Elektromagnetické pole
|
|
- František Blažek
- před 8 lety
- Počet zobrazení:
Transkript
1 Elekomagneické pole Zákon elekomagneické inukce pohybujeme-li uzařeným oičem honým způsobem magneickém poli, zniká e oiči elekický pou nachází-li se uzařený oič časoě poměnném magneickém poli, zniká e oiči elekický pou F Q E ( ) QE Účinek magneické síly na náboj je sejný jako kyby působilo elekické pole o inenziě E Inukoané napěí U in U L E l in 0 C El L ( ) 0 C l ( ) l na koncích oiče élky L zniká inukoané napěí U in
2 Elekomagneické pole inukoaný pou e smyčce má akoou honou, jako kyby byl zapojen zoj elekomooického napěí Φ U magneický inukční ok Faaayů inukční zákon Φ C E l U in Φ Lencoo pailo C El Časoá změna magneického oku inukuje uzařeném oiči pou akoého smyslu, aby magneické pole buzené inukoaným pouem působilo poi změně magneického oku o E.Maxwelloa onice
3 Elekomagneické pole Pohyb smyčky magneickém poli ( ) l l l l C C 1 1 ( ) Φ 1 ( ) + Φ ( ) ( ) + Φ + + Φ ( ) ( ) Φ 1 1 C C in U l l ( ) in C U l Φ Faaayů inukční zákon
4 Elekomagneické pole Vlasní inukčnos oiče uzařenou křikou C oiče pochází magneický inukční ok: Φ µ l o I I L Φ I L 4π C lasní inukčnos L µ 4π C l o chaakeisika oiče, keá je záislá na au a ozměech oiče a posřeí, němž se oič nachází L kons. U in Φ I L poéká-li oičem časoě poměnný pou bue se e oiči inukoa napěí, jež záisí na inukčnosi oiče
5 Vzájemná inukčnos Elekomagneické pole čás magneického inukční oku buzeného půchoem pouu I 1 smyčkou 1 bue pocháze i smyčkou eno ok je přímo úměný elikosi pouu I 1 Φ1 L1I1 L1 L1 inukoané napěí e smyčce : U 1 1 L1 Φ I φ 11 φ 1 1 I 1
6 Vzájemná inukčnos Elekomagneické pole
7 Elekomagneické pole Enegie magneického pole při připojení obou o opou R na elekomooické napěí ε znikne magneické pole a obou se bue inukoa elekomooické napěí opačného smyslu než má zoj ε Φ IR εi I R + IΦ W W Q + W ε m enegie oaná zojem Jouleoo eplo příůsek magneické enegie W m obou W m Φ 0 IΦ L I I I 0 1 LI 1 IΦ pomalé časoé změny, obo nemění sůj a, pemeabilia nezáislá na inenziě pole Celkoá magneická enegie n-oboů W m 1 n n L I I 1 ik i k k 1 i 1 n k 1 I k Φ k
8 Elekomagneické pole Elekická kyaa cíce snímače se inukuje el.pou záislosi na kmiech kooé suny
9 Elekomagneické pole Vířié pouy eekce koů
10 Elekomagneické pole Vířié pouy inukční ohře po anou plochou je umísěna cíka, keá je napájena ysokofekenčním sříaým pouem magneické pole se peioicky mění a inukuje pou e oié páni liem opou maeiálu páne ochází k přeměně elekické enegie na Jouleoo eplo aná plocha se nezahříá
11 Elekomagneické pole Pohyb nabié čásice magneickém poli ( x,0,0) L FL ( 0, exz, exy ) F e( ) m e x 0 y m e e x z m e z e x y x x 0 + x0 ( y + i z ) iω( y + i z ) e x ω i( ω +ϕ) w y + iz 0e me y cos( ω + ) sin( ω + ) 0 ϕ z 0 ϕ šouboice o poloměu R y 0 y + sin ω ω cos ω 0 0 z z0 + ω R 0 ω mesin α e x
12 acionání magneické pole Příkla: (polání záře)
13 Elekomagneické pole Pohyb čásice elmag.poli cykloon, synchoon FemiLab (UA)
14 Elekomagneické pole Pohyb čásice elmag.poli hmonosní spekogaf m QU QU m m Q m QU x Q m mu Q m Qx 8U
15 Elekomagneické pole Pohyb čásice elmag.poli eleizní CRT obazoka
16 Repouko elekomechanické kmiy Elekomagneické pole
17 Magneická leiace Elekomagneické pole
18 Elekomagneické pole Magneohyoynamický pohon magneohyoynamický pohon loi Yamao > 10 T
19 Elekomagneické pole L-C obo kmiaý elekický obo W R 0 1 m Cu 1 + Li 1 1 CU m + LI kons. W u Cu i + Li 0 u q / C Q i q q L + 0 q Q m cos( ω + ϕ) C i ωq sin( ω + ϕ) Qm 1 U cos( ω + ϕ) ω C LC m
20 R-L obo Elekomagneické pole
Mechanická silová pole
Mechanická siloá pole siloé pole mechanice je ekooé pole chaakeizoané z. inenziou siloého pole (inenziou síly): E m [ms ] inenzia je oožná se zychlením, keé siloé pole aném mísě uělí liboolnému ělesu Siloé
Přednáška 1. Elektrické zařízení vs Elektrický obvod. Obvodové veličiny. Časové průběhy obvodových veličin
Prof. Ing. Ivan Zemánek, CSc Přenáška 1 Elekrické zařízení vs Elekrický obvo Obvoové veličiny Časové průběhy obvoových veličin Charakerisické honoy perioických veličin 1 Prof. Ing. Ivan Zemánek, CSc Elekrické
ZÁVĚRNÉ VLASTNOSTI PŘECHODU PN
ZÁVĚRÉ VLSTOST PŘECHO P a přechou P elaivně šioká oblas posoového náboje ionizovaných onoů v oblasi ypu a ionizovaných akcepoů v oblasi ypu P Poissonova ovnice (jeenoozměně x E x e [ ( x ( x ] Počáek souřanic
2. ZÁKLADY KINEMATIKY
. ZÁKLDY KINEMTIKY Kinemaika se zabýá popisem pohbu čásice nebo ělesa, aniž sleduje příčinné souislosi. Jedním ze základních lasnosí pohbu je, že jeho popis záleží na olbě zažného ělesa ( souřadnicoého
( ) Kinematika a dynamika bodu. s( t) ( )
Kineika a ynamika bou Kineika bou Bo se pohybuje posou po křice, keá se nazýá ajekoie nebo áha bou. Tajekoie je učena půoičem (polohoým ekoem), keý je funkcí času ( ) V záislosi na ypu ajekoie ozlišujeme:
STACIONÁRNÍ MAGNETICKÉ POLE
Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat
Univerzita Tomáše Bati ve Zlíně
Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí
Zákony bilance. Bilance hmotnosti Bilance hybnosti Bilance momentu hybnosti Bilance mechanické energie
Zákony bilance Bilance hmonosi Bilance hybnosi Bilance momenu hybnosi Bilance mechanické energie Koninuum ermodynamický sysém Pené ěleso = ěšinou uzařený sysém Konsanní hmonos - nezáisí na čase ochází
F1040 Mechanika a molekulová fyzika
4 Mechnik molekuloá fzik Pe Šfřík 4 Přednášk 4 Mechnik molekuloá fzik Tped b Pe Šfřík 4 Mechnik molekuloá fzik... Zchlení:... 3 Pohb po kužnici... 4 Pohb z hledisk ůzných pozooelů... 6 Pohboé onice hmoného
Předmět studia klasické fyziky
Přemě sui klsiké fik mehnik, emonmik, elekonmik, opik klsiká fik eoeiká fik epeimenální fik eoie elivi sisiká fik kvnová fik moení fik Přemě sui klsiké fik Fik oeně koumá sukuu hmo její ákon, hování přío
ž ú Á Í úč ů ú Í ů ů ú Í č č ů ú ů Í č ó Í ž Ž Íč č ó ž Ž č úč ů ů Í ž Í úč ů Í ž Ž Š Č Á Ř ŘÍ ž Ú ž Í š ž Í č ňň Ú Í Ě Ž č Ž č č ó ÓČ ú č Í čšě ž ňč Ťž Í ů ž ž č č š Ž ž č Í č Í Č Ý Ť ó ú ó ň Ž ň Č ů
= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1
Mgntiké pol 8 Vypočtět mgntikou inuki B kuhové smyčky o poloměu 5 m n jjí os symti v válnosti 1 m o oviny smyčky, jstliž smyčkou potéká lktiký pou 1 A Řšní: Po příspěvk k mgntiké inuki v boě A pltí pol
Mechanismy s konstantním převodem
Mechanismy s konsanním přeodem Obsah přednášky : eičina - přeod mechanismu, aié soukoí, ozubené soukoí, předohoé a paneoé soukoí, kadkosoje a aiáoy. Doba sudia : asi hodina Cí přednášky : seznámi sudeny
Komplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Reziduová věta a její aplikace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Reziduová věta a její aplikace / Motivace Mějme
ý ď Í Ž ú Ž é š é Š Ž Ú ú ú ú š é Š Ž Í Ú ú Í ú ú š é Ž Ú ú ú ý ú ť é ž é Ž ú ó ý ý Ž š é š é Ú ú ý ú ť ú ť ý Ž Í ú ý ů é ý Ž É ú ý ú ů ž ž š ú Í š ý ú ÚÁ Ú é ž ý Ú Ě ú ó ý ý ů Ž ú Ž é Ý Ž Ž Ž Í Ú Ž é
Mechanické vlnění. představuje šíření nějakého rozruchu prostorem (např.deformace pružného tělesa, změny teploty, tlaku, hustoty, intenzity silového
Mehaniké vlnění Vlnění předsavje šíření nějakého ozh posoem (např.deomae pžného ělesa, změny eploy, lak, hsoy, inenziy silového pole, ) Tyo veličiny se v dané vlnění přenáší enegii posoem mísě poso mění
ě ě Č ě ř ý ě Č ý ě ů ř ý ý Č Č Ú Ř É ř ů ů ř ú ě ě Č Č Č ř ž ř ř ú Ř Ý ř ž ř ř ř ú Ě Á Ú Č Á Ř Ý Í ř ř ů ě ž ř ž Á ý Á Á ř ř ř ú ě ů ů ě ě Č ř ů ř ů ř ž ó ř ů ř ů ů ě ě Č ě ó ř ř ý ě ř ů ř ř ě ó ř ř ý
Základy vektorového počtu
Zákl vekoového poču késká sousv souřná pvoúhlá pvoočivá veko je popsán svými řemi půmě o souřnýh os oogonálními veko áe veko i áe: veko: i j k j velikos vekou: k i k α γ β j Polohový veko: osα os i osβ
Předmět studia klasické fyziky
Přemě sui klsiké fik mehnik, emonmik, elekonmik, opik klsiká fik eoeiká fik epeimenální fik eoie elii sisiká fik knoá fik moení fik Přemě sui klsiké fik Fik oeně koumá sukuu hmo její ákon, hoání přío se
Obecný rovinný pohyb. teorie současných pohybů, Coriolisovo zrychlení dynamika obecného rovinného pohybu,
Obecný oinný pohyb ynik, 7. přednášk Obsh přednášky : teoie součsných pohybů, Coiolisoo zychlení dynik obecného oinného pohybu, ob studi : si 1,5 hodiny Cíl přednášky : seznáit studenty se zákldy teoie
Dynamika hmotného bodu
Dynmik hmoného bou Dynmik - obo mechniky, yšeřující zájemné působení ěles, keé ee ke změně pohybu Síl - ekooá eličin, je míou zájemného působení ěles, keé ee ke změnám pohybu nebo efomci ěles Síly mohou
áš Í é Č é á ú Č é á é é ý á á ý á ý Í á ý Č Í á š ý é é Í ů Á Í á á ó é Š á ŘČ áš é é á ú é é Ý á á ý á Í á Ý á š ý é é ů á é Š Ň Š Í ó ť ň ňá ň ň áš é é á ú é é ý á ý ÍČ á ý á Ý á š ý é Á é ů á é Š É
Zada ní 2. Semina rní pra ce z pr edme tu Matematika pro informatiky (KI/MAI)
Zaa ní. eina ní pa e z p ee u Maeaia po infoai (KI/MAI) Dau zaání. 5. 17 Poín paoání - einání páe se sláá z poaoé čási (ó Malabu) a eoé čási (poool o paoání). - Kažý suen oezáá pái sá za sebe. - uen si
qb m cyklotronová frekvence
Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q = =
m cyklotronová frekvence
Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q dt
Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016
Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se
Kmity vynucené
1.7.3. Kmit nucené 1. Umět sětlit posttu nucených kmitů.. Pochopit ýznm buící síl. 3. Vsětlit přechooý st. 4. Věět, jk se mění mplitu nucených kmitů záislosti n fekenci buící síl. 5. Věět, co je ezonnční
Termomechanika 2. přednáška Ing. Michal HOZNEDL, Ph.D.
ermomechanika. řenáška Ing. Michal HOZNEDL, Ph.D. Uozornění: ao rezenace slouží ýhraně ro ýukoé účely Fakuly srojní Záaočeské unierziy Plzni. Byla sesaena auorem s yužiím cioaných zrojů a eřejně osuných
POHYB BODU V CENTRÁLNÍM POLI SIL
POHYB BODU V CENTRÁLNÍM POLI SIL SPECIFIKCE PROBLÉMU Centální siloé pole je takoé pole sil, kdy liboolném bodě postou nositelka síly působící na pohybující se bod pochází peným bodem postou (tz centem
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
Digitální učební materiál
Číso pojeku Název pojeku Číso a název šabony kíčové akvy Dgání učební maeá CZ..7/.5./34.8 Zkvanění výuky posředncvím ICT III/ Inovace a zkvanění výuky posředncvím ICT Příjemce podpoy Gymnázum, Jevíčko,
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,
Sání bakalářská zkouška 8.. 07 Fyzika (učielsví) Zkouška - eoreická fyzika (es s řešením) Jméno: Pokyny k řešení esu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minu (6 minu na úlohu):
je dána vzdáleností od pólu pohybu πb
7_kpta Tyč tvaru le obrázku se pohybuje v rohu svislé stěny tak, že bo A se o rohu (poloha A 0 ) vzaluje s konstantním zrychlením a A 1. m s. Počáteční rychlost bou A byla nulová. Bo B klesá svisle olů.
Základní topologické pojmy:
Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński
DYNAMIKA časový účinek síly Impuls síly. 2. dráhový účinek síly mechanická práce W (skalární veličina)
DYNAMIKA 2 Působením síly na čásici se obecně mění její pohybový sav. Síla působí vždy v učiém časovém inevalu a záoveň na učiém úseku ajekoie s. 1. časový účinek síly Impuls síly 2. dáhový účinek síly
Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS =
11. Výpoče poměrů při zkraeh ve vlasní spořebě elekrárny Zkra má v obvodeh shémau smysl pouze v čáseh provozovanýh s účinně uzemněným sředem zdroje, čili mimo alernáor, vyvedení výkonu a přilehlá vinuí
Základní pasivní a aktivní obvodové prvky
OBSAH Strana 1 / 21 Přednáška č. 2: Základní pasivní a aktivní obvodové prvky Obsah 1 Klasifikace obvodových prvků 2 2 Rezistor o odporu R 4 3 Induktor o indukčnosti L 8 5 Nezávislý zdroj napětí u 16 6
Test - varianta A, část 1
Tes - ariana A, čás 1 U úloh s ýběrem odpoědí proeďe označení spráné odpoědi zakroužkoáním příslušného písmena. Pokud se pak rozhodnee pro jinou odpoěď, proeďe oprau škrnuím půodní a zakroužkoáním noé
silový účinek proudu, hydraulický ráz Proudění v potrubí
: siloý účinek proudu, hydraulický ráz SILOVÝ ÚČINEK PROUDU: x nější síly na ymezený objem kapaliny: stupní ýstupní i Výpočtoá ektoroá ronice pro reálnou kapalinu: Q rychlost y G A G R A R A = p S... tlakoá
1 ODPOROVÉ DĚLIČE NAPĚTÍ. Určeno pro posluchače bakalářských studijních programů FS
ODPOOVÉ DĚLIČE NAPĚTÍ rčeno pro posluchače bakalářských sudijních programů FS Ing. Víěsla Sýskala, Ph.D., K45, lisopad Sejnosměrné obody Použíají se am, kde je pořeba menší napěí, než je napěí droje. Jsou
Kinematika hmotného bodu. Petr Šidlof
et Šilof Úo Kinemtik popis pohybu (nezkoumá příčiny pohybu) Šiší souislosti: mechnik tuhých těles sttik kinemtik ynmik Mechnik mechnik poných těles sttik kinemtik ynmik mechnik tekutin hyosttik ynmik tekutin
Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:
terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy
2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená
Č ý č Ú í íí Í í é í ú Ě Á ČÁ Š Úř éč ď ý ří čí Č č Ú Íí í íí č í í í ú Ě Á ČÁ Š Úř éč ý ří čí č ů ří Á č í Á čúí Ú ÍÍ í í č í í Í ú í Ě ÁČÁ Š Úř éč í ří ř č í ř č ý ů í ř í ř ý č í Í ř ř č ý ý é ř č ý
Napětí indukované v jednom závitu
Naětí induoané jednom záitu Naětí induoané jednom záitu = τ m z x x l B l B l B u u u sin sin. Naětí induoané jednom záitu Relatiní rchlost záitu ůči oli: de ω relatiní úhloá rchlost ole zhledem cíce f
Hodnoty pro trubkový vazník předpokládají styčníky s průniky trubek, v jiných případech budou vzpěrné délky stejné jako pro úhelníkové vazníky.
5. Vazník posuek pruů 5. Vzpěrné élky Tab.: Vzpěrné élky pruů příhraových vazníků Úhelníkový vazník v rovině vzálenos uzlů Horní pás z roviny vzálenos vaznic vzálenos svislého zužení Dolní pás z roviny
v 1 = at 1, (1) t 1 = v 1
Příklad Statující tyskové letadlo musí mít před vzlétnutím ychlost nejméně 360 km/h. S jakým nejmenším konstantním zychlením může statovat na ozjezdové dáze dlouhé,8 km? Po ychlost v ovnoměně zychleného
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických
e en loh 1. kola 48. ro n ku fyzik ln olympi dy. Kategorie B Auto i loh: M. Jare ov (1, 2, 5, 6, 7), J. J r (4) a KVANT (3). Kone n prava P. ediv 1. l
e en loh. kola 48. o n ku fyzik ln olympi y. Kategoie B Auto i loh: M. Jae ov (,, 5, 6, 7), J. J (4) a KVANT (). Kone n pava P. eiv. lohu bueme e it ve vzta n soustav, jej po tek je ve st eu M s ce a osy
Jednokapalinové přiblížení (MHD-magnetohydrodynamika)
Jenokapalinové přiblížení (HD-magnetohyroynamika) Zákon zachování hmoty zákony zachování počtu elektronů a iontů násobeny hmotnostmi a sečteny n e + iv = ( nu ) ni + iv( nu i i) = e e iv ( u ) (1) t ρ
Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1
Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní
Využití komplementarity (duality) štěrbiny a páskového dipólu M
Přechodné typy antén a) štěrbinové antény - buzení el. polem napříč štěrbinou (vlnovod) z - galvanicky generátor mezi hranami - zdrojem záření - pole ve štěrbině (plošná a.) nebo magnetický proud (lineární
Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ
KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ URČEN ENÍ PRÁCE KLIKOVÉHO LISU URČEN ENÍ SETRVAČNÍKU KLIKOVÉHO LISU KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÁ HŘÍDEL OJNICE KLIKOVÁ HŘÍDEL BERAN LOŽISKOVÁ TĚLESA
S A H... 3 M Á C N O S T, D Ú M A A U T O... 8
OBSAH ' q ^ rj, j S A H... 3 M Á C N O S T, D Ú M A A U T O... 8 64BITOVÉ OVLÁDÁNÍ s v ě t e i... 8 V y pín a c í a u t o m a t...10 Au t o a l a r m s d e t e k t o r e m n a p ě t í... 10 4. A u t o
Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce
Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx
Základní zákony a terminologie v elektrotechnice
Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 2 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografické zobrazení kartografické zobrazení vzájemné přiřazení polohy bodů na dvou různých referenčních
5. MĚŘENÍ FÁZOVÉHO ROZDÍLU, MĚŘENÍ PROUDU A NAPĚTÍ
5. MĚŘEÍ FÁZOVÉHO ROZDÍL, MĚŘEÍ PROD PĚÍ měření fázového rozdílu osciloskopem a číačem, další možnosi měření ϕ (přehled) měření proudu a napěí: ealony, referenční a kalibrační zdroje (včeně principu pulsně-šířkové
Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 13
Fkul sojního inženýsví VU v Bně Úsv konsuování KONRUOVÁNÍ ROJŮ sojní součási Přenášk 3 evčníky hp://www.lgo.com/ cience is fis-e piece of funiue fo mn s uppe chmbe, if he hs common sense on he goun floo.
Ě Ý Í Č í ří í Ř ř ř ří é í í í Ž ř é ř é č ů í é é ž č é č é ž í ů é č í é é ž í í Ž Ž é ú í ř é é Íí ř ů é ž č ů ú í ů ů ú é í í č í í é ř é ů ů í é ř é í ů ž í Í é Í Ř ř ů ř ů ž í é í č í č í í ří í
10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI
0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci
4. Střední radiační teplota; poměr osálání,
Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění
Konstrukční a technologické koncentrátory napětí
Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
Stupeň Datum ZKRATOVÉ POMĚRY Číslo přílohy 10
Projektant Šlapák Kreslil Šlapák ČVUT FEL Technická 1902/2, 166 27 Praha 6 - Dejvice MVE ŠTĚTÍ ELEKTROTECHNICKÁ ČÁST Stupeň Datum 5. 2016 ZKRATOVÉ POMĚRY Číslo přílohy 10 Obsah Seznam symbolů a zkratek...
Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu
Sýskala, 22 L e k c e z e l e k r o e c h n i k y Víězslav Sýskala TÉA 6 Oddíl 1-2 Sylabus k émau 1. Definice elekrického pohonu 2. Terminologie 3. Výkonové dohody 4. Vyjádření pohybové rovnice 5. Pracovní
4. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1, MĚŘENÍ KMITOČTU A FÁZOVÉHO ROZDÍLU
4. MĚŘICÍ PŘEVODÍKY ELEKICKÝCH VELIČI, MĚŘEÍ KMIOČ A FÁZOVÉHO OZDÍL Převodníky pro měření soč a rozdíl (s operačním zesilovačem, s ransformáory) Inegrační zesilovač: základní princip a odvození přenos
Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas
Řešení úlo kajskéo kola 58 očníku fyzikální olympiády Kategoie B Auto úlo: J Tomas a) Doba letu střely od okamžiku výstřelu do zásau označíme t V okamžiku výstřelu se usa nacází ve vzdálenosti s měřené
Kinematika a dynamika soustavy těles
Knemaka a dynamka sousay ěles Vyšeřoání poybu mecansmů Analycké yšeřoání poybu mecansmu le poés pomocí doé funkce j. au me souřadncem popsujícím polou nacío a nanýc členů. Posup je paný níže uedenéo příkladu.
12. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY
2. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY měření magneické indukce a inenziy magneického pole (sejnosměrné pole - Hallova a feromagneická sonda, anizoropní magneorezisor; sřídavé pole - měřicí cívka) analogový
Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.
Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+
9. MAGNETICKÁ MĚŘENÍ
9. MAGEIKÁ MĚŘEÍ měření magnecké nkce a nenzy magneckého pole (sejnosměrné pole - allova a feromagnecká sona, anzoropní magneorezsor, sříavé pole - měřcí cívka) měření charakersk feromagneckých maerálů
1. Regulace otáček asynchronního motoru - skalární řízení
1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán
γ α β E k r r ρ ρ 0 θ θ G Θ G U( r, t) w(z) w 0 ω z R z U( r, t) 1 c 2 2 U( r, t) t 2 = 0, U( r, t) U( r, t) = E( r, t) U( r, t) = u( r)e iωt. u( r) + k 2 u( r) = 0, k = ω/c u( r) = A exp( i k r), k
Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická
Digital Control of Electric Drives Vektorové řízení asynchronních motorů České vysoké učení technické Fakulta elektrotechnická B1M14DEP O. Zoubek 1 MOTIVACE Nevýhody skalárního řízení U/f: Velmi nízká
Zápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
Ó ř í ý č é ó ě ů ř á ý č ě ě í ý í ř Č áč í ý čá á č é ú í č í á ý ý áš ě í ě č é ó ě ší á Ž ě ě ížá é é úž ří ě ší ě ů čí í í ě á é ý ě é ó ř í č á á í á ž é é ž ě ů ň á é í á č á ů č é í í ó ř á ý č
2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY
2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový
Řešení úloh celostátního kola 48. ročníku fyzikální olympiády. Autořiúloh:J.Jírů(1),P.Šedivý(2)aKvant(3,4)
Řešení úloh celosáního kola 48. ročníku fyzikální olympiády. Auořiúloh:J.Jírů(),P.Šedivý()aKvan(3,4). a) Zvolme souřadnicovou osu x procházející oběma hmonými body a s počákem vboděsnábojem Q.Pakelekrickýpoenciálnaspojniciobounábojůvbodě
SPECIÁLNÍ TEORIE RELATIVITY
SPECIÁLNÍ TEORIE RELATIVITY GALILEO GALILEI (6.s.) pohbuje-li se ažná sousaa hlee k jiné onoěný příočaý pohbe, je s ní onoenná (pohb je ájený elainí) neeisuje žáná absoluní ažná sousaa, keou jeinou b ěl
é č í é ě í ž ý Ú á í ž ý í ý Á Í ÁŘ É Á áš í ý á ář é í á í ž ý í Ř ú á á č ý š á í š í řá ě č á í í é ář é á é á í í ó á í é č á ú ě ý á í ý žň á í í é ó ó é í á ěř í č í á ů ř ě é ář é á í ář é á á
Práce vykonaná v elektrickém poli, napětí, potenciál Vzájemná souvislost mezi intenzitou elektrického pole, napětím a potenciálem Práce vykonaná v
Páce vykonaná v eektickém poi, napětí, potenciá Vzájemná souvisost mezi intenzitou eektického poe, napětím a potenciáem Páce vykonaná v eektostatickém poi po uzavřené dáze Gadient skaání funkce Skaání
Vítězslav Stýskala TÉMA 1. Oddíly 1-3. Sylabus tématu
Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala TÉMA 1 Oddíly 1-3 Sylabus tématu 1. Zařazení a rozdělení DC strojů dle ČSN EN 2. Základní zákony, idukovaná ems, podmínky, vztahy
Zada ní 2. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)
Z ní. Semin ní p e z p eme u Memiý sofwe (KI/MSW) Dum zání.. 6 Pomín poání - Seminání páe se sláá z pogmoé čási (ó Mlbu) eoé čási (poool o poání). - Kžý suen oezáá pái sám z sebe. - Suen si bee nejméně
ε ε [ 8, N, 3, N ]
1. Vzdálenost mezi elektonem a potonem v atomu vodíku je přibližně 0,53.10-10 m. Jaká je velikost sil mezi uvedenými částicemi a) elektostatické b) gavitační Je-li gavitační konstanta G = 6,7.10-11 N.m
Hlavní body. Úvod do nauky o kmitech Harmonické kmity
Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice
67) Čtyři Maxwellovy rovnice v nestacionárním poli obecná časová závislost. Zobecněný Ampérův zákon. rot. Faradayův indukční zákon.
67) Čtři Maxweov rovnice v nestacionárním poi obecná časová ávisost obecněný Ampérův ákon H I ψ t rot H J D t Faraaův inukční ákon. φ t rot B t Gaussova věta S D S Q iv D ρ S B S iv B . ( B S) t. ( Bn
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
Základy elektrotechniky
Základy elektrotechniky 5. přednáška Elektrický výkon a energie 1 Základní pojmy Okamžitá hodnota výkonu je deinována: p = u.i [W; V, A] spotřebičová orientace - napětí i proud na impedanci Z mají souhlasný
O s 0 =d s Obr. 2. 1
3 KINEMATIKA BODU Kinemik jko čás mechniky je nuk o pohybu ěles bez ohledu n síly, keré pohyb způsobily Těles nebudou mí nšich úhách hmonos budou popsán jen sými geomerickými lsnosmi Ty budou během pohybu
4.5.8 Elektromagnetická indukce
4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 Elekyromagneická indukce je velmi důležiý jev, jeden ze základů moderní civilizace. Všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho
Příloha: Elektrická práce, příkon, výkon. Příklad: 1 varianta: Př. 1 var:
Příloha: Elekrická práce, příkon, výkon Příklad: 1 variana: Obyčejná žárovka má příkon 75. Úsporná zářivka se sejnou svíivosí má příkon 18. Kolik energie v kh uspoří za rok (365 dní) úsporná zářivka oproi
Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách
Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu
FYZIKA I. Mechanika a molekulová fyzika. Doc. RNDr. Karla BARČOVÁ, Ph.D. Institut fyziky.
FYZIKA I. Mechnik molekuloá fyzik Doc. RND. Kl BARČOVÁ, Ph.D. Iniu fyziky O Poub ř. 17. liopu 15 A 98, kl. 31 O Výškoice Lumío 1 LD 84, kl. 88 kl.bco@b.cz hp://if.b.cz - konky Kl Bčoá www.nnoechnologie.cz
Učební text k přednášce UFY102
Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy