Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13"

Transkript

1 ALTERNACE MATEMATIKA 4. ROČNÍK 01/13-1-

2 Obsah Posloupnosti... 4 Aritmetická posloupnost... 5 Geometrická posloupnost... 6 Geometrické řady... 7 Finanční matematika... 8 Vektor, operace s vektory... 9 Vzdálenosti bodů, přímek, střed úsečky Parametrický, obecný a směrnicový tvar rovnice přímky Vzájemná poloha bodů, přímek, odchylka přímek... 1 Kružnice Elipsa, hyperbola a parabola Vzájemná poloha přímky a kuželosečky Dělitelnost, reálná čísla Procenta Lomené výrazy a mnohočleny Mocniny a odmocniny Lineární rovnice, soustavy lineárních rovnic... 0 Řešení lineárních nerovnic a jejich soustav... 1 Kvadratická rovnice, soustavy rovnic... Iracionální rovnice... 3 Kvadratické nerovnice... 4 Nerovnice s neznámou ve jmenovateli... 5 Diskuse lineárních rovnic s parametrem... 6 Lineární a kvadratické rovnice a nerovnice s absolutní hodnotou... 7 Funkce, vlastnosti funkcí... 8 Funkce konstantní a lineární... 9 Funkce kvadratická Funkce lineární lomená Grafy funkcí s absolutní hodnotou... 3 Mocninné funkce Eponenciální a logaritmická funkce Logaritmické rovnice

3 Eponenciální rovnice Goniometrické funkce Goniometrické rovnice Goniometrické vzorce Goniometrie ostrého úhlu, pravoúhlý trojúhelník Řešení obecného trojúhelníku Nerovnice v C... 4 Algebraický a goniometrický tvar kompleního čísla Řešení rovnic s kompleními kořeny Moivreova věta Binomická rovnice Vlastnosti kombinačních čísel, Pascalův trojúhelník, výrazy s faktoriály Variace, permutace, kombinace Binomická věta Pravděpodobnost Základní statistické pojmy Polohové vztahy útvarů ve stereometrii... 5 Povrchy a objemy válců a kuželů Povrchy a objemy hranatých těles Povrch a objem koule a jejích částí Obvody a obsahy rovinných obrazců Podobnost, Euklidovy věty a Pythagorova věta Obvodový a středový úhel Stejnolehlost v konstrukčních úlohách Shodná zobrazení

4 POSLOUPNOSTI 1. Určete prvních šest členů posloupnosti a nakreslete graf. a n n + 1 = n ; ; ; ; ; Určete prvních šest členů posloupnosti. a 0 + a [0; 1; 1; ; 3; 5] 1 = ; a = 1; an+ = an+ 1 n 3. Určete, která z následujících posloupností je rostoucí nebo klesající. a) n + 1 n + n= 1 a) rostoucí b) rostoucí c) není rostoucí ani klesající log b) ( ) n=1 n n 14n + 39 n 1 c) ( ) = -4-

5 ARITMETICKÁ POSLOUPNOST 1. Určete počet členů aritmetické posloupnosti, je-li dáno: Sn = 800, an = 78, d = 4. [0 ]. Ve které aritmetické posloupnosti platí: a a 7 1 = ; a4 + a5 = 0 [a1 = 3; d = ] 3 3. Určete součet všech sudých trojciferných čísel. [47 050] 4. Rozměry kvádru tvoří členy AP. Součet velikostí všech hran je 96cm a povrch kvádru je 334cm. Vypočtěte objem kvádru. [31cm 3 ] -5-

6 GEOMETRICKÁ POSLOUPNOST 1. Kvádr, jehož délky hran a, b, c tvoří geometrickou posloupnost, má povrch S =700 cm. Součet délek hran, vycházejících z jednoho vrcholu, je 35cm. Vypočítejte objem. [ 1000 cm 3 ]. Určete číslo, které zvětšeno postupně o 3, 8, 18 dává tři po sobě jdoucí členy geometrické posloupnosti. [ ] 3. V osmičlenné geometrické posloupnosti je součet prvních čtyř členů roven 15 a q = ;a 1 = 1 posledních čtyř členů roven 40. Určete posloupnost. q = -; a 1 = 3-6-

7 GEOMETRICKÉ ŘADY 1. Řešte rovnici: 3 = [ (-1;1); = 0,414]. Číslo,763 zapište ve tvaru zlomku. [ 89/300] 3. Určete hodnotu součinu [ 9]

8 FINANČNÍ MATEMATIKA 1) Slečna Hermína disponuje částkou korun, proto se rozhodla navštívit velký svět financí. Zaujal ji plakát firmy,,moula&spol, v němž stálo: Naše firmy zhodnotí Vaše peníze! Za 100 dnů si splníte své sny! Za jednorázovou investici v hodnotě korun a více garantujeme 6 % zisk za 100 dnů. Dokonce i investice pod korun Vám přinese za 100 dnů 3 % zisk. Chybí Vám peníze? Půjčíme Vám až korun na sto dnů! Teprve až uběhne celých 100 dnů, zaplatíte 15 % úrok z půjčené částky. a) Jaký bude zisk Hermíny, pokud si žádné peníze nepůjčí a investuje jen částku 8 500? [55] b) O kolik korun se zvýší zisk,pokud si chybějící peníze od firmy půjčí a investuje korun? [10] c) Pokud by měla Hermína o něco méně než korun, investice s půjčkou by se jí mohla stále ještě vyplatit. Naopak pro nízké částky je výhodnější investice bez půjčky. Pro jakou částku přinášejí obě možnosti (investice s půjčkou i bez půjčky ) stejný zisk? [7 500] ) Počátkem každého roku se na účet s roční úrokovou mírou 3 % uloží částka korun. Úroky se připisují na konci každého roku. Po 0 letech bude na účtu: a) asi korun b) asi korun c) asi korun d) jiné [asi ] 3) Výnosy z vkladní knížky jsou sníženy o 15 % daň. Vklad ve výši Kč vynesl za rok čistý úrok Kč. Jaká byla roční úroková míra? Výsledek zaokrouhlete na desetiny procenta. [8 %] -8-

9 VEKTOR, OPERACE S VEKTORY 1. Jsou dány body A = [-3; 0], B [8; -3], C = [10; ]. Určete souřadnice bodu D tak aby: a) ABCD byl rovnoběžník [[-1; 5]] b) ABDC byl rovnoběžník [[1; -1]] c) ADBC byl rovnoběžník [[-5;-5]]. Trojúhelník ABC je určen dvěma vrcholy A, B a těžištěm T. Určete souřadnice vrcholu C. A = [ ; 0], B [4; -], T = [3 ; 1] [[3; 5]] 3. Sečtěte a odečtěte graficky vektory a + b; a b. a = (;1); b = 1; ( ) 4. Určete vektor a, který je jednotkový (velikost vektoru je 1) a kolmý na vektor b b = ( ; 1) ; ; ;

10 VZDÁLENOSTI BODŮ, PŘÍMEK, STŘED ÚSEČKY 1. V trojúhelníku A = [ 15; 4], B = [ 1; -3], C = [5; 9] vypočítejte velikost výšky vc. [4 5 ]. Vypočtěte velikost těžnice ta v trojúhelníku A = [ 15; 4], B = [ 1; -3], C = [5; 9] [ 145 ] 3. Určete vzdálenost přímek: k: + y - 6 = 0 l: - y + 5 = 0 m: = 3 + t y = -4 + t d ( m, l) = 3 5; 5 d ( n, l) = d ( m, n) = 5 n: - y + 3 = 0 [přímka k je různoběžná s ostatními přímkami] -10-

11 PARAMETRICKÝ, OBECNÝ A SMĚRNICOVÝ TVAR ROVNICE PŘÍMKY 1. Určete obecnou rovnici výšky vb v trojúhelníku ABC; A = [ 8; 7], B [-; 5], C = [-6; -3]. [7 + 5y -11-0]. Přímky jedné osnovy jsou dány rovnicí 3 + 7y + c = 0, kde c R; a) Určete souřadnice jejich směrového a normálového vektoru. b) Napište rovnici té přímky této osnovy, která prochází bodem A = [ 5; -]. s = ( 7; 3 ); n = ( 3;7 ) 3 + 7y 1 = 0 3. Napište směrnicový tvar přímky a, která prochází bodem A = [ 5; ] a je rovnoběžná s přímkou BC: B [ ; -5], C = [-1; -3] y =

12 VZÁJEMNÁ POLOHA BODŮ, PŘÍMEK, ODCHYLKA PŘÍMEK 1. Určete odchylku a průsečík přímek: a: - y +1 = 0 b: + y + 1 = 0 [ φ= ; P[-/3; -1/3]]. Napište parametrické a obecnou rovnici přímky která prochází bodem A = [-4; ] a je kolmá k přímce l. l: 3 + y - 5 = 0-3y + 10 = 0 = l y = + l l R 3. Určete odchylku a průsečík přímek k = KL a p = PQ. K = [-3; 5]; L = [0; 3]; P = [-5; 0]; Q = [; -3] [ φ= 10 9 ; P[108/5; -57/5]] -1-

13 KRUŽNICE 1. Napište rovnici kružnice se středem v počátku soustavy, procházející bodem A=[-/3; 3]. Které body této kružnice mají souřadnici = 7 5? [ + y = 85/9; K[1,4; ±,74];. Určete rovnici kružnice, která prochází body A = [ 4; -3], B = [5; - ] a má střed na přímce 3 + 4y - 6 = 0. [(-) + y = 13] 3. Určete rovnici kružnice, která prochází bodem M = [- ; -16] a dotýká se obou souřadných os. [( +10) + (y + 10) = 100; ( + 6) + (y + 6) = 676] 4. Určete střed a poloměr kružnice, která má rovnici + y - 6-4y - 3 = 0. [S[3; ]; r = 6] -13-

14 ELIPSA, HYPERBOLA A PARABOLA 1. Vypočítejte souřadnice bodu P, který leží na parabole y = a má od jejího ohniska vzdálenost a = 6,5. P = 6; 3 ; P = 6; 3. Napište rovnici elipsy se středem v počátku soustavy souřadnic a osami v osách,y, která prochází body A = [; 4], B = [5; - ]. [4 + 7y = 18; y + = 1] Určete druh kuželosečky, její střed, ohniska a poloosy: 4-9y y -36 = 0 [hyperbola; S = [ 3;- ]; a = 3; b = ; e = 13 ; F = [3-13 ; -]; G = [3+ 13 ; -]] -14-

15 VZÁJEMNÁ POLOHA PŘÍMKY A KUŽELOSEČKY 1. Jakou směrnici musí mít přímka p: y = k +, aby se dotýkala paraboly y = 4? [k = 0,5]. Pro jaká b R je přímka p: + by - 5 = 0 a) sečnou, b) tečnou, c) nesečnou kuželosečky 4 + 9y = 900? ( ) ( ) { } ( ) a) b ; ; b) b ; c) b ; 3. Určete vzájemnou polohu přímky p: = 8 + 4t, y = 5t a kuželosečky 5-16y = 400. [R = [5; -15/4] sečna rovnoběžná s asymptotou] -15-

16 DĚLITELNOST, REÁLNÁ ČÍSLA 1) Určete všechny společné dělitele čísel 100 a 150. [ 1; ; 5; 10; 5; 50] ) Najděte nejmenší přirozené číslo c takové, aby nejmenší společný násobek čísel c; 4 a 1 byl 5, tedy n(c, 4, 1) = 5. [9] 3 9 3) Počet celých čísel v intervalu 10 ; 10000) je: a) b) c)1101 d) [1 100] 4) Na divadelní představení byly zakoupeny dva druhy vstupenek. Jistý počet vstupenek prvního druhu za 48 Kč a o pět vstupenek více po 68 Kč. Za vstupenky bylo celkem zaplaceno Kč. Kolik vstupenek každého druhu bylo zakoupeno? [10 a 15] -16-

17 PROCENTA 1) Mlékárna prodává 0 % svých výrobků na zahraničním trhu, zbytek dodává na trh domácí. To, že o výrobky je zájem, potvrzují podepsané kontrakty. Rozhodněte o každém z následujících tvrzení, zda je pravdivé (ANO), nebo nepravdivé (NE). a) Pokud se má vývoz zvýšit o 10 % a dodávky na domácí trh vzrostou o 5 %, mlékárna musí zvýšit výrobu o 6 %. b) Pokud má mlékárna zachovat objem výroby a vývoz se má zvýšit o 10 %, dodávky na domácí trh budou o,5 % nižší. [ANO] [ANO] c) Pokud má mlékárna zvýšit objem výroby o 10 % a dodávky na domácí trh se nezmění, je nasmlouváno zvýšení vývozu do zahraničí o 50 %. [ANO] d) Pokud má mlékárna zvýšit objem výroby o 10 % a vývoz do zahraničí má být beze změny, je nasmlouváno zvýšení dodávky na domácí trh o 15 %. [NE] -17-

18 LOMENÉ VÝRAZY A MNOHOČLENY 1. Upravte: 1 1 y + z y + z : = + yz y + z yz ( ) + y + z, y, z 0 + y + z 0 y z y + z. Upravte: : 4 = [ 1; ±1] 3. Upravte: 4 4 y y : + = y y y y + y, y 0 ± y -18-

19 -19- MOCNINY A ODMOCNINY 1. Upravte: y y y = y. Upravte: = : b a b a b a b a b a b a ( ) ( ) 4 a b a b + 3. Upravte: = : y y y y y y y y ( ) ( ) + + y y y y

20 LINEÁRNÍ ROVNICE, SOUSTAVY LINEÁRNÍCH ROVNIC 1. Řešte početně i graficky: + 3y = 4, y R 3 - y = - 5 [[-1; ]]. Řešte soustavu pro, y R : = 1 y 3 = 3 y 3 [[0; 4]] 3. Dva nákladní vozy měly navézt kámen na stavbu silnice za 18 dní. Po 15 dnech byl první vůz pro poruchu vyřazen. Druhý vůz pak ještě vozil kámen 7,5 dne, aby byl úkol splněn. Kolik dní by na odvoz potřeboval každý vůz sám? [1. vůz 30 dní;. vůz 45 dní] 4. Řešte soustavu pro, y, z R: + 3y = z = 11 3y + 4z = 10 [[3; ; 1]] -0-

21 ŘEŠENÍ LINEÁRNÍCH NEROVNIC A JEJICH SOUSTAV 1. Určete N, pro která platí: > + 4 ( + 1) 8 [ {1; ; 3; 4}]. V množině R řešte soustavu nerovnic: > ( + 3) > [ < ] 3. Dané soustavy nerovnic řešte postupně v R, Z, N. a) ( - 3) 3 +5 b) ( - 3) > < ( - 5) < ( - 5) c) ( - 3) < 3 +5 d) ( - 3) > ( - 5) > ( - 5) -1-

22 KVADRATICKÁ ROVNICE, SOUSTAVY ROVNIC 1. Určete rozměry a, b obdélníku, jehož úhlopříčka má délku 6cm a jehož obvod je 68cm. [10cm a 4cm]. Řešte soustavu rovnic: 5-9y = 75, y R 5 + 3y = 65 [[10; 5]] 3. Určete hodnotu parametru m R tak, aby rovnice m + (m + ) + m = 0 měla dvojnásobný kořen. [m {; - /3}] --

23 IRACIONÁLNÍ ROVNICE 1. Vypočtěte kořeny rovnice pro R : = + 1 [-1/] + 3. Vypočtěte kořeny rovnice pro R : + 3 = [7] 3. Vypočtěte kořeny rovnice pro R : = [1] -3-

24 KVADRATICKÉ NEROVNICE 1. Zjistěte, kdy má daný výraz smysl: + 0 [ (-5; 4)]. Určete definiční obor funkce: f 4 : y = log [ (0; )] 3. Pro které hodnoty parametru m R má rovnice : - 3m + m m = 0 imaginární kořeny? [ m (5; 9)] -4-

25 NEROVNICE S NEZNÁMOU VE JMENOVATELI 3 1. Řešte nerovnici pro R: [ ( ; 3) 6; ) ]. Řešte nerovnici pro R: 0 < < [ ( ; 0) (4; ) ] Řešte nerovnici pro R: > [ ( 3;) (3; ) ] -5-

26 DISKUSE LINEÁRNÍCH ROVNIC S PARAMETREM 1. Řešte a proveďte diskusi rovnice s parametrem a: + a a = a 1 a +1 a = 0 R a = ± 1 NS a { 0;1; 1} = 1. Řešte a proveďte diskusi rovnice s parametrem a: + a a + 1 = a + a + 1 a = 0 NŘ a = 1 NS ( a 1 + ) a {0; 1} = a 3. Vypočítejte a určete, pro které hodnoty parametru a nabývá neznámá kladných hodnot: 1 a = a a ( 1; 0,5) -6-

27 LINEÁRNÍ A KVADRATICKÉ ROVNICE A NEROVNICE S ABSOLUTNÍ HODNOTOU 1. Řešte rovnici pro R: = 3 3 ± 4. Řešte nerovnici pro R: + 3 < 3 1 [ ( ; )] 3. Pro R řešte rovnici 1 = 0. [±4] -7-

28 FUNKCE, VLASTNOSTI FUNKCÍ 1. U daných funkcí určete Df, Hf, intervaly monotónnosti, omezenost.. Doplňte grafy funkcí tak, aby vzniklá funkce byla a) sudá b) lichá a) b) 3. Na obrázku je graf funkce y = f(). Načrtněte graf funkce y = f(+1), y = f() - -8-

29 FUNKCE KONSTANTNÍ A LINEÁRNÍ 1. Nakreslete a popište graf funkce, která je dána rovnicí: a) + 3y -1 = 0 b) y = 0,5; y = 0,5 -; y = 0,5 ; y = 0,5 - ; y = 0,5 -; y = 0,5 -. V nádrži je 500 litrů vody. Čerpadlo odčerpává 0 1/min. Určete funkci vyjadřující množství vody v nádrži v závislosti na čase (v minutách). Určete definiční obor a obor hodnot této funkce a znázorněte ji graficky. 3. V rovnici ( + m ) + 9y + - n = 0 určete parametry m, n tak, aby graf lineární funkce určené touto rovnicí byl totožný s grafem funkce y = 1 4 ( - ). [n = -5/; m = -17/4] -9-

30 FUNKCE KVADRATICKÁ 1. Vyšetřete danou funkci, načrtněte její graf. f: y = [V[;1]]. Vyšetřete danou funkci, načrtněte její graf. f: y = [V[-;-1]] g: y = a) Vyšetřete průběh funkce f: y = b) Řešte graficky nerovnici >

31 FUNKCE LINEÁRNÍ LOMENÁ 1. Vyšetřete průběh funkce: f: y = 3 1. Vyšetřete průběh funkce: f: y = Vyšetřete průběh funkce: f: y =

32 GRAFY FUNKCÍ S ABSOLUTNÍ HODNOTOU 1. Načrtněte graf funkce: f : y = ( ) 1. Načrtněte graf funkce: y = Načrtněte graf funkce: y =

33 -33- MOCNINNÉ FUNKCE 1. Sestrojte grafy funkcí a určete definiční obor, obor hodnot a průsečíky s osou a y. 1 : 1 : 4 4 = = y g y f. Sestrojte grafy funkcí a určete definiční obor, obor hodnot a průsečíky s osou a y. 1 : 1 : 3 3 = = y g y f 3. Sestrojte graf funkce a určete definiční obor, obor hodnot a průsečíky s osou a y. : = + y f

34 EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE 1 1. Sestrojte graf funkce f: y = obor, obor hodnot a průsečíky s osou a y.. Napište předpis f -1. U obou funkcí určete definiční. Sestrojte grafy funkcí a určete definiční obor, obor hodnot a průsečíky s osou a y. f : y = log3( + 3) - 1 g: y =log3( + 3) Sestrojte graf funkce a určete definiční obor, obor hodnot a průsečíky s osou a y. + 1 f: y = 3-34-

35 LOGARITMICKÉ ROVNICE 1. Řešte rovnici pro R: ( + ) log 7 ( + ) log 7 = [-3].. Řešte rovnici pro R: log ( - 1) = + log ( + 1) [101]. 3. Řešte rovnici pro R: -1+log = 100 [100; 0,1] -35-

36 EXPONENCIÁLNÍ ROVNICE 1. Řešte rovnice pro R: = 3 [4]. Řešte rovnice pro R: = + -1 [1] 3. Řešte rovnice pro R: = [ =,753746] 4. Řešte rovnice pro R: = 810 [] -36-

37 GONIOMETRICKÉ FUNKCE 1. Načrtněte graf funkce, určete Df a Hf. f: y = sin() - 1. Načrtněte graf funkce, určete Df a Hf. f: 1 π y = cos 3 π. Načrtněte graf funkce, určete Df a Hf. f: y = tg

38 GONIOMETRICKÉ ROVNICE 1. Řešte rovnici pro R: sin 3 sin cos = 0 1 = kπ k Z π = + kπ 3. Řešte rovnici: = sin 3 cos sin 1 = 90 + k360 k Z 36 5 k360 = + 3 = k Řešte rovnici: 3 sin sin cos 3 = 0 1 = 30 + k180 k Z = 60 + k Řešte rovnici: sin + π = = π + kπ 1 1 = π + kπ 1 k Z -38-

39 -39- GONIOMETRICKÉ VZORCE 1) Řešte v R. cotg sin = 0 + = + = π π π π k Z k k 4 1 ) Řešte v R. sin + sin = tg + = + = = π π π π π k k Z k k

40 GONIOMETRIE OSTRÉHO ÚHLU, PRAVOÚHLÝ TROJÚHELNÍK 1. Vrchol věže spatříme z určitého místa ležícího 14,75 m nad horizontální rovinou pod výškovým úhlem α = 31 a patu věže pod hloubkovým úhlem β = 8. Jak vysoká je věž? [ 77,81m]. Tělesová úhlopříčka kvádru je u = 17 a odchylka této úhlopříčky od roviny podstavy je α = 70. Úhel úhlopříček podstavy je ω = 55. Vypočítejte objem.[ 1,19 j 3 ] 3. Jakou hloubku a šířku má příkop, jehož profil má tvar rovnoramenného lichoběžníku, když ramena svírají s vodorovnou rovinou úhel 8, šířka dna je,75 m a délka ramen je 3,5 m. [ 1,64 m; 8,93m ] -40-

41 ŘEŠENÍ OBECNÉHO TROJÚHELNÍKU 1. V lichoběžníku je dáno: a = 7,3, c = 0,4, α = 68 14, β = Vypočítejte b, d, γ, δ. [b = 11,035; d = 11,54; γ = , δ = ]. Vypočítejte největší úhel v trojúhelníku ABC: a = 50, b= 37, c= 3. [ ] 3. Nosník ABC s rameny AC, BC, je upevněn na svislé stěně a v bodě C zatížen břemenem o tíze G = N. Jakým tahem F1 je namáháno rameno AC, které svírá s přímkou AB úhel α = 75? Jakým tlakem F je namáháno rameno BC, jehož odchylka od přímky AB je β = 34? [F1 = N; F = 5 765N] -41-

42 NEROVNICE V C V Gaussově rovině zakreslete řešení následujících rovnic a nerovnic v C. 1) z ( 1 + i) = ) z 1 i 3) z + i < z + i -4-

43 ALGEBRAICKÝ A GONIOMETRICKÝ TVAR KOMPLEXNÍHO ČÍSLA 1. Určete, y R, pro něž platí : ( + 4i) + 4( 4 - i )y + 14 = ( 6 - i)y - 6( - - i ) 9 [ = 87/46; y = -34/3 ]. a) Převeďte komplení číslo 5π 5π a = cos + isin 6 6 do algebraického tvaru. [ 3 + i ] b) Převeďte komplení číslo b = + i do goniometrického tvaru. 3 3 [ cos 3 π sin 3 π + i ] 3. Ke komplenímu číslu ( 3 i) a = najděte číslo kompleně sdružené. [-3 + 4i] i -43-

44 ŘEŠENÍ ROVNIC S KOMPLEXNÍMI KOŘENY 1. Řešte rovnici pro C: = Napište kvadratickou rovnici, která má kořeny 1 = + i a = i Řešte rovnici pro C: ( 3) ( 1) = -44-

45 MOIVREOVA VĚTA 1. Pomocí Moivreovy věty vypočítejte: 1 3 i + 3 [1]. Pomocí Moivreovy věty vypočítejte: ( 3 4i) 6 [ i] 3. Pomocí Moivreovy věty vypočítejte: 1 i 1+ i = [-3-3i] -45-

46 BINOMICKÁ ROVNICE 1. Řešte rovnici pro C: 4 4 = 0 [ ± ; ± i 6]. Řešte rovnici pro C: = 0 [ ± i; 3 ± i; 3 ± i ] 3. Řešte rovnici pro C: = 0 [0,5; 0,15 ± 0,48i; -0,4 ± 0,9i ] -46-

47 VLASTNOSTI KOMBINAČNÍCH ČÍSEL, PASCALŮV TROJÚHELNÍK, VÝRAZY S FAKTORIÁLY 1. Řešte rovnici: 1 + = [5] n =. Upravte: ( n + 3 )! ( n + )! ( n + 1 )! ( n + ) 1! n! ( n ) 3. Upravte: ( ) ( ) ( n ) ( ) + 1! +! + + ( n + 4) = n 3! n! n 1! [3n 3 n + 3n - 4] -47-

48 VARIACE, PERMUTACE, KOMBINACE 1. Kolik maimálně čtyřciferných čísel s různými číslicemi lze vytvořit z cifer 0, 1,, 3, 4, 5, 6? Kolik je jich menších než 3 000? [943; 463]. Zvětší-li se počet prvků o zvětší se počet permutací těchto prvků 56 krát. Určete počet prvků. [6] 3. V rovině jsou dány dvě různé rovnoběžky a, b. Na přímce a leží 10 různých bodů A1 až A10 na přímce b leží 8 různých bodů B1 až B8. Kolik různých trojúhelníků s vrcholy v těchto bodech lze vytvořit? [640] -48-

49 BINOMICKÁ VĚTA 1. Vypočítejte 3. člen binomického rozvoje ( ) 5 3 i. [-540]. V binomickém rozvoji určete člen, který neobsahuje. [ 17.člen] 3. Užitím binomické věty zjistěte, zda číslo = 0. = + i je řešením rovnice [ ano] -49-

50 PRAVDĚPODOBNOST 1. V osudí jev 5 bílých a 4 modré lístky. Náhodně vybereme lístky. Jaká je pravděpodobnost, že budou: a) oba bílé b) oba modré c) jeden bílý a jeden modrý a ) b) ; c) 18; 6 9. Student při zkoušce losuje z 10 otázek, je připraven na 6 z nich. Jaká je pravděpodobnost, že: a) bude umět obě b) bude umět právě jednu c) nebude umět žádnou d) bude umět alespoň jednu z losovaných otázek a ) ; b) ; c) ; d) Mezi dvaceti výrobky jsou čtyři vadné. Jaká je pravděpodobnost, že při náhodné kontrole tří výrobků bude alespoň jeden vadný? Při řešení využívejte poznatky o doplňkových jevech

51 ZÁKLADNÍ STATISTICKÉ POJMY 1. Ve třídě je 8 žáků zařazeno do volitelného předmětu informatika, 10 do cvičení z biologie a 14 do anglické konverzace. Průměrný prospěch v informatice byl 1,60, ve cvičení z biologie 1,40 a v anglické konverzaci 1,0. Jaký je průměrný prospěch třídy ve volitelných předmětech? [ 1,365]. Ve třídě s 5 žáky prospělo s vyznamenáním 7 žáků, prospělo 14 žáků, neprospěli 3 žáci, nebyl klasifikován 1 žák, Vypočtěte relativní četnosti znaku prospěch. Co je součtem těchto relativních četností? Sestrojte sloupkový diagram. Jaké ještě znáte diagramy? nv = 0, 8; np = 0,56; nn = 0,1; n; = 0, 04;0, 8 + 0,56 + 0,1 + 0, 04 = 1 ješě t eistuje kruhov ý nebo spojnicov ý diagram 3. Určete aritmetický průměr a směrodatnou odchylku délky, jsou-li naměřené délkové hodnoty i a jejich četnosti n i dány tabulkou: i 4,7 4,8 4,9 5,0 5,01 5, 5,3 ni [ = 4,98; s = 0,158] -51-

52 POLOHOVÉ VZTAHY ÚTVARŮ VE STEREOMETRII 1. Je dána krychle ABCDEFGH o hraně délky a. a) vypočítejte vzdálenost bodu A od přímky FG. [ a ] b) načrtněte řez rovinou KLB, kde K AE; L EH. Je dána krychle o hraně a = 6cm. Body MNPQ, jsou po řadě středy hran EF, FG, EH, GH. a) určete vzdálenost přímek MN, PQ [ 3 ] b) načrtněte řez rovinou MNC 3. V pravidelném čtyřstěnu o hraně 10 cm určete: a) odchylku stěn b) vzdálenost bodu D od roviny ABC [ a) ; b)8, 17cm] -5-

53 POVRCHY A OBJEMY VÁLCŮ A KUŽELŮ 1. Vypočítejte poměr objemů tři rotačních válců opsaných kvádru o rozměrech 6, 9,1 d.j. [6:30:5 ]. Vypočítejte objem kosého kužele, jehož kruhová podstava má poloměr = 7,5, nejdelší strana určuje s rovinou podstavy odchylku α = a nejkratší strana odchylku β = [V1=78,38 j 3 ; V = 338,9 j 3 ] 3. Rotační komolý kužel má povrch S = 7500 cm a poloměry podstav r1 = 0 cm a r = 8 cm. Určete tělesovou výšku. [3,76cm] -53-

54 POVRCHY A OBJEMY HRANATÝCH TĚLES 1. Určete rozměry a objem kvádru, jehož rozměry jsou v poměru 3 : 4 : 6 a jehož povrch je S= 43 cm. [6; 8; 1]. V pravidelném šestibokém jehlanu je podstavná hrana a = 4 dm a pobočná hrana b = 48,4 dm. Vypočítejte objem. [36740dm 3 ] 3. Vypočítejte objem pravidelného komolého šestibokého jehlanu s podstavnými hranami a1 = 65, a = 5 a pobočnou branou b = 85. [481,49 j 3 ] -54-

55 POVRCH A OBJEM KOULE A JEJÍCH ČÁSTÍ 1. Vypočítejte objem a povrch koule, jsou-li dány poloměry dvou rovnoběžných řezů r1 = 0, r = 10 a jejich vzdálenost v = 4.[ r = 40,75 ; S = 0 863,317 j ; V = ,63 j 3 ]. Jak daleko od středu koule je svítící bod, je-li osvětlena čtvrtina povrchu koule? [r] 3. Rovina protne kouli o poloměru r = 9,8 dm v kruhu o poloměru ρ = 7,9 dm. Vypočítejte objem a povrch příslušné kulové úseče. [úloha má řešení S = 46,3 dm ; V = 45,644 dm 3 ; S = 960,57 dm ; V = 3 517,1198 dm 3 ] -55-

56 OBVODY A OBSAHY ROVINNÝCH OBRAZCŮ 1. Vypočítejte obsah lichoběžníku o stranách a = 108, b = 3, c = 30, d = 60. [S = 1 571,13 j ]. Vypočítejte strany trojúhelníku o obsahu S = 1,6 cm jsou-li v poměru a : b : c = 8: 15: 17. [a = 4,8; b=9;c = 10,] 3. O kolik % se změní obsah průřezu potrubí, jehož kruhový tvar byl při stejném obvodu změněn na pravidelný šestiúhelník? [zmenší se o 10%] -56-

57 PODOBNOST, EUKLIDOVY VĚTY A PYTHAGOROVA VĚTA 1. Pravidelný čtyřboký jehlan má podstavu s úhlopříčkou u = 0 cm a výšku v = 8 cm. Vypočítejte povrch jehlanu. [ 50]. Sestrojte úsečku délky = 7 a 3 y = V pravoúhlém trojúhelníku ABC je přepona c = 10, výška na přeponu v = 4. Vypočítejte velikosti odvěsen. [ 5;4 5 ] -57-

58 OBVODOVÝ A STŘEDOVÝ ÚHEL 1. Je dán pravidelný dvanáctiúhelník A1..A1. Určete vnitřní úhly čtyřúhelníka A1AA6A11. [45 ; 75 ; 105 ; 135 ]. Sestrojte trojúhelník ABC, Je-li dáno: a = 10; va = 7; α = Je dán pravidelný desetiúhelník A1..A10. Určete jaký úhel svírají úhlopříčky AA8 a A5A10. [90 ] -58-

59 STEJNOLEHLOST V KONSTRUKČNÍCH ÚLOHÁCH 1. Jsou dány dvě různoběžky a, s a bod M, který leží uvnitř ostrého úhlu těchto různoběžek. Sestrojte kružnici, která se dotýká přímky a, má střed na přímce s a prochází bodem M.. Sestrojte společné tečny kružnic k = ( O; r = ), k = ( O ; r = 3,5), OO = 7 3. Do daného ostroúhlého trojúhelníku ABC vepište obdélník MNPQ, jehož strany jsou v poměru 3 : a delší strana MN leží na AB. -59-

60 SHODNÁ ZOBRAZENÍ 1. Je dána přímka a, kružnice k a bod S, který neleží na žádné z nich. Sestrojte úsečku AB se středem v bodě S tak, aby A a, B k.. Jsou dány různoběžky a, b a úsečka XY. Sestrojte úsečku rovnoběžnou s XY a stejně dlouhou, aby její krajní body ležely na přímkách a, b. 3. Je dána přímka a, kružnice k a bod C. Sestrojte rovnostranný trojúhelník ABC tak, aby A a, B k. -60-

Opakování k maturitě matematika 4. roč. TAD 2 <

Opakování k maturitě matematika 4. roč. TAD 2 < 8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Maturitní nácvik 2008/09

Maturitní nácvik 2008/09 Maturitní nácvik 008/09 1. Parabola a) Načrtněte graf funkce y + 4 - ² a z grafu vypište všechny její vlastnosti. b) Určete čísla a,b,c tak, aby parabola s rovnicí y a + b + c procházela body K[1,-], L[0,-1],

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH

STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH RNDr. Milada Rezková RNDr. Vlasta Sudzinová Mgr. Eva Valentová 2016 Předmluva Tento učební text je určen studentům 4. ročníku čtyřletých gymnázií,

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.

Více

MATEMATIKA VYŠŠÍ ÚROVEŇ

MATEMATIKA VYŠŠÍ ÚROVEŇ NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 008 Vyšší úroveň obtížnosti MAVCZMZ08DT MATEMATIKA VYŠŠÍ ÚROVEŇ DIDAKTICKÝ TEST Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém

Více

Sbírka příkladů z m a t e m a t i k y. Příprava k profilové části maturitní zkoušky

Sbírka příkladů z m a t e m a t i k y. Příprava k profilové části maturitní zkoušky Sbírka příkladů z m a t e m a t i k y Příprava k profilové části maturitní zkoušky školní rok 0/0 . Algebraické výrazy ) Rozložte na součin: a) d) n n a a b + b b c) a + a a b b b n n e) a 0a f) b + 5b

Více

1. Základní poznatky z matematiky

1. Základní poznatky z matematiky . Základní poznatky z matematiky. Určete opačné číslo k číslu (3 5). a) 8 b) 8 c) 8 d) 8. Čísla,, 0, 3,, 8 9, seřaďte od největšího k nejmenšímu. a), 3,, 8 9,, 0, b), 3,, 8 9,, 0, c) 3,,, 8 9,, 0, d),,

Více

Obsah Matematická logika, důkazy vět, množiny a operace s nimi Mocninná funkce, výrazy s mocninami a odmocninami Iracionální rovnice a rovnice s absol

Obsah Matematická logika, důkazy vět, množiny a operace s nimi Mocninná funkce, výrazy s mocninami a odmocninami Iracionální rovnice a rovnice s absol Přípravné úlohy k maturitě z matematiky RNDr Miroslav Hruška Přípravné úlohy k maturitě z matematiky Miroslav Hruška, 009 Obsah Matematická logika, důkazy vět, množiny a operace s nimi Mocninná funkce,

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 0 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 006 MAACZMZ06DT MATEMATIKA didaktický test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do

Více

Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky

Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky A. Informace o zkoušce Písemná maturitní zkouška z matematiky v profilové části se

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Maturitní okruhy z matematiky ve školním roce 2010/2011

Maturitní okruhy z matematiky ve školním roce 2010/2011 Vyučující: RNDr. Ivanka Dvořáčková Třída: 8.A Maturitní okruhy z matematiky ve školním roce 2010/2011 Otázka Okruh 1 1. Výroky a operace s nimi 2. Množiny a operace s nimi 2 3. Matematické věty a jejich

Více

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( ) 6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice

Více

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd. MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

STEREOMETRIE 9*. 10*. 11*. 12*. 13* STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů 1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou

Více

Předmět: MATEMATIKA Ročník: 6.

Předmět: MATEMATIKA Ročník: 6. Předmět: MATEMATIKA Ročník: 6. Výstupy z RVP Školní výstupy Učivo Mezipředm. vazby, PT Číslo a proměnná - užívá různé způsoby kvantitativního vyjádření vztahu celek - část (přirozeným číslem, poměrem,

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

MATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 30 bodů Pro přijetí uchazečů je rozhodné umístění v sestupném pořadí uchazečů podle dosaženého bodového hodnocení. 1Základní informace k zadání zkoušky

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

Sbírka příkladů ke školní části maturitní zkoušky z matematiky

Sbírka příkladů ke školní části maturitní zkoušky z matematiky Sbírka příkladů ke školní části maturitní zkoušky z matematiky. otázka. Řešení logaritmických rovnic Řešte rovnici s neznámou x R:. log(x 2 +) log(x+) = 2 2. log 2 2 x + 2 log 2 x = 0. log x + log x =.

Více

CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 CVIČNÝ TEST 14 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST 1 bod 7x 11 1 Určete hodnotu výrazu pro x = 27. 11 7x 32 2 Aritmetický průměr

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

1. ABSOLUTNÍ HODNOTA. : y= 4. Je dán trojúhelník ABC, A[-3; 4], B[-1; -2], C[3; 6]. Vypočítejte velikosti všech výšek.

1. ABSOLUTNÍ HODNOTA. : y= 4. Je dán trojúhelník ABC, A[-3; 4], B[-1; -2], C[3; 6]. Vypočítejte velikosti všech výšek. . ABSOLUTNÍ HODNOTA definice absolutní hodnoty reálného čísla a geometrická interpretace, definice absolutní hodnoty komplexního čísla a geometrická interpretace, vzdálenost bodu od přímky (v rovině i

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

4 Goniometrické výrazy, rovnice a nerovnice Funkce, grafy funkcí, definiční obory... 14

4 Goniometrické výrazy, rovnice a nerovnice Funkce, grafy funkcí, definiční obory... 14 Vážený čtenáři, sbírka příkladů, kterou jsi právě otevřel Vám chce pomoci při studiu jedné z nejkrásnějších vědních disciplín - matematiky. Sbírka obsahuje všechny typy příkladů, včetně výsledků, které

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0;

Více

SBÍRKA n PŘÍKLADŮ Z MATEMATIKY kde n =

SBÍRKA n PŘÍKLADŮ Z MATEMATIKY kde n = SBÍRKA n PŘÍKLADŮ Z MATEMATIKY kde n = 017-1957 Mgr. Petr Říman Gymnázium Ostrava-Zábřeh, Volgogradská a červen 017 1. Vypočítejte: 1 0, 4 1 8 0,75. Vypočítejte:. Vypočítejte: ( 4 4) ( + ) ( i) [ + 4i]

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu

Více

1. VÝROKOVÁ LOGIKA. a) b) c) d) e) f) g) h) i) j) k) l)

1. VÝROKOVÁ LOGIKA. a) b) c) d) e) f) g) h) i) j) k) l) 1. VÝROKOVÁ LOGIKA 1. Negujte výroky s kvantifikátory, výroky g j a jejich negace zapište i symbolicky a) Alespoň 5 dnů bude pršet. b) Úloha má právě 2 řešení. c) Žádný z předmětů mě nebaví. d) Nejvýše

Více

je číslo vyjádřené výrazem 7n 21n , C cos je iracionální číslo d) 0, 9 = 1

je číslo vyjádřené výrazem 7n 21n , C cos je iracionální číslo d) 0, 9 = 1 Číselné obory N, Z, Q, R, C (definice, základní operace v jednotlivých oborech, vlastnosti operací s čísly, různé zápisy čísel, znázornění čísel na číselné ose a v Gaussově rovině, řešení rovnic v jednotlivých

Více

Slovní úlohy 1. 2,42cm; 7cm; 11,58cm; 2. původní cena; dní; 4. 2,3*10 15 kg; 5. 2,8*10 14 ; ; 27325; 7. 3, 9, 27; -3, 9, -27;

Slovní úlohy 1. 2,42cm; 7cm; 11,58cm; 2. původní cena; dní; 4. 2,3*10 15 kg; 5. 2,8*10 14 ; ; 27325; 7. 3, 9, 27; -3, 9, -27; 1. Posloupnosti 1.1. Úvod geometrické znázornění, monotonie posloupnosti, rekurentní vzorec a vzorec pro n-tý člen. 1.A) 15, 17, 19; B) 128, 256, 512; C) 45, 51, 57; D) 6, 2, 4; E) 32768, 131072, 524288;

Více

Opakovací kurs středoškolské matematiky podzim

Opakovací kurs středoškolské matematiky podzim . Opakovací kurs středoškolské matematiky podzim František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou

Více

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Test Matematika Var: 101

Test Matematika Var: 101 Test Matematika Var: 101 Pokyny: Vyplňte příslušné kolečko odpovídající správné odpovědi u každé otázky ve zvláštním odpovědním formuláři, který Vám byl rozdán spolu se zadáním testu. 1. Přímky p: y =

Více

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka

2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Základní škola Blansko, Erbenova 13 IČO

Základní škola Blansko, Erbenova 13 IČO Základní škola Blansko, Erbenova 13 IČO 49464191 Dodatek Školního vzdělávacího programu pro základní vzdělávání Škola v pohybu č.j. ERB/365/16 Škola: Základní škola Blansko, Erbenova 13 Ředitelka školy:

Více

Několik úloh z geometrie jednoduchých těles

Několik úloh z geometrie jednoduchých těles Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,

Více

TEMATICKÝ PLÁN 6. ročník

TEMATICKÝ PLÁN 6. ročník TEMATICKÝ PLÁN 6. ročník Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA:

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: Obor Obchodní akademie 63-41-M/004 1. Praktická maturitní zkouška Praktická maturitní zkouška z odborných předmětů ekonomických se skládá z obsahu

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více