
5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.
5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w
Sada 2 Dřevěné a ocelové konstrukce
Stř ední škola stavební Jihlava Sada 2 Dřevěné a ocelové konstrukce 20. Prostý ohb Digitální učební materiál projektu: SŠS Jihlava šablon registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).
Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace
Teorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod.
Výpočet spojovacích prostředků a spojů (Prostý smyk) Průřez je namáhán na prostý smyk: působí-li na něj vnější síly, jejichž účinek lze ekvivalentně nahradit jedinou posouvající silou T v rovině průřezu
6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I
6.3 Moment setrvačnosti a deviační moment rovinných obraců Statické moment rovinného obrace -k ose xiální moment setrvačnosti rovinného obrace -k ose -k ose Pon.: 1), > 0 S d d d. S d -k ose [m 3 ] [m
Napětí a únosnost. ohýbaných prutů
Napětí a únosnost ohýbaných prutů Normálová napětí při ohbu ohýbaný nosník: x V τ x vlákna / max / Ed - - tažná tlačná + tažná tlačná tlačná tažná x Průřová charaktristika pro normálová napětí a ohbu j
Rovinná a prostorová napjatost
Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových
Lokalizace QGIS, GRASS
13. ledna 2009 Copyright 2008 (c) Hořejší, Havĺıčková, Valenta Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation Licence, Version 1.2 or
Normálová napětí při ohybu
Normálová napětí při ohbu vlákna - tažná tlačná / max / Ed + tlačná - tažná tlačná x ohýbaný nosník: x V τ x Průřová charaktristika pro normálová napětí a ohbu j momnt strvačnosti nbo něj odvoný modul
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
Pružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
SLOUP NAMÁHANÝ TLAKEM A OHYBEM
SOUP NAMÁHANÝ TAKEM A OHYBEM Posuďte únosnost centrick tlačeného sloupu délk 50 m profil HEA 4 ocel S 55 00 00. Schéma podepření a atížení je vidět na následujícím obráku: M 0 M N N N 5m 5m schéma pro
Ohyb - smyková napětí
Oh - smková napětí p + + - - l x ohýaný nosník - M σ x - x Průřeové charakteristik pro smková napětí a ohu jsou statický moment ploch S a moment setrvačnosti. S A části průr T [ m ] max Mení stav únosnosti
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Vnitřní síly na nosnících Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW:
Stavební mechanika 1 - K132SM1 Structural mechanics
Stavební mechanika 1 - K132SM1 Structural mechanics Přednášející Vít Šmilauer, Ing., Ph.D. katedra Mechaniky vit.smilauer@fsv.cvut.cz místnost D2034, konzultační hodiny Út 10:00 11:30 Literatura Kufner,
PRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
Namáhání ostění kolektoru
Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných
Příklad 4 Ohýbaný nosník napětí
Příklad 4 Oýaný nosník napěí Zadání Nosník s převislým koncem je aížen spojiým aížení q = 4 kn/m a osamělou silou F = 40 kn. Průře nosníku je ocelový svařovaný proil. Roměr nosníku jsou: L =,6 m L =, m
1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů
Téma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
Výpočet sedání kruhového základu sila
Inženýrský manuál č. 22 Aktualizace 06/2016 Výpočet sedání kruhového základu sila Program: MKP Soubor: Demo_manual_22.gmk Cílem tohoto manuálu je popsat řešení sedání kruhového základu sila pomocí metody
PostGIS Topology. Topologická správa vektorových dat v geodatabázi PostGIS. Martin Landa
Přednáška 5 Topologická správa vektorových dat v geodatabázi PostGIS 155UZPD Úvod do zpracování prostorových dat, zimní semestr 2018-2019 Martin Landa martin.landa@fsv.cvut.cz Fakulta stavební ČVUT v Praze
ZÁKLADNÍ POJMY A VZTAHY V TECHNICKÉ PRUŽNOSTI
ZÁKLDNÍ POJY VZTHY V TECHNICKÉ PRUŽNOSTI Napětí velikost vnitřní síl na jednotku ploch konečné podíl elementů vnitřních sil a ploch Podle směru vnitřních sil avádíme: ds napětí celkové σ r = v obecném
PŘÍKLAD č. 1 Třecí styk ohýbaného nosníku
FAST VUT v Brně PRVKY KOVOVÝCH KONSTRUKCÍ Ústav kovových a dřevěných konstrukcí Studijní skupina: B2VS7S Akademický rok: 2017 2018 Posluchač:... n =... PŘÍKLAD č. 1 Třecí styk ohýbaného nosníku Je dán
PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN
PŘÍKLAD VÝPOČTU RÁU PODLE ČS E 99-- Jaub Dolejš*), Zdeně Sool**).Zadání avrhněte sloup plnostěnného dvouloubového rámu, jehož roměr jsou patrné obráu. Horní pásnice příčle je po celé délce ajištěna proti
IVC Nošovice sportoviště II etapa Cvičná ocelová věž pro hasičský záchranný zbor STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ TECHNICKÁ ZPRÁVA A STATICKÉ POSOUZENÍ
IVC Nošovice sportoviště II etapa Cvičná ocelová věž pro hasičský áchranný bor 36-8/13 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ TECHNICKÁ ZPRÁVA A STATICKÉ POSOUZENÍ vpracoval: ing. Robin Kulhánek kontroloval: ing.
2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut
.13 Rovinný obloukový nosník atížený v rovině = staticky určitě podepřený rovinný obloukový prut (střednice-rovinná křivka, atížení v rovině střednice) Geometrie obloukového prutu Poloha průřeu: s x =
Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.
Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením
Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.
OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Řešený příklad: Prostě uložený nosník s mezilehlým příčným podepřením
Dokument č. SX003a-CZ-EU Strana 1 z 8 Eurokód :200 Řešený příklad: Prostě uložený nosník s mezilehlým příčným podepřením Tento příklad podrobně popisuje posouzení prostého nosníku s rovnoměrným zatížením.
Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.
Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Řešený příklad: Pružný návrh jednolodní rámové konstrukce ze svařovaných profilů
Dokument: SX00a-Z-EU Strana 7 áev Eurokód Vpracoval Arnaud Lemaire Datum duben 006 Kontroloval Alain Bureau Datum duben 006 Je navržena jednolodní rámová konstrukce vrobená e svařovaných proilů podle.
1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.
Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.
Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech
Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:
5. cvičení Svarové spoje Obecně o svařování Svařování je technologický proces spojování kovů podmíněného vznikem meziatomových vazeb, a to za působení tepla nebo tepla a tlaku s případným použitím přídavného
Betonové a zděné konstrukce 2 (133BK02)
Podklad k příkladu S ve cvičení předmětu Zpracoval: Ing. Petr Bílý, březen 2015 Návrh rozměrů Rozměry desky a trámu navrhneme podle empirických vztahů vhodných pro danou konstrukci, ověříme vhodnost návrhu
BETONOVÉ KONSTRUKCE B03C +B03K SKOŘEPINOVÉ KONSTRUKCE. Betonové konstrukce B03C +B03K. Betonové konstrukce - B03C +B03K
7.1.017 SKOŘEPINOVÉ KONSTUKCE BETONOVÉ KONSTUKCE B03C B03K Betonové konstrukce - B03C B03K 1 7.1.017 Skořepiny Konstrukční prvky plošnéo carakteru dva převládající roměry konstrukčnío prvku (
3.1 Shrnutí základních poznatků
3.1 Shrnutí ákladních ponatků Uvažujme nosník, tj. prut, jejichž délka převládá nad charakteristickými roměr průřeu. Při tvorbě výpočtového modelu nosník totožňujeme s jeho podélnou osou a uvažujeme skutečný
Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017
Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním
Zjednodušená deformační metoda (2):
Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem
Pružnoplastická analýza
Pružnost a pevnost 132PRPE Přednášk Pružnoplastická analýa Nepružné cování materiálů. Pružnoplastický a plastický stav průřeu oýbanýc prutů. Mení plastická analýa nosníku. Petr Kabele České vsoké učení
( ) Podmínka plasticity: σ σ 0. Podmínky plasticity. Podmínky plasticity. Podmínky plasticity. = σ = σ. f σ σ σ
Podmínka plasticit rovnice popisující všechn stav napětí, které vedou k plastickému přetváření materiálu. ednoosá napjatost charakteriovaná jedinou složkou normálového napětí. Podmínka plasticit: nebo
5 SLOUPY. Obr. 5.1 Průřezy ocelových sloupů. PŘÍKLAD V.1 Ocelový sloup
SLOUPY. Obecné ponámk Sloup jsou hlavními svislými nosnými element a přenášejí atížení vodorovných konstrukčních prvků do ákladové konstrukce. Modulové uspořádání načně ávisí na unkci objektu a jeho dispoičním
PostGIS Raster. Správa rastrových dat v geodatabázi PostGIS. Martin Landa. 155UZPD Úvod do zpracování prostorových dat, zimní semestr
Přednáška 6 Správa rastrových v geoabázi PostGIS 155UZPD do zpracování prostorových, zimní semestr 2016-2017 Martin Landa martin.landa@fsv.cvut.cz Fakulta stavební ČVUT v Praze Katedra geomatiky http://geo.fsv.cvut.cz/gwiki/155uzpd
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
ENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU
P Ř Í K L A D Č. 4 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU Projekt : FRVŠ 011 - Analýza metod výpočtu železobetonových lokálně podepřených desek Řešitelský kolektiv : Ing. Martin
Název Řešený příklad: Pružná analýza jednolodní rámové konstrukce
Dokument: SX09a-Z-EU Strana 8 Řešený příklad: Pružná analýa jednolodní rámové Je navržena jednolodní rámová vrobená válcovaných profilů podle E 993--. Příklad ahrnuje pružnou analýu podle teorie prvního