Přednáška 10. Kroucení prutů

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška 10. Kroucení prutů"

Transkript

1 Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení 4) Příklady Copyright (c) 11 Vít Šmilauer Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Czech Republic Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1. or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License" found at 1

2 Příklady konstrukcí namáhaných kroucením

3 Rovnoměrné kroucení kruhové tyče Původní poloha bodu y =r cos z =r sin x x x = L x y z Nová poloha bodu po natočení průřezu cos a y + v =r cos (a +ϕ x )=r cos a r ϕ x sin a r ϕ x +! sin a z + w=r sin( a+ ϕx )=r sin a+ r ϕ x cos a r ϕ x! Posuny bodu pokud jx << 1 y v=r cos( a+ ϕ x ) r cos a r ϕx sin a= z ϕ x w=r sin( a+ ϕx ) r sin a r ϕ x cos a= y ϕx y a a+jx z r z+w y+v z

4 Rovnoměrné kroucení kruhové tyče Pole posunů u ( x, y, z )= v ( x, y, z )= z j x ( x ) w( x, y, z)= y j x ( x) Rovnoměrné kroucení x j x ( x )= Δ j L dj θ= dx... Poměrné (relativní) zkroucení [rad/m] Pole deformací j x ( x) u v Δj γ xy = + = z = z = z θ y x dx L j x ( x) Δj w u γ xz = + = y = y =yθ x z dx L v w γ yz = + = j x ( x)+ j x ( x)= z y V rovině yz nedochází ke smykovým deformacím. 4

5 Rovnoměrné kroucení kruhové tyče napětí max =G R Pole napětí Smykové čáry (izolinie napětí) xy x, y, z =G xy = G z y xz x, y, z =G xz =G y, max =G R T σ =Aσ A [ τ,xy τ, xz [ τ xy cos a+ τ xz sin a τ xy sin a +cos xz sin a τ, xy, xz ][ ][ τ 1 = cos a sin a τ xy sin a cos a τ xz τ xy ][ xs = xz ' xy '= ] τ xz 1 cos a sin a = sin a cos a τ xy cos a + τ xz sin a τ xy sin a +cos xz sin a Rotace tenzoru napětí zde funguje stejně jako rotace vektoru napětí. R z ] y xy = xs sin xz = xs cos y a z r s xs =G r z 5

6 Vztah smykových napětí a kroutícího momentu Nenulové složky napětí xy x, y, z = G z xz x, y, z =G y x y z M x = xz y xy z da A M x = G y G z da=g y z da A A Polární moment setrvačnosti průřezu xy da xz da I p = y z da= r da=i y I z A A M x =G I p Tuhost kruhového průřezu v kroucení Poměrné (relativní) zkroucení prutu 6

7 Základní rovnice krouceného prutu [ ( )] d jx(x) d GI p + m x ( x)= dx dx Natočení jx(x) d jx(x) θ x ( x)= dx Zkroucení θx(x) d j x ( x) M x ( x)=gi p dx M x ( x)=gi p θ x ( x) Vnější zatížení mx(x) dm x x mx x = dx Moment (x) Napětí τxy, τxz 7

8 Příklad rovnoměrné kroucení kruhové tyče Určete průběh smykového napětí a průběh natočení 8 knm x Ø, m G=8 GPa L= m + 8 knm πr =1,571e-4 m 4 4 M x ( x) θ x ( x)= =6,7e-4 rad/m GI p + L + 1,7e rad jx I p =I y + I z = d jx(x) θ x ( x)= dx 6,7e 4 rad/m θx 4 j x ( x )= θ x ( x) dx =6,7e-4 x + C 1 j x ( L)=Δ j = 6,7e-4=1,7e- rad τ max =5,9 MPa y τ max =5,9 MPa j x ()= z τ max =G θ x ( x) R=5,9 MPa 8

9 Deplanace průřezu Při kroucení obecně ztrácejí průřezy rovinnost (neplatí pro rotačně symetrické průřezy, tj. kruh a mezikruží) Deplanace = ztráta rovinnosti průřezu Pole posunutí s uvážením funkce deplanace y(y,z) u ( y, z)=θ ( x) y( y, z) Původní rovina průřezu před zkroucením. Funkce deplanace pro obdélníkový průřez, x, m. Řešení pomocí Laplaceovy rovnice y( y, z ) y( y, z) + = y z 9

10 Volné kroucení obecného prutu Volné kroucení prutu nastává, pokud není bráněno deplanaci Při známé deplanační funkci lze vyjádřit složky napětí y y τ xy =G θ z, τ xz =G θ +y y z Kroutící moment ( ) ( ) M x = xz y xy z da=g A A y z y z da z y Ik M x =G I k Tuhost průřezu ve volném kroucení Moment tuhosti průřezu ve volném kroucení Poměrné (relativní) zkroucení prutu 1

11 Volné kroucení masivního průřezu Přibližné řešení pro masivní průřez obecného tvaru A4 Ik 4I p τmax je nutné určit přímo z deplanační funkce Přesné řešení pro obdélník z Laplaceovy rovnice xy h>b xz = max xz = max max b<h 9 b h b h 19b Ik= 1 5 h n=,1,... n 1 h 1 tanh 5 b n 1 11

12 Volné kroucení úzkého obdélníka Ponecháme první člen sumy a za předpokladu b<<h I k b h 19 b πh b h b 1 5 tanh = 1,6 b h π h ( ) ( ) Smykové napětí je ve směru b rozloženo přibližně lineárně τ max = b Ik xy h Pozn. Napětí τxy a τxz je určeno z deplanační funkce. Výsledný moment od smykového napětí τxz dává přesně polovinu momentu. Druhou polovinu momentu tvoří malé napětí τxy, které ovšem působí na velkém rameni. max xz = max b 1

13 Volné kroucení otevřeného tenkostěnného průřezu Otevřený tenkostěnný průřez Střednice průřezu mm h=1 mm h5= mm 175 mm 5 d=d4=5 5 d1=5 h1=175 h4=1 d5=5 h=175 d=5 5 mm Moment tuhosti v kroucení je součtem momentů tuhosti z jednotlivých větví 1 Ik h n max = max Ik Největší smykové napětí vzniká v nejtlustší větvi! 1

14 Příklad tenkostěnný otevřený průřez Pro tenkostěnný průřez z předešlé stránky určete rozložení napětí a vzájemné natočení koncových průřezů. M x =1,95 knm, G=8,77 GPa Prut je délky m. 1,5 I k = d h= (,175+,1+,5)=,e-5 m 4 n 1,95e- τ max = dmax =,5=19,4 MPa Ik,e-5 Rozložení napětí po tloušťce střednic 1,95 1 θ= = =4,81e- m GI k 8,77e+6,e-5 τmax=19,4 MPa τmax=19,4 MPa m Δ j = θ dx= 4,81e- =1,44e- rad =,8 o 14

15 Příklad tenkostěnný otevřený průřez Simulace kroucení pomocí metody konečných prvků (kvadratické prostorové prvky brick). Díky vetknutí prutu je bráněno volné deplanaci. Vzájemné natočení krajních průřezu vychází o % menší, tj.,655o. Konzola délky m. Deformace zvětšeny 5x. Deplanace průřezu ve m od vetknutí. Deformace zvětšeny 5x. Posuny u udány v metrech. Smyková napětí. 15

16 Střed smyku Střed smyku je statický střed výslednic smykových napětí. Pokud zatížení prochází středem smyku (nikoliv těžištěm!), průřez není namáhán kroucením. τ xy Zde nevniká kroucení, neboť zatížení prochází středem smyku Cs. + τ xz + Vz Vz Cs V1 V h a V1 τ xy 16

17 Střed smyku na tenkostěnných průřezech U symetrických průřezů leží Cs na ose symetrie Uložení dřevěné stropnice na U profil Dochází ke kroucení U profilu, i když reakce prochází těžištěm. Varianta bez kroucení U profilu. Dřevená stropnice T Vz Dřevená stropnice T Cs Vz 17

18 Volné kroucení uzavřeného tenkostěnného průřezu Smykový tok je konstantní podél střednice průřezu, smykové napětí je rozloženo rovnoměrně po tloušťce Uzavřený tenkostěnný průřez Střednice průřezu : s dx 1 s1 dx= t xs= 1 s1 = s 1 s 1 dx d (s) dx s s x Smykový tok t xs t xs t xs s dx x = Smykové napětí t xs xs xs xs t xs xs = s Největší napětí vzniká v nejtenší části! 18

19 Volné kroucení uzavřeného tenkostěnného průřezu Příspěvek segmentu střednice číslo n ke kroutícímu momentu s F n= τ xs d n hn=t xs hn T n hn F n ρn =t xs hn ρn =t xs Ω n Fn Ωn Dvojnásobná plocha opsaná průvodičem Celkový kroutící moment M x = F n n=t xs n n n =h n n n M x =t xs =t xs s ds 1. Bredtův vzorec 19

20 Volné kroucení uzavřeného tenkostěnného průřezu = plocha = plocha Z deplanační funkce uzavřeného průřezu lze odvodit. Bredtův vzorec = GI k Ik= Ω ds d (s ). Bredtův vzorec Moment tuhosti ve volném kroucení GIk Torzní tuhost průřezu. U uzavřených průřezů řádově převyšuje torzní tuhost průřezů otevřených (při podobných tvarech průřezů).

21 Příklad porovnání průřezů stejných ploch v kroucení,9 m,8 m, m Porovnejte Ik, θ, Δj, τmax. Délka prutu m, = knm, G=15 GPa.,5 m Úzký obdélník b h b Ik= 1,6 h (, m Masivní průřez A=,4 m ) I k =e-6 m 4,1 m,9 m Uzavřený tenkostěnný průřez A=,4 m A=,4 m A4 I k 4 I p Ω=,5 =,15 m I p =, =66,7e-6 m 1 ds 4,5 = d(s),4 =5 θ= =6,5e-4 rad/m GI k θ= =8,e-4 rad/m GI k 4 Ω Ik= =65e-6 m dds(s ) θ= =,e-4 rad/m GI k Δ j x =θ L=1,5e- rad τ max b=4,69 MPa Ik Δ j x =θ L=1,67e- rad 9 τ max =1,69 MPa b h Δ j x =θ L=,64e- rad t xs τ max = = =,6 MPa d min Ω d min I k =4e-6 m 4 1

22 Příklad porovnejte Ik, τmax následujících průřezů max max max R R R d=,1 R d=,1 R Kruhová trubka Kruhová tyč Rozříznutá trubka R I k =I p = 4 π( R 4 (,9 R )4 ) I k =I p= π R4 I k =I p,4 R 1 1 I k = π R d= π,1 R4 π R4 I k =,1 max = M R= x Ip R τ max = M R=5,8 x Ip πr τ max = M d= x,1 R Ik Ik τ max =15 πr

23 Ohybové (vázané) kroucení K ohybovému kroucení dochází, pokud průřezy nemohou volně deplanovat. Vznikají sekundární napětí σx, τxy, τxz. Tyto sekundární napětí jsou významé pro tenkostěnné průřezy, zejména otevřené. Možné příčiny omezení deplanace x Vetknutí Změna průřezu Osamělý kroutící moment Ohybové kroucení nastává v inženýrské praxi velmi často, volné kroucení naopak zřídka.

24 Otázky 1. Kterých šest složek napětí a deformace je nulových při volném kroucení?. Co označuje deplanační funkce?. Které průřezy nikdy nedeplanují, u kterých je deplanace naopak význačná? 4. Jaký je vztah mezi deplanační funkcí a momentem tuhosti ve volném kroucení? 5. Napište moment tuhosti ve volném kroucení pro masivní průřez, tenký obdélník, otevřený tenkostěnný průřez a tenkostěnný uzavřený průřez. 6. Učiňte totéž pro maximální smykové napětí. 7. Ve kterých částech tenkostěnných otevřených a uzavřených průřezů vzniká největší smykové napětí? 8. Které typy průřezů mají nejmenší moment tuhosti ve volném kroucení? 9. Co je ohybové (vázané) kroucení a za jakých podmínek vzniká? Vytvořeno /11 v OpenOffice., Ubuntu 1.4, Vít Šmilauer, ČVUT 4

Přednáška 10. Kroucení prutů

Přednáška 10. Kroucení prutů Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení

Více

Přednáška 10. Kroucení prutů

Přednáška 10. Kroucení prutů Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení Příklady Copyright

Více

Platnost Bernoulli Navierovy hypotézy

Platnost Bernoulli Navierovy hypotézy Přednáška 03 Diferenciální rovnice ohybu prutu Platnost Bernoulli Navierovy hypotézy Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Příklady Copyright (c) 011 Vít Šmilauer

Více

Platnost Bernoulli Navierovy hypotézy

Platnost Bernoulli Navierovy hypotézy Přednáška 0 Platnost Bernoulli Navierovy hypotézy Diferenciální rovnice ohybu prutu Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Vliv teploty na průhyb a křivost prutu Příklady

Více

Integrální definice vnitřních sil na prutu

Integrální definice vnitřních sil na prutu Přednáška 04 Integrální definice vnitřních sil Ohb prutu v rovinách x, x Šikmý ohb Kombinace normálové síl s ohbem Poloha neutrální os Jádro průřeu Příklad Copright (c) 011 Vít Šmilauer Cech Technical

Více

Kinematická metoda výpočtu reakcí staticky určitých soustav

Kinematická metoda výpočtu reakcí staticky určitých soustav Kinematická metoda výpočtu reakcí staticky určitých soustav 1) Uvolnění jednoho stupně volnosti odpovídající reakci, kterou chceme určit (vytvoření kinematického mechanismu o jednom stupni volnosti). Zavedení

Více

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in

Více

Princip virtuálních posunutí (obecný princip rovnováhy)

Princip virtuálních posunutí (obecný princip rovnováhy) SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical

Více

Princip virtuálních posunutí (obecný princip rovnováhy)

Princip virtuálních posunutí (obecný princip rovnováhy) SMA Přednáška 5 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tahtlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) Vít Šmilauer Czech Technical University

Více

Přednáška 08. Obecná trojosá napjatost

Přednáška 08. Obecná trojosá napjatost Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace

Více

Jednoosá tahová zkouška betonářské oceli

Jednoosá tahová zkouška betonářské oceli Přednáška 06 Nepružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram N, M Příklady Copyright

Více

Princip virtuálních prací (PVP)

Princip virtuálních prací (PVP) Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu

Více

Přednáška 09. Smyk za ohybu

Přednáška 09. Smyk za ohybu Přednáška 09 Smk a ohbu Vnitřní síl na nosníku ve vtahu k napětí Smkové napětí pro obdélníkový průře Smkové napětí pro obecný průře Smkové ochabnutí Svar, šroub, spřahovací trn Příklad Copright (c) 2011

Více

Rovnoměrně ohýbaný prut

Rovnoměrně ohýbaný prut Přednáška 02 Prostý ohb Hpotéa o achování rovinnosti průřeu Křivost prutu, vtah mei momentem a křivostí Roložení napětí při ohbu Pružný průřeový modul Vliv teplot na křivost Copright (c) 2011 Vít Šmilauer

Více

SMA2 Přednáška 09 Desky

SMA2 Přednáška 09 Desky SMA Přednáška 09 Desk Měrné moment na deskách Diferenciální rovnice tenké izotropní desk Metod řešení diferenciální rovnice desk Přibližné řešení obdélníkových desek Příklad Copright (c) 01 Vít Šmilauer

Více

Vícerozměrné úlohy pružnosti

Vícerozměrné úlohy pružnosti Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical

Více

Redukční věta princip

Redukční věta princip SA Přednáška 4 Redukční věta Staticky neurčité příhradové konstrukce Spojité nosníky Uzavřené rámy Oecné vlastnosti staticky neurčitých konstrukcí Copyright (c) Vít Šmilauer Czech Technical University

Více

Jednoosá tahová zkouška betonářské oceli

Jednoosá tahová zkouška betonářské oceli Přednáška 06 epružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram, M Příklady Copyright (c)

Více

Rekapitulace princip virtuálních sil pro tah/tlak

Rekapitulace princip virtuálních sil pro tah/tlak SMA Přednáška Doplňková virtuální práce momentů Metody integrace dvou spojitých funkcí Doplňková virtuální práce posouvajících sil Vliv rovnoměrné a nerovnoměrné teploty Formulace principu virtuálních

Více

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,

Více

Vícerozměrné úlohy pružnosti

Vícerozměrné úlohy pružnosti Přednáška 07 Víceroměrné úlohy Rovinná napjatost a deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro úlohu rovinné napjatosti Příklady Copyright (c) 0 Vít Šmilauer Cech Technical University

Více

Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např.

Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např. : 4 2 R 1 1 R 2 0,8 R 3 : 8 0 R 1 1 R 2 0,8 R 3 : 2 1 R 1 2 R 2 0 R 3 [2 1 0,8 ] 0 1 0,8 1 2 0 A Vbrané metod řešení soustav rovnic Podmínk rovnováh či ekvivalence vedou často na soustavu rovnic, např.

Více

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,

Více

Přednáška 05. Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady

Přednáška 05. Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady Přednáška 05 Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady Copyright (c) 011 Vít Šmilauer Czech Technical University in Prague,

Více

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy) SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University

Více

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy) SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University

Více

Přednáška 01 Úvod + Jednoosá napjatost

Přednáška 01 Úvod + Jednoosá napjatost Přednáška 01 Úvod + Jednoosá napjatost Pružnost a pevnost A (PRA) Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St 9.15-11.30 Webové stránky předmětu https://mech.fsv.cvut.cz/student/

Více

Přednáška 01 PRPE + PPA Organizace výuky

Přednáška 01 PRPE + PPA Organizace výuky Přednáška 01 PRPE + PPA Organizace výuky Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny Út 8.30 9.45 St 14.00 15.45, B286, PRPE (Stav. Inženýrství) + PPA (Arch. a stavitelství) přednáška

Více

12. Prostý krut Definice

12. Prostý krut Definice p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí

Více

Stupně volnosti a vazby hmotných objektů

Stupně volnosti a vazby hmotných objektů Stupně volnosti a vazby hmotných objektů Reálnou konstrukci či její části idealizujeme výpočetním modelem, který se obvykle skládá z objektů typu hmotný bod model prvku na který působí svazek sil (často

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

Složené soustavy v rovině, stupně volnosti

Složené soustavy v rovině, stupně volnosti Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů

Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů Jedenácté cvičení bude vysvětlovat tuto problematiku: Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů

Více

trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem.

trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem. Namáhání krutem Uvažujme přímý prut neměnného kruhového průřezu (Obr.2), popřípadě trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek : Prut namáhaný kroutícím momentem.

Více

Název materiálu: Hydrostatická tlaková síla a hydrostatický tlak

Název materiálu: Hydrostatická tlaková síla a hydrostatický tlak Reg.č. CZ.1.07/1.4.00/21.1720 Příjemce: Základní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspěvková organizace Název projektu: Kvalitní podmínky- kvalitní výuka Název materiálu:

Více

Přibližné řešení úloh mechaniky

Přibližné řešení úloh mechaniky SMA Přednáška 1 Přibližné metody řešení úloh mechaniky Funkcionál energie Metoda konečných prvků Konečněprvkové programy EduBeam Časté problémy při řešení pomocí MKP Příklady Copyright (c) 1 Vít Šmilauer

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Pružnost a pevnost. 9. přednáška, 11. prosince 2018

Pružnost a pevnost. 9. přednáška, 11. prosince 2018 Pružost a pevost 9. předáška, 11. prosice 2018 1) Krouceí prutu s kruhovým průřezem 2) Volé krouceí prutu s průřezem a) masivím b) otevřeým tekostěým c) uzavřeým tekostěým 3) Ohybové (vázaé) krouceí Rovoměré

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Stavební mechanika 1 - K132SM1 Structural mechanics

Stavební mechanika 1 - K132SM1 Structural mechanics Stavební mechanika 1 - K132SM1 Structural mechanics Přednášející Vít Šmilauer, Ing., Ph.D. katedra Mechaniky vit.smilauer@fsv.cvut.cz místnost D2034, konzultační hodiny Út 10:00 11:30 Literatura Kufner,

Více

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5) Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek

Více

Lokalizace QGIS, GRASS

Lokalizace QGIS, GRASS 13. ledna 2009 Copyright 2008 (c) Hořejší, Havĺıčková, Valenta Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation Licence, Version 1.2 or

Více

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Název projektu Registrační číslo projektu Autor Střední průmyslová škola strojírenská a azyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky CZ.1.07/1.5.00/34.1003

Více

Statika 2. Smyk za ohybu a prostý smyk. Miroslav Vokáč 12. listopadu ČVUT v Praze, Fakulta architektury.

Statika 2. Smyk za ohybu a prostý smyk. Miroslav Vokáč 12. listopadu ČVUT v Praze, Fakulta architektury. 4. přednáška a prostý smyk Miroslav Vokáč miroslav.vokac@cvut.c ČVUT v Prae, Fakulta architektury 12. listopadu 2018 Věta o vájemnosti tečných napětí x B τ x (B) x B τ x (B) Věta o vájemnosti tečných napětí:

Více

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní

Více

Rastrová reprezentace geoprvků model polí Porovnání rastrové a vektorové reprezentace geoprvků Digitální model terénu GIS 1 153GS01 / 153GIS1

Rastrová reprezentace geoprvků model polí Porovnání rastrové a vektorové reprezentace geoprvků Digitální model terénu GIS 1 153GS01 / 153GIS1 GIS 1 153GS01 / 153GIS1 Martin Landa Katedra geomatiky ČVUT v Praze, Fakulta stavební 14.11.2013 Copyright c 2013 Martin Landa Permission is granted to copy, distribute and/or modify this document under

Více

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

Ohybové kroucení. Radek Kottner. 19. ledna 2017

Ohybové kroucení. Radek Kottner. 19. ledna 2017 Ohybové kroucení Radek Kottner 19. ledna 017 Volný krut tenkonst nného pr ezu τ xz = T I T δ i I T = 1 3 n δi 3 h i i=1 I T = 1 3 δ3 h Smykové nap tí od ohybu σ x = M I y z τ xz = V z S y b I y t = τ xz

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D. Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+

Více

16. Matematický popis napjatosti

16. Matematický popis napjatosti p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty

Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty Obsah Dimenzování křivého tenkého prutu zde Deformace v daném místě prutu zde Castiglianova věta zde Dimenzování křivého tenkého prutu Mějme obecný křivý prut z homogeního izotropního materiálu. Obrázek:

Více

BETONOVÉ KONSTRUKCE B03C +B03K. Betonové konstrukce - B03C +B03K

BETONOVÉ KONSTRUKCE B03C +B03K. Betonové konstrukce - B03C +B03K BETONOVÉ KONSTRUKCE B03C +B03K Betonové konstrukce - B03C +B03K SKOŘEPINOVÉ KONSTRUKCE Skořepiny Konstrukční prvky plošnéo carakteru dva převládající rozměry konstrukčnío prvku (

Více

PostGIS Topology. Topologická správa vektorových dat v geodatabázi PostGIS. Martin Landa

PostGIS Topology. Topologická správa vektorových dat v geodatabázi PostGIS. Martin Landa Přednáška 5 Topologická správa vektorových dat v geodatabázi PostGIS 155UZPD Úvod do zpracování prostorových dat, zimní semestr 2018-2019 Martin Landa martin.landa@fsv.cvut.cz Fakulta stavební ČVUT v Praze

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

1 Ohyb desek - mindlinovské řešení

1 Ohyb desek - mindlinovské řešení 1 OHYB DESEK - MINDLINOVSKÉ ŘEŠENÍ 1 1 Ohyb desek - mindlinovské řešení Kinematika přemístění Posun w se po tloušťce desky mění málo (vzhledem k hodnotě průhybu) w(x, y, z) = w(x, y) Normály ke střednicové

Více

K výsečovým souřadnicím

K výsečovým souřadnicím 3. cvičení K výsečovým souřadnicím Jak již bylo řečeno, výsečové souřadnice přiřazujeme bodům na střednici otevřeného průřezu, jejich soustava je dána pólem B a výsečovým počátkem M 0. Velikost výsečové

Více

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu: Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul

Více

Teorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod.

Teorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod. Výpočet spojovacích prostředků a spojů (Prostý smyk) Průřez je namáhán na prostý smyk: působí-li na něj vnější síly, jejichž účinek lze ekvivalentně nahradit jedinou posouvající silou T v rovině průřezu

Více

Určete plochu, statické momenty a souřadnice těžiště. Plocha je určena přímkami z=0, y= aaparabolou z= y2

Určete plochu, statické momenty a souřadnice těžiště. Plocha je určena přímkami z=0, y= aaparabolou z= y2 Určete plochu, statické momenty a souřadnice těžiště. Plocha je určena přímkami z=0, y= aaparabolou z= y2 a. a=100mm. Příklad 102 Určete kvadratické momenty průřezu tvaru rovnoramenného trojúhelníkakosám

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

Pružnost a pevnost. zimní semestr 2013/14

Pružnost a pevnost. zimní semestr 2013/14 Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:

Více

Kap. 3 Makromechanika kompozitních materiálů

Kap. 3 Makromechanika kompozitních materiálů Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace

Více

ARST - Architektura a statika SKOŘEPINOVÉ KONSTRUKCE. ARST - Architektura a statika. ARST - Architektura a statika

ARST - Architektura a statika SKOŘEPINOVÉ KONSTRUKCE. ARST - Architektura a statika. ARST - Architektura a statika SKOŘEPINOVÉ KONSTRUKCE 133 1 Skořepiny Konstrukční prvky plošnéo carakteru dva převládající rozměry konstrukčnío prvku (

Více

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT Φd Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT KRUT KRUHOVÝCH PRŮŘEZŮ Součást je namáhána na krut

Více

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti

Více

GIS 1 155GIS1. Martin Landa Lena Halounová. Katedra geomatiky ČVUT v Praze, Fakulta stavební

GIS 1 155GIS1. Martin Landa Lena Halounová. Katedra geomatiky ČVUT v Praze, Fakulta stavební GIS 1 155GIS1 Martin Landa Lena Halounová Katedra geomatiky ČVUT v Praze, Fakulta stavební #2 1/21 Copyright c 2013-2018 Martin Landa and Lena Halounová Permission is granted to copy, distribute and/or

Více

1 Veličiny charakterizující geometrii ploch

1 Veličiny charakterizující geometrii ploch 1 Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice

Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice Přednáška 1 Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice Rozšířený Hookův zákon Geometrické rovnice Ondřej Jiroušek Ústav mechaniky a materiálů Fakulta

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

Statika 2. Kombinace namáhání: N + M Stabilita tlačených prutů: Eulerovo kritické břemeno a vzpěrná pevnost. Miroslav Vokáč

Statika 2. Kombinace namáhání: N + M Stabilita tlačených prutů: Eulerovo kritické břemeno a vzpěrná pevnost. Miroslav Vokáč 1. přednáška : N + M : a vzpěrná pevnost Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 1. října 2018 Konzultační hodiny Ing. Miroslav Vokáč, Ph.D. Klonerův ústav, ČVUT v Praze

Více

Přednáška 02. License" found at

Přednáška 02. License found at Přenáška 02 Prostý ob Hpotéa o acování rovinnosti průřeu Křivost prutu, vta mei momentem a křivostí Roložení napětí při obu Pružný průřeový moul Příkla Coprigt (c) 2011 Vít Šmilauer Cec Tecnical Universit

Více

Výpočet tenkostěnných nosníků. Magdaléna Doleželová

Výpočet tenkostěnných nosníků. Magdaléna Doleželová Výpočet tenkotěnných noníků agdaléna Doleželová Výpočet tenkotěnných noníků. Úvod. Deplanace průřeu. Normálové namáhání V. Tečná napětí V. Deformace V. Příklad V. Přehled použité literatur . Úvod Dělení

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

PostGIS Raster. Správa rastrových dat v geodatabázi PostGIS. Martin Landa. 155UZPD Úvod do zpracování prostorových dat, zimní semestr

PostGIS Raster. Správa rastrových dat v geodatabázi PostGIS. Martin Landa. 155UZPD Úvod do zpracování prostorových dat, zimní semestr Přednáška 6 Správa rastrových v geoabázi PostGIS 155UZPD do zpracování prostorových, zimní semestr 2016-2017 Martin Landa martin.landa@fsv.cvut.cz Fakulta stavební ČVUT v Praze Katedra geomatiky http://geo.fsv.cvut.cz/gwiki/155uzpd

Více

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky betonových konstrukcí BL01 12 přednáška Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky namáhané kroucením Typy kroucených prvků Prvky namáhané kroucením

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

ENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU

ENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU P Ř Í K L A D Č. 4 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU Projekt : FRVŠ 011 - Analýza metod výpočtu železobetonových lokálně podepřených desek Řešitelský kolektiv : Ing. Martin

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A9 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Posuzování betonových sloupů Masivní sloupy

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Skořepinové konstrukce. tloušťka stěny h a, b, c

Skořepinové konstrukce. tloušťka stěny h a, b, c Skořepinové konstrukce skořepina střední plocha a b tloušťka stěny h a, b, c c Různorodé technické aplikace skořepinových konstrukcí Mezní stavy skořepinových konstrukcí Ztráta stability zhroucení konstrukce

Více