Pedologie. Přednáška 8. Proudění vody v půdě, hydraulická vodivost
|
|
- Jitka Dostálová
- před 8 lety
- Počet zobrazení:
Transkript
1 Pedologie Přednáška 8 Proudění vody v půdě, ydraulická vodivot proudění vody v nayceném protředí, Darcyo zákon, naycená ydraulická vodivot, proudění v nenayceném protředí, proudění v kapiláře, funkce ydraulické vodivoti
2 Naycené proudění Henry Darcy (856) řešil problém filtrace vody pro fontány v Dijonu. Mnoa experimenty zjitil, že průtok vody válcem naplněným píkem je: přímo úměrný rozdílu ydrotatickýc tlaků na počátku a konci válce nepřímo úměrný délce válce přímo úměrný ploše průřezu válce závilý na koeficientu lišícím e pro různé materiály Henry Darcy Darcy, H., 856. e Fountaine de la Ville de Dijon
3 Darcyo zákon Q Κ S Α Η H i i +z i H z H z rovnávací rovina Q průtok vody za jednotkový ča [ 3.T - ] A průtočný průřez [ ] naycená ydraulická vodivot [.T - ] H H H (rozdíl ydraulickýc výšek) [] délka vzorku [] platí v plně nayceném protředí, například pod pod HPV
4 pro: q Q A kde: q... objemový tok [.T - ] Q... průtok vody [ 3.T - ] A... ploca průtočnéo průřezu [ ] Darcyo zákon přejde do podoby: q H zobecnění Darcyo zákona: q dh dl Pro D vertikální proudění q dh dl S H poznámka: záporné znaménko proto že grad H měřuje proti měru proudění
5 poznámka: záporné znaménko proto že grad H měřuje proti měru proudění
6 oeficient naycené vodivoti (EN: aturated ydraulic conductivity) Nazýván také (neprávně) filtrační koeficient, Darcyo koeficient nebo proputnot Nejčatěji používané jednotky jou (m. - ), (cm.d - ), (cm. - ) je carakteritikou vztau půda-voda. Pouze vlatnoti půdy carakterizuje: Proputnot k (EN: permeability) k µ υ [ ] ρ g g [. T ] kde ν je kinematická vikozita
7 oeficient naycené vodivoti a proputnoti pro různé materiály k (cm ) (cm. - ) (m. - ) Zdroj: Cílerová a Vogel, 998
8 +z Příklad : Vertikálně orientovaný válec půdy: q? kont. ladina b VODA cm PŮDA cm/d cm z volný výtok q H H H z ) Definujeme referenční úroveň a ouřadný ytém ) Definujeme body a e známými ydraulickými výškami 3) Určíme H a vypočteme q pomocí Darcyo zákona q H H z cm. d H z
9 Příklad Horizontálně orientovaný válec půdy: q? ) Definujeme referenční úroveň a ouřadný ytém, (x zleva doprava) ) Definujeme body (vtok) a (výtok). Pak x a cm, x cm,, z z, x - x cm 3) Hydraulické výšky H + z cm, H + z cm 5) Darcyo zákon q H ( H H ) ( ) cm. d
10 +x Příklad 3 : Vertikálně orientovaný válec půdy: grad H?, q? kont. ladina b cm VODA H ) grad H - H -, z z - PŮDA ) q pomocí Darcyo zákona cm z volný výtok c m/d q H H H z q - grad H -., - - cm.d - grad H e nazývá jednotkový gradient potenciálu Hydraulická vodivot je rovna objemovému toku při jednotkovém gradientu potenciálu
11 Principy měření ) Měření kontantním pádem kont. ladina b VODA PŮDA? A Měření na vzorku půdy H + (podní okraj) H b + (orní okraj) H (b+) - pak: q q H + ( b ) V praxi e měří Q, rep. V/t, pak: volný výtok Q q V V At H At + ( b )
12 Experiment kontantním pádem kontantní ladina přítok b přepad měření Q porézní detičky vzorek Zvláštní úilí vyžaduje dokonalé naycení vzorku. Pokud naycení není dokonalé neměří e. Obr. : ttp://
13 Experiment kontantním pádem Jednoducý et-up etavený z tempkýc cel (EN: Tempe Cell) intalovaný přímo v terénu (povodí Ulířká)
14 ) Měření proměnným pádem (EN: falling-ead permeameter) Pokle ladiny b(t) VODA b PŮDA? b Měření na vzorku půdy v laboratoři Hladina na počátku v úrovni b H, H (t) +b(t), H(t) [b(t) + ] - q db dt db b + ( b + ) dt upravíme na: volný výtok q Integrace levé trany b db b b ln( b + ) ln b b + b + b +
15 . pokračování integrace pravé trany t dt t dt t db b + dt po doazení: ln b b + + t b + ln t b +
16 Experiment proměnným pádem Pro různou plocu vzorku a byrety vzorec přecází na tvar: Ab A t b ln b + + kde: t. je doba pokleu ladiny vody v byretě A b průřez byrety A... průřez vzorku Q Porézní detičky d vzorek b b d b Pokle ladiny Zdroj: ttp://
17 Příklad 3 : Výpočet průběu tlakové výšky (z)? b VODA PŮDA z b, z q H je kontantní, (z)? Darcyo zákon: q b + z b q z z + z z q, z V omogenním loupci naycené půdy je průbě tlakové výšky lineární
18 Naycené D proudění ve vícervtvém protředí b VODA Darcyo zákon je formálně odný Omovým zákonem. Naycené D proudění zvrtveným protředím je analogické elektrickému obvodu reitory v érii. Analogií zíkáme vzta pro efektivní koeficient naycené ydraulické vodivoti celéo loupce půdy eff. N- N N- N eff N j N j j j j
19 ... proudění ve vícervtvém protředí Pro výpočet průtoku pak můžeme použít eff b VODA b VODA eff pokud bycom měřili na zvrtveném vzorku výledkem měření bude eff N- N- N N q q
20 Neomogenita a anizotropie Neomogenita: odlišné pro různá míta oblati Anizotropie: odlišné v různýc měrec Tenzor naycené ydraulické vodivoti xx yx zx 3D xy yy zy xz yz zz D xx yx xy yy
21 Měření v terénu infiltrační experimenty Průtok vody pře topografický povrc do půdy nazýváme infiltrace a ryclot tooto průtoku je ryclot infiltrace q. Celkové množtví zaáklé vody nazýváme kumulativní infiltrace I [] - jako celková rážka nebo výpar v délkové míře, čato v cm. Infiltrace může být tacionární a netacionární tzn. infiltrační ryclot není (nebo je proměnlivá v čae)
22 Měření v terénu Infiltrační poku D výtopová infiltrace dvouválcová metoda; Výtopová infiltrace: dva outředné válce povrc půdy uvnitř menšío válce opatříme rotem v čae t nalijeme do válce vodu tak, že rot zatopíme Po vynoření rotu e přidává známé množtví vody měří e ča vynoření rotu potup e opakuje ze záznamu čaovýc intervalů, známýc dávek a známé plocy válce e počítá kumulativní infiltrace a ryclot infiltrace v čae
23 Měření v terénu Infiltrační poku D výtopová infiltrace kumulativnivní množtví [l] q di dt umulativní infiltrace Infiltrační ryclot t q( t )dt :: :3: :: :3: :: I ( t) limq.8e-4.5e-4.e-4 9.E-5 6.E-5 3.E-5.E+ infiltrační ryclot [m/]
24 Hydraulická vodivot nenaycenéo pórovitéo protředí e může měnit v čae a protoru exituje vzta () tj. retenční čára ydraulická vodivot závií na rep. na pro < závilot (), rep. () e nazývá funkce ydraulické vodivoti Zdroj: E. Sulzman
25 Darcy-Buckingamův zákon Edgar Buckingam (97) q ( ) H kde: q je objemový tok H je ydraulický výška Zdroj: utílek et al. 994
26 apilární modely Teorie kapilárníc modelů (Cild and Colli-George, 95) Založena na retenční čáře půdy Předpokládá, že vzta naycení-kapilární tlak může být odvozen e tatitickým rozdělením velikoti pórů použitím aplaceovy rovnice pro kapilární tlak na zakřiveném fázovém rozraní. Výledkem jou vztay pro nadnou předpověď funkce ydraulické vodivoti. Předpověď funkce ydraulické vodivoti ( ) r ( ) kde je naycená ydraulická vodivot zíkaná měřením
27 opakování... retenční křivka a tatitické rozdělení velikoti pórů Statitické rozdělení velikoti pórů r r F(r) F(r) f(r) ditribuční funkce - F(r): r F( r) f( r) dr kde f (r) frekvenční funkce relativnío zatoupení plocy pórů různýc poloměrů Platí: F ( r) S( r) kde r je poloměr pórů (póry poloměry < r zaplněné vodou) Složením S(r) a (r) - retenční křivka: S c S( r) c( r) S S( ) c
28 Hydraulická vodivot jedné kapiláry apilára Obecný tvar Poieuillova zákona pro průměrnou ryclot proudění v kapiláře: r u ρg r 8µ dh dl u l Výraz lze přepat ydraulickou vodivotí jedné kapiláry dh ρg u, dl 8µ ( r), ( r) r ( r) C r
29 Hydraulická vodivot vazku kapilár Střední ryclot ve vazku kapilár je integrací mikrokopickýc ryclotí pře plocu průřezu zaplněnou vodou kde v ( A ) u da w A w A w A w je ploca průřezu vazku kapilár naplněnéo vodou Určení ydraulické vodivoti vazku kapilár předpoklady: - exituje vzta mezi A w a r v ( r ) W F ( r ) W da A - a tedy vzta f ( r) r W u ( r) f ( r) dr dr F ( ) W r W Pak třední ryclot ve vazku kapilár < r w je:
30 Hydraulická vodivot vazku kapilár Po doazení Poieuillova zákona zíkáme objemový tok q (q v, F S / S ): q r W ( r ) C r f ( r) W S dr dh dl Nebo jako závilot na tlakovýc výškác použitím aplaceovy rovnice: kde: q ( ) C C... objemová vlkot c...tlaková výška C, C... kontanty dh dl σcoϕ ρgr C r c aplaceova rovnice
31 Hydraulická vodivot nenaycenéo protředí ( ) C C d dh pro jednotkový gradient potenciálu, zíkáme vzta pro ydraulickou vodivot dl relativní ydraulická vodivot r r ( ) ( ) ( ) S S d d kde: ontanty C a C e zkrátí ( S ) S je naycená ydraulická vodivot
32 Burdin (953): r d d ) ( Mualem (976): / ) ( r d d Zavádějí (/ ) b... vliv relativní tortuozity Po doazení vztaů pro retenční čáru, a po integraci zíkáme... ( ) < λ b b b e H H H ( ) ( ) ( ) < α + m n e Brook a Corey van Genucten Nevíce používané modely předpovědi r
33 ... vztay pro předpověď funkce ydraulické vodivoti z retenční čáry z Brooke a Coreyo ( r e ) b+ aλ e r () H b a+ b / λ < H b H b kde parametry a a b jou pro kapilární model Burdina a a b3 Mualema a a b.5 r Efektivní vlkot e r
34 ... vztay pro předpověď funkce ydraulické vodivoti z retenční čáry z van Genuctenova vztau Mualemův model ( r e ).5 e m e m [ ( ) ] e r { [ ] } m ( ) mn ( ) n α + α < [ ( α) ] n m/ + r () r
35 Retenční čára a funkce ydraulické vodivoti některýc půdníc druů a různé modely předpovědi r retenční čára funkce ydraulické vodivoti 4 3 píek linitopíčitá půda jílovitolinitá půda jílovitolinitá půda BC 4 3 BCM log c log c - VG - VGM (-) r (-)
36 Typické čáry nenaycené ydraulické vodivoti pro různé materiály
37 Měření funkce nenaycené ydraulické vodivoti v terénu podtlakovým dikovým infiltrometrem v terénu měření rycloti utálené infiltrace v záviloti na nataveném podtlaku v diku Pod dikem předpokládáme jednotkový gradient potenciálu
38 Měření funkce nenaycené ydraulické vodivoti podtlakový infiltrometr Jury a Horton 4
39 Měření () v terénu příklad výledků érie infiltrací v jedné lokalitě - jílovitolinitá půda.e-3.e-4 oil urface 35 cm below urface 6 cm below urface () [m/].e-5.e-6.e oil-water uction at te tenion dic [m]
40 iteratura utílek, M., uráž, V., Cílerová, M. Hydropedologie, kriptum ČVUT 994 Cílerová, M. Inženýrká ydropedologie, kriptum ČVUT Cílerová M., Vogel T. Tranportní procey, kriptum ČVUT Jury, W.A. and R. Horton, Soil Pyic. Sixt Edition, 4. M. E Sumner, Handbook of Soil Science 998 ttp://edi.ifa.ufl.edu/ae66 Tyto online přednášky vznikly v autorkém kolektivu Mical Sněota a Martin Šanda
41 Proudění jednou kapilárou Rozdíl ydraulickýc tlakovýc výšek H H H íla způobená H íla třecíc il vody na poloměru R Q r kapilára proudové vlákno na poloměru R R ν H H Q Bodová ryclot na poloměru R je: ρwg H u 4µ ( ) ( R r R ) Objemový průtok vody kapilárou Poieuilleův zákon laminární proudění (průtok kapilárou) Q - ρ wgπ r 4 H 8 µ µ... dynamická vikozita (Pa. - )
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
21 Diskrétní modely spojitých systémů
21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,
Simulace proudění vody nenasyceným půdním prostředím - Hydrus 1D
Simulace proudění vody nenasyceným půdním prostředím - Hydrus 1D jednorozměrný pohyb vody a látek v proměnlivě nasyceném porézním prostředí proudění Richardsova rovnice transport látek advekčně-disperzní
HYDRAULICKÉ PARAMETRY ZVODNĚNÝCH SYSTÉMŮ
HYDRAULICKÉ PARAMETRY ZVODNĚNÝCH SYSTÉMŮ CHARAKTERIZUJÍ FILTRACI PROSTÉ PODZEMNÍ VODY O URČITÉ KINEMATICKÉ VISKOZITĚ Předpoklad pro stanovení : Filtrační (laminární proudění) Znalost homogenity x heterogenity
RETC UNSODA ROSETTA. Určování hydraulických charakteristik. 2. cvičení
RETC Určování hydraulických charakteristik. cvičení Úvod RETC absolutní sací tlak (cm) Simulační modely popisující proudění vody porézním prostředím řeší Richardsovu rovnici. h h C( h) = ( K( h) + K( h)
3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze
3. SPLAVENINY VE VODNÍCH TOCÍCH VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proce vodní eroze DRUHY A VLASTNOSTI SPLAVENIN Rozdělení plavenin: Plaveniny: do 7mm (překryv v 0,1 7,0 mm dle unášecí íly τ 0
Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny
U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně
Teorie plasticity PLASTICITA
Teore platcty PLASTICITA TEORIE PLASTICKÉHO TEČENÍ IDEÁLNĚ PRUŽNĚ-PLASTICKÝ MATERIÁL BEZ ZPEVNĚNÍ V platcém tavu nelze jednoznačně přřadt danému napětí jedné přetvoření a naopa, ja tomu bylo ve tavu elatcém.
ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM
ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je
Technologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
Propočty přechodu Venuše 8. června 2004
Propočty přechodu Venuše 8. června 2004 V tomto dokumentu předkládáme podmínky přechodu Venuše pře luneční kotouč 8. června roku 2004. Naše výpočty jme založili na planetárních teoriích VSOP87 vytvořených
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (
Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
14. cvičení z Matematické analýzy 2
4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti
4. Práce, výkon, energie
4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy
1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
Příloha 1 Zařízení pro sledování rekombinačních procesů v epitaxních vrstvách křemíku.
Příloha 1 Zařízení pro ledování rekombinačních proceů v epitaxních vrtvách křemíku. Popiovaný způob měření e vztahuje ke labě dopovaným epitaxním vrtvám tejného typu vodivoti jako ilně dopovaný ubtrát.
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavení katedra ydrauliky a ydrologie (K141) Přednáškové slidy předmětu 1141 HYA (Hydraulika) verze: 1/011 K141 FSv ČVUT Tato weová stránka naízí k nalédnutí/stažení řadu pdf souorů
KOMBINOVANÝ TEPELNÝ VÝMĚNÍK COMBINED HEAT EXCHANGER
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE KOMBINOVANÝ TEPELNÝ VÝMĚNÍK COMBINED HEAT
Proudění podzemní vody
Podpovrchová voda krystalická a strukturní voda vázaná fyzikálně-chemicky adsorpční vázaná molekulárními silami na povrchu částic hygroskopická (pevně vázaná) obalová (volně vázaná) volná voda kapilární
LYOFILIZACE APLIKACE
LYOFILIZACE LYOFILIZACE difúzní operace využívaná na ušení vlhkých materiálů fungující na principu vakuového ublimačního ušení probíhá při teplotě a tlaku pod trojným bodem vody (rozpouštědel) přeno hmoty
TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec
TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentká, 6 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOUŠKY Z FYZIKY Akademický rok: 0/0 Fakulta mechatroniky Studijní obor: Nanomateriály Tématické okruhy. Kinematika
141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hdraulik a hdrologie (K141) Přednáškové slid předmětu 141 (Hdraulika) verze: 9/28 K141 FSv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů složených
3. V případě dvou na sebe kolmých posunutí o velikostech 3 cm a 4 cm obdržíme výsledné posunutí o velikosti a) 8 cm b) 7 cm c) 6 cm d) 5 cm *
Fyzika 1 2009 Otázky za 2 body 1. Mezi tavové veličiny patří a) teplo b) teplota * c) práce d) univerzální plynová kontanta 2. Krychle má hranu o délce 2 mm. Jaký je její objem v krychlových metrech? a)
Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2
Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Dobaprvníjízdynaprvníčtvrtinětratije 1 4 1 4 48 t 1 = = h= 1 v 1 60 60 h=1min anazbývajícíčátitrati t = 4 v = 4
Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
DĚLENÍ HETEROGENNÍCH SMĚSÍ PŮSOBENÍM GRAVITACE
ĚLENÍ HETEROGENNÍCH SMĚSÍ PŮSOBENÍM GRAVITACE Heterogenní ytémy Heterogenní ytém Kontinální fáze Skpentví čátic penze kapalina pevná látka emlze kapalina kapalina pěna, probblávaná kapalina kapalina plyn
PŘÍKLADY K MATEMATICE 3
PŘÍKLADY K ATEATIE 3 ZDENĚK ŠIBRAVA. Křivkové integrály.. Křivkový integrál prvního druhu. Příklad.. Vypočítejme křivkový integrál A =, ), B = 4, ). Řešení: Úsečka AB je hladká křivka. Funkce ψt) = 4t,
Výfučtení: Triky v řešení fyzikálních úkolů
Výfučtení: Triky v řešení fyzikálních úkolů Úvod Ve fyzice obča narazíme na problémy jejichž řešení je mnohdy komplikované a zdlouhavé. Avšak v určitých případech e tyto ložité problémy dají vyřešit velmi
1 Vedení tepla stacionární úloha
1 VEDENÍ TEPLA STACIONÁRNÍ ÚLOHA 1 1 Vedení tepla stacionární úloha Typický představitel transportních jevů Obdobným způsobem možno řešit například Fyzikální jev Neznámá Difuze koncentrace [3] Deformace
Příklady k přednášce 20 - Číslicové řízení
Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )
Vzorové příklady - 5.cvičení
Vzoroé příklady - 5.cičení Vzoroý příklad 5.. Voda teplá je ypouštěna z elké nádrže outaou potrubí ýtokem do olna B. Určete délku potrubí =? průměru ( = 0,6 mm, oceloé, ařoané po použití), při níž bude
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
Základy hydrauliky vodních toků
Základy hydrauliky vodních toků Jan Unucka, 014 Motivace pro začínajícího hydroinformatika Cesta do pravěku Síly ovlivňující proudění 1. Gravitace. Tření 3. Coriolisova síla 4. Vítr 5. Vztlak (rozdíly
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:
Potenciál vektorového pole
Kapitola 12 Potenciál vektorového pole 1 Definice a výpočet Důležitým typem vektorového pole je pole F, pro které existuje spojitě diferencovatelná funkce f tak, že F je pole gradientů funkce f, tedy F
1.1.14 Rovnice rovnoměrně zrychleného pohybu
..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů
Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík,, CSc. III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných dat je vyjádřen n-rozměrným loupcovým vektorem hodnot x i,
Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY FYZIKÁLNA 2. ročník šestiletého studia
Rozdíly mezi MKP a MHP, oblasti jejich využití.
Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí
Laboratorní cvičení č.2 Měření hydraulických charakteristik půd: Koeficient nasycené hydraulické vodivosti K s a retenční čára
Laboratorní cvčení č.2 Měření hydraulckých charaktertk půd: Koefcent naycené hydraulcké vodvot K a retenční čára Úkoly: na neporušeném vzorku půdy v Kopeckého válečku tanovte retenční čáru v blízkot naycení
1 Zatížení konstrukcí teplotou
1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona
2 Odvození pomocí rovnováhy sil
Řetězovka Abstrakt: Ukážeme si, že řetěz pověšený mezi dvěma body v homogenním gravitačním poli se prohne ve tvaru grafu funkce hyperbolický kosinus. Odvození provedeme dvojím způsobem: pomocí rovnováhy
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
5. cvičení z Matematické analýzy 2
5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v
Tab. 2 Příklad naměřených hodnot z měření kruhovým infiltrometrem. Obr. 1 Mini Disk infiltromet
Publikováno na stránkách www.vuzt.cz Materiál a metody Mini Disk infiltrometr je velice jednoduchý a malý s nízkou náročností na obsluhu. Výhodou tohoto infiltrometru je jeho malá spotřeba vody oproti
14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta
14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2010/11 14.1 Úvod Definice (zobecněná plocha) Řekneme, že S R n (n 2) je zobecněná (n
Příklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez
Sypaná hráz výpočet ustáleného proudění
Inženýrský manuál č. 32 Aktualizace: 3/2016 Sypaná hráz výpočet ustáleného proudění Program: MKP Proudění Soubor: Demo_manual_32.gmk Úvod Tento příklad ilustruje použití modulu GEO5 MKP Proudění při analýze
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
VEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
y ds, z T = 1 z ds, kde S = S
Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných
Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas
Řešení úlo celostátnío kola 59. ročníku fyzikální olympiády Úloy navrl J. Tomas 1.a) Rovnice rozpadu je 38 94Pu 4 He + 34 9U; Q E r [ m 38 94Pu ) m 4 He ) m 34 9U )] c 9,17 1 13 J 5,71 MeV. body b) K dosažení
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY
Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů
Jiří Petržela příklad nalezněte dvě různé realizace admitanční funkce zadané formou racionální lomené funkce Y () () ( ) ( ) : první krok rozkladu do řetězového zlomku () 9 7 9 výledný rozklad ( ) 9 9
Splaveniny. = tuhé částice přemísťované vodou anorganický původ organický původ různého tvaru a velikosti
SPLAVENINY Splaveniny = tuhé částice přemísťované vodou anorganický původ organický původ různého tvaru a velikosti Vznik splavenin plošná eroze (voda, vítr) a geologické vlastnosti svahů (sklon, příp.
MODELOVÁNÍ VYSOKOFREKVENČNÍCH PULSACÍ
VYSOKÉ UČNÍ TCHNICKÉ V BNĚ BNO UNIVSITY OF TCHNOLOGY FAKULTA STOJNÍHO INŽNÝSTVÍ NGTICKÝ ÚSTAV FACULTY OF MCHANICAL NGINING NGY INSTITUT MODLOVÁNÍ VYSOKOFKVNČNÍCH PULSACÍ HIGH-FQUNCY PULSATIONS MODLING
Hydraulika a hydrologie
Hydraulika a hydrologie Cvičení č. 1 - HYDROSTATIKA Příklad č. 1.1 Jaký je tlak v hloubce (5+P) m pod hladinou moře (Obr. 1.1), je-li průměrná hustota mořské vody ρ mv = 1042 kg/m 3 (měrná tíha je tedy
[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2
4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch
0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému
2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka
MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.
MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární
Mechanika II.A Třetí domácí úkol
Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení
1. Cvičení: Opakování derivace a integrály
. Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )
Diferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
Funkce zadané implicitně
Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf
DĚLENÍ HETEROGENNÍCH SMĚSÍ PŮSOBENÍM ODSTŘEDIVÉ SÍLY
DĚLENÍ HETEROGENNÍCH SMĚSÍ PŮSOBENÍM ODSTŘEDIVÉ SÍLY Odtředivky Vírové odlčovače Účinek odtředivé íly na hmotno čátici ω = π n F o = Vρ a o = Vρ rω = Vρ ϕ = r 4π Vρ n r Kromě odtředivé íly půobí na hmotno
Metoda konečných prvků Základní veličiny, rovnice a vztahy (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace tudijního oboru Geotechnika Reg. č. CZ..7/../8.9 Metoda konečných prvků Základní veličin, rovnice a vztah (výuková prezentace pro. ročník navazujícího tudijního oboru Geotechnika) Doc. RNDr. Eva
DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ
DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ P. Hora, O. Červená Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory grantu cíleného vývoje a výzkumu AV ČR č. IBS276356 Ultrazvukové metody
přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu
7..0 přednáška TLAK - TAH Prvky namáhané kombinací normálové íly a ohybového momentu Namáhání kombinací tlakové (tahové) íly a momentu tlak Namáhání kombinací tlakové (tahové) íly a momentu Namáhání kombinací
Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti
Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze
Vodohospodářské stavby BS001 Hydraulika 1/3
CZ..07/..00/5.046 Posílení kvality bakalářskéo studijnío proramu Stavební Inženýrství Vodoospodářské stavby BS00 Hydraulika /3 Fyzikální vlastnosti kapalin, Hydrostatika a plování těles, Hydrodynamika
diferenciální rovnice verze 1.1
Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 1. Základní informace o této fyzikální veličině Symbol vlastní indukčnosti je L, základní jednotka henry, symbol
ρ = 0 (nepřítomnost volných nábojů)
Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
obr. 3.1 Pohled na mící tra
3. Mení tecích ztrát na vzduchové trati 3.1. Úvod Problematika urení tecích ztrát je hodná pro vodu nebo vzduch jako proudící médium (viz kap..1). Micí tra e liší použitými hydraulickými prvky a midly.
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13
5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )
6 Součinitel konstrukce c s c d
6 Součinitel konstrukce c s c d Součinitel konstrukce c s c d je součin součinitele velikosti konstrukce (c s 1) a dynamickéo součinitele (c d 1). Součinitel velikosti konstrukce vyjadřuje míru korelace
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 18 Vektorová analýza a teorie pole Vybrané kapitoly z matematiky 2018-2019 2 / 18 Vektorová funkce jedné
Definiční obor funkce
Vlastnosti funkcí Definiční obor funkce Konstantní funkce D f = R Lineární funkce D f = R Kvadratická funkce D f = R Exponenciální funkce D f = R Logaritmická funkce D f = 0, + Nepřímá úměrnost D f = R
KATEDRA FYZIKY VŠB-TU OSTRAVA
Stdent Skpina/Osob. číslo KATEDA FYZIKY VŠB-TU OSTAVA NÁZEV PÁCE Měření povrcovéo napětí z kapilární elevace Číslo práce 4 Datm Spolpracoval Podpis stdenta: Cíle měření: Změřit odnoty povrcovéo napětí
Otázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
Katedra geotechniky a podzemního stavitelství
Katedra geotechnik a podzemního taviteltví Modelování v geotechnice Základní veličin, rovnice a vztah (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace tudijního
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 10: Interference a ohyb větla Datum měření: 6. 5. 2016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klaifikace: 1 Zadání 1. Bonu:
Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.
PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis
Přednáška Omezení rozlišení objektivu difrakcí
Před A3M38VBM, J. Ficher, kat. měření, ČVUT FL Praha Přednáška Omezení rozlišení objektivu difrakcí v. 2011 Materiál je určen pouze jako pomocný materiál pro tudenty zapané v předmětu: Videometrie a bezdotykové
Rovnice rovnoměrně zrychleného pohybu
..8 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 7 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně píše minut na řešení příkladů
Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
Vysokofrekvenční obvody s aktivními prvky
Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor
Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů
Vytvoření kriptů pro webové rozhraní předmětu Analýza a imulace technologických proceů M-file for the Internet Interface Ued in the Subject Analyi and Simulation of Technological Procee. Petr Tomášek Bakalářká