O s 0 =d s Obr. 2. 1
|
|
- Hynek Bárta
- před 8 lety
- Počet zobrazení:
Transkript
1 3 KINEMATIKA BODU Kinemik jko čás mechniky je nuk o pohybu ěles bez ohledu n síly, keré pohyb způsobily Těles nebudou mí nšich úhách hmonos budou popsán jen sými geomerickými lsnosmi Ty budou během pohybu neměnné j u ěles nebudeme užo deformce Kinemik přímočrého pohybu U přímočrých pohybů použíáme rozkld pohybu do os krézského sysému Kldný směr jedné z os zoožníme s jednou z os, zdálenos od počáku nzeme odlehlosí s() Zákldní úlohou kinemice bodu je zjišění záislosi polohy bodu n čse (zákon pohybu) j nlezení funkce s=s() d ds Je-li =(), pk řešíme inegrcí definičních zhů =, = d d Specielně je-li =kons, pk plí = +,s = s + + d d( ) Je-li =f(), pk ycházíme z ronice = = Pro dráhu zsení l z použijeme ds ds zh l z d f ( ) ds = Př Těleso koná přímočrý pohyb s konsnním zrychlením o elikosi =,6m s - V čse = se nchází e zdálenosi d=,5m od počáku souřdné osy, po určié době bod projde počákem V čse =4s je jeho rychlos = Určee: ) funkční záislos rychlosi n čse; b) čs průchodu počákem P ; c) funkční záislos odlehlosi n čse; d) průměrnou rychlos sřední dráhoou rychlos pro čsoý inerl = -, kde =s Řešení: Jko kldný směr souřdné osy s zolíme zle dopr Vzhledem k omu, že neznáme orienci počáeční polohy (zd je npro nebo nleo od počáku souřdnic), neznáme směr počáeční rychlosi směr zrychlení, předpokládáme, že šechny yo ekory jsou kldně orienoné ůči zolenému směru souřdné osy (zmiňoná nejiso yznčen čárkoně) r o O s =d s Obr Pohyb je s konsnním zrychlením, proo pro yjádření záislosi ekoru rychlosi n čse použijeme zh = +, kerý reprezenujeme pomocí složkoé ronice ( +) = +, 6 () Po doszení = pro =4s dosááme =-,4 m/s N zčáku pohybu je znménko rychlosi zrychlení opčné, j pohyb je ronoměrně zpožděný Záislos rychlosi n čse =()=-,4 +,6 3
2 4 Vekoroou ronici ( +) r = r + + reprezenujeme pomocí složkoé ronice s = s, 4 +, 6 (b) Položíme-li hodnou odlehlosi s= dosááme kdrickou ronici pro čs průchodu p bodu počákem, 3 P, 4P + s = (c) Kořeny éo ronice ( ), ±, 44, 3s P = (d),, 3 Pro hodnou s =,5 m jsou ob kořeny komplexní j pokud by počáeční poloh bodu byl npro od počáku pk by bod jej nemohl dosáhnou Proo možná počáeční hodno odlehlosi je s = -,5 m Pro s = -,5 m dosááme jeden kořen kldný j čs průchodu počákem P =9,7 s Záporný kořen P =-,7 s odpoídá čsu průchodu počákem kerý předcházel poloze s Záislos odlehlosi n čse (zákon pohybu) je edy dán zhem s=s()=-,5-,4 +,3 (e) Pro =s dosááme hodnou odlehlosi s =, m Hodno sřední rychlosi čsoém s s, +, 5 inerlu = - je sř = = =, 6 m/s Pro určení hodnoy sřední dráhoé rychlosi musíme nejpre zjisi odlehlos s při keré se bod zsil Doszením =4 s do ronice (e) dosááme s =-,98 m Celkoá prošlá dráh do čsu =s edy je l =,98-,5+,=,56 m sřední hodno l + l elikosi rychlosi sř =,56 m/s Příkld Loď ple přímočře rychlosí ) Určee záislos rychlosi odlehlosi lodě n čse, když náhle moory ypneme loď se zčne důsledku odporu prosředí zso se zrychlením = k, kde k je kldná konsn b) Určee, n jké dráze l z se loď zsí, jesliže náhle zpneme moory zd loď se zčne důsledku odporu prosředí zpěném chodu moorů zso se zrychlením = -k -k Řešení: ) Plí 4
3 5 Dosdíme inegrujeme d = d () d k = d (b) d = d k k = + (c) Odkud = (d) + k Záislos odlehlosi n čse určíme ze zhu = ds d : s ds = ds = d = ds + k d + k + k s = ln( + k ) (e) k b) Pro ýpoče dráhy zsení l z použijeme zh (8) j ds= d (f) l z d ds = (g) k k Zedeme subsiuci y = pro kerou plí y =, dy = d = d : dy l z ln( k k y) ln k ln( k k y ) ln y y + + = = + = + = k k y k k k k k y Pro dráhu do zsení edy dosááme zh l z k + k ln = k k k 5
4 6 Kinemik křiočrého pohybu U křiočrých pohybů použíáme pro popis kinemických eličin sysém přirozených souřdnic, kde ekory báze jsou jednokoý ekor ečný k dráze n něho kolmý jednokoý ekor n Vekor n míří ždy do sředu oskulční kružnice (oskulční kružnice dném mísě proximuje dráhu kruhoým obloukem), ekory báze přiom ychází ždy z okmžié polohy bodu A Odlehlos je přirozených souřdnicích definoán jko oblouk křiky s= s() odečíný od peného počáku O ležícím n dráze O n S() A Vekor rychlosi je ečný k dráze plí ds =, = = x + y d Vekor zrychlení rozkládáme do ečného normáloého směru ɺ ɺ (9) sɺ = + n n = ɺɺ s + n, (39) R kde R je poloměr oskulční kružnice Průmě zrychlení do směru ečného k dráze se nzýá ečné zrychlení = ɺ = ɺɺ s Průmě zrychlení do normály se nzýá normáloé zrychlení Modul ekoru zrychlení je roen n sɺ = = R R (4) (4b) = + = ɺɺ x + ɺɺ y (4) n Kinemik kruhoého pohybu Pohybuje-li se bod po kružnici, poom souřdnice ρ =kons=r, což je poloměr kružnice - obr Poloh bodu je úplně určen úhlem φ Derice úhlu podle čsu se nzýá úhloá rychlos ω =ɺ ϕ, druhá derice úhlu podle čsu úhloé zrychlení α = ɺ ω = ɺɺ ϕ Použiím zhů pro rychlos zrychlení přirozených souřdnicích pk dosááme zhy 6
5 7 = rɺ ϕ = rω (4) n =r, =r ω α (43) V přípdě, že úhloé zrychlení α=kons, pk pro záislosi ϕ=ϕ() ω=ω() plí obdobné φ Obr zhy jko pro pohyb přímočrý s konsnním zrychlením j plí ω = ω + α (44) ϕ ϕ ω α = + + (45) V přípdě, že pohyb kruhoý je ronoměrný j ω=kons, pk definujeme dobu oběhu T podle zhu π ω = (47) T Pozn Pro nlezení zhů ϕ=ϕ(), ω=ω(), α=α(), α=g(ϕ) použíáme inegrce podle definičních zhů ω= d ϕ d d ω, α= α = d d dϕ Př 3 Vyšeřee pohyb bodu, jehož polohoý ekor záisí n čse podle ronice r = i Acosω + j Asinω, kde A = 6m, ω = 4 π s Určee ekor rychlosi jeho elikos jko funkci čsu Určee jednokoý ekor rychlosi e jko funkci čsu Určee ekor zrychlení jeho elikos funkci čsu Určee ečné normáloé zrychlení funkci čsu Vypočíeje poloměr křiosi dráhy hmoného bodu funkci čsu Řešení: d r d Rychlos hmoného bodu je podle zhu = = ( i Acosω + j Asin ω) d d ω ( ) 7
6 8 Tedy = Aω ( sinω + cosω) i j, kde A = 6 m, ω = π s 4 Velikos ekoru rychlosi určíme podle zhu ( ) ( ) = x + y = Aω sinω + Aω cos ω = Aω Po doszení = 3π ms Jednokoý ekor rychlosi e = = Aω ( i sinω + j cosω) Aω Odud e = i sinω + j cosω Zrychlení je podle zhu (5) d = = d A ω ( i sinω + jcosω ) d d = Aα i cosω + jsinω = ω r Tedy ( ) Velikos zrychlení je dán zhem x y ( cos ) ( sin ) Po doszení = 3π ms 8 = + = Aω α + Aω ω = Aω Velikos ečného zrychlení ypočíáme ze zhu ( Aω ) kruhoý) Vzhledem k omu, že =, yplýá ze zhu Tedy =, n = = 3π ms 8 Poloměr křiosi R ypočeme ze zhu n d d = = = (ronoměrný pohyb d d + =, že n = n R = Po doszení dosááme R = 6m Hrmonický pohyb Z hledisk echnické prxe je ýznmný přípd pohybů, kdy je působící síl úměrná ýchylce rcí pohybující se bod neusále do počáeční polohy (npř ěleso n pružině, kydlo pod) Tkoý pohyb se nzýá hrmonický A jeho ronice je dán zhem x ii + Ω x = (49) Je o diferenciální ronice druhého řádu bez pré srny, její řešení x=x() je možné hled n bázi hrmonických funkcí, npř e ru Diferenciální ronici (49) šk yhouje i řešení e ru Aplikcí pridl pro sinus souču dou úhlů dosneme zh x = Acos Ω + B sin Ω (5) x = C sin( Ω + ϕ) (5b) x = C sinϕ cos Ω + C cosϕ sin Ω (5c) Ze sronání (5) (5c) dosááme 8
7 9 Pk A = C sin ϕ; B = C cosϕ (5) C = A + B se nzýá mpliud, (5) A ϕ = rcg se nzýá počáeční fáze, (53) B Ω je lsní úhloá frekence (54) Rychlos při hrmonickém pohybu je zrychlení π xɺ = CΩcos( Ω + ϕ ) = CΩsin Ω + ϕ + (55) ( ϕ ) sin ( ϕ π ) ɺɺ x = CΩ sin Ω + = CΩ Ω + + (56) Konsny A, B nebo C ϕ jsou inegrční konsny, keré záisí n počáečních podmínkách x = x, xɺ () = dosááme Npř pro počáeční podmínky ( ) Řešením ěcho ronic dosááme pro konsny A, B zhy x = Acos Ω + Bsin Ω () = AΩsin Ω + B ΩcosΩ (b), A x B = = (c) Ω Pro uedené počáeční podmínky má řešení hrmonického pohybu r x = x cosω + sin Ω Ω (d) 9
8 Z hledisk ru dráhy je pohyb bodu je přímočrý
9
Kinematika hmotného bodu
DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3
Pohyb po kružnici - shrnutí. ω = Předpoklady:
.3.3 Pohyb po kružnici - shrnuí Předpokldy: 3 Pomocí dou ě U kruhoého pohybu je ýhodnější měři úhel (kerý je pro šechny body sejný) než dráhu (kerá se pro body s různou zdálenosí od osy liší). Ke kždé
Rovnoměrně zrychlený pohyb v grafech
..9 Ronoměrně zrychlený pohyb grfech Předpokldy: 4 Př. : N obrázku jsou nkresleny grfy dráhy, rychlosi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. s,, ronoměrně zrychlený pohyb: zrychlení
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený translační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Ronoměrný, ronoměrně zrychlený neronoměrně zrychlený trnslční pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hláč, Ph.D. Doc.
Mechanický pohyb vyšetřujeme jednak z hlediska kinematiky, jednak z hlediska dynamiky
1.ÚVOD Mechnický pohyb yšeřujeme jednk z hledik kinemiky, jednk z hledik dynmiky Kinemik je čá mechniky, kerá popiuje pohyb ěle (rjekorie, dráh, rychlo ), nezkoumá šk příčiny pohybu, neužuje íly, keré
Veličiny a jednotky v mechanice
Veličiny jednoky mechnice Vekory Dokže že úhlopříčky kosočerce jsou n sebe kolmé Řešení Pokládejme srny kosočerce b i jeho úhlopříčky c d z ekory Pro elikosi srn plí b Pro úhlopříčky plí c + b d b Sklární
1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I
..5 Řešení příkldů n ronoměrně zrychlený pohyb I Předpokldy: 4 Pedgogická poznámk: Cílem hodiny je, by se sudeni nučili smosně řeši příkldy. Aby dokázli njí zh, kerý umožňuje příkld yřeši, dokázli ze zhů
2-Kinematika Bodu KINEMATIKA
7 -Kinematika Bodu KINEMATIKA Kinematika-úod Kinematika jako část mechaniky je nauka o pohybu těles bez ohledu na síly, které pohyb způsobily. Tělesa nebudou mít našich úahách hmotnost a budou popsána
Určitý integrál
030 Určiý inegrál Předpokld: 00309 V několik minulých hodinách jsme se učili inegro - hledli jsme primiiní funkce Kráké shrnuí: F x dokážeme posupem, kerý nzýáme derioání, njí zcel přesně Pro hezké funkce
I. MECHANIKA 1. Kinematika hmotného bodu
I. MECHANIKA. Knemk hmoného bodu Obsh prosor, čs, hmoný bod zžná sous, rekore, dráh, průměrná okmžá rychlos, zrychlení pomy derce negrálu složky ekoru, polohoý ekor, skládání rychlos ečná normáloá složk
2. ZÁKLADY KINEMATIKY
. ZÁKLDY KINEMTIKY Kinemaika se zabýá popisem pohbu čásice nebo ělesa, aniž sleduje příčinné souislosi. Jedním ze základních lasnosí pohbu je, že jeho popis záleží na olbě zažného ělesa ( souřadnicoého
Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb
Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet
Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0
Generted b Foit PDF Cretor Foit Softwre http://www.foitsoftwre.com For elution onl. Kuželosečk I. Kuželosečk zákldních polohách posunuté to prtie je opkoání látk obkle probírné n střední škole. Kružnice
Rovnoměrně zrychlený pohyb v grafech
.. Ronoměrně zrychlený pohyb grfech Předpokldy: 009 Př. : N obrázku jou nkreleny grfy dráhy, rychloi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. Ronoměrně zrychlený pohyb: Zrychlení je
14. cvičení z Matematické analýzy 2
4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi
Tlumené kmity. Obr
1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující
Kinematika hmotného bodu
Kinemaika hmoného bodu 1. MECHANICKÝ POHYB Základní pojmy kinemaiky Relaino klidu a pohybu. POLOHA HMOTNÉHO BODU 3. TRAJEKTORIE A DRÁHA HMOTNÉHO BODU 4. RYCHLOST HMOTNÉHO BODU 5. ZRYCHLENÍ HMOTNÉHO BODU
INTEGRÁLNÍ POČET. Primitivní funkce. Neurčitý integrál. Pravidla a vzorce pro integrování
INTEGRÁLNÍ POČET Primiivní unkce. Neurčiý inegrál Deinice. Jesliže pro unkce F einovné n oevřeném inervlu J plí F pro kžé J, říkáme, že F je primiivní unkcí k unkci n J. Vě. Je-li spojiá n J, pk k ní eisuje
ÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb
1.1.20 Sbírk n procvičení vzhů mezi veličinmi popisujícími pohyb Máme ři veličiny popisující pohyb dv vzhy, keré je spojují nvzájem. s v = Rychlos je změn dráhy z změnu čsu (rychlos říká, jk se v čse mění
V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2
Odození zorců pro ýpočet objemů porchů některých těles užitím integrálního počtu Objem rotčního těles, které znikne rotcí funkce y f(x) n interlu, b kolem osy x, lze spočítt podle zorce b V f (x) dx Porch
1.1.11 Rovnoměrný pohyb VI
1.1.11 onoměrný pohyb VI ředpokldy: 11 edgogická poznámk: Náledující příkld je dokončení z minulé hodiny. Sudeni by měli mí grf polohy nkrelený z minulé hodiny nebo z domo. ř. 1: er yjede edm hodin ráno
Inerciální a neinerciální soustavy
Inerciální neinerciální soust olný hmotný bod (nepůsobí n něj žádné síl) inerciální soust: souřdnicoá soust ůči které je olný hmotný bod klidu nebo ronoměrném přímočrém pohbu pokud máme tři hmotné bod,
(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení
(). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí
1.3.4 Rovnoměrně zrychlený pohyb po kružnici
34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb
Kmitání tělesa s danou budicí frekvencí
EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů
3. SEMINÁŘ Z MECHANIKY
- 4-3. SEMINÁŘ Z MECHANIKY 3. Auomobil jel po álnici rycloí o álé elikoi. V okmžiku = 8 min jel kolem milníku újem 8 km, okmžiku 3 = 8 3 min kolem milníku újem 44 km. Úkoly: ) Určee eliko rycloi uomobilu.
Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo?
..7 Ronoměrně zrychlený pohyb příkldech III Předpokldy: 6 Pedgogická poznámk: Hodinu dělím n dě části: 5 minut n prní d příkldy zbytek n osttní. I když šichni nestihnout spočítt druhý příkld je potřeb,
x + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
4. SEMINÁŘ Z MECHANIKY
- 9-4. SEMINÁŘ Z MECHNIKY 4. Čloěk drží jeden konec prkn, jeož druý konec leží n álci. Čloěk zčne posou prkno kupředu k, by se álec lil po odoroné roině bez prokluzoání by ni prkno po álci neklouzlo. Jkou
F1040 Mechanika a molekulová fyzika
4 Mechnik molekuloá fzik Pe Šfřík 4 Přednášk 4 Mechnik molekuloá fzik Tped b Pe Šfřík 4 Mechnik molekuloá fzik... Zchlení:... 3 Pohb po kužnici... 4 Pohb z hledisk ůzných pozooelů... 6 Pohboé onice hmoného
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem
Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou
6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
Dynamika hmotného bodu. Petr Šidlof
Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení
( ) Kinematika a dynamika bodu. s( t) ( )
Kineika a ynamika bou Kineika bou Bo se pohybuje posou po křice, keá se nazýá ajekoie nebo áha bou. Tajekoie je učena půoičem (polohoým ekoem), keý je funkcí času ( ) V záislosi na ypu ajekoie ozlišujeme:
Parciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce
1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé
f ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce
Funkce daná paramerick polárně a implicině 4 Funkce daná paramerick polárně a implicině Výklad Definice 4 Nechť jsou dán funkce ϕ() ψ () definované na M R a nechť ϕ () je prosá na M Složená funkce ψϕ definovaná
3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3. Vlny 3. Úod Vlnění můžeme pozoroat například na odní hladině, hodíme-li do ody kámen. Mechanické lnění je děj, při kterém se kmitání šíří látkoým prostředím. To znamená, že například zuk, který je mechanickým
Zákony bilance. Bilance hmotnosti Bilance hybnosti Bilance momentu hybnosti Bilance mechanické energie
Zákony bilance Bilance hmonosi Bilance hybnosi Bilance momenu hybnosi Bilance mechanické energie Koninuum ermodynamický sysém Pené ěleso = ěšinou uzařený sysém Konsanní hmonos - nezáisí na čase ochází
x udává hodnotu směrnice tečny grafu
Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je
11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Mechanika tekutin. 21. Určete, do jaké hloubky h se ponoří kužel výšky L = 100 mm z materiálu o hustotě
Mecanika ekuin. Určee do jaké loubky se ponoří kužel ýšky L mm z maeriálu o usoě 8 e odě s usoou. Kužel je zanořen do ody sým kg/m rcolem. kg/m Řešení: Podle Arcimédoa zákona při ploání musí bý ía G kužele
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
Vztahy mezi veličinami popisujíscími pohyb
1.1.23 Vzhy mezi veličinmi popisujíscími pohyb Předpokldy: 010122 Pedgogická poznámk: Cílem hodiny je: získání ciu pro diferenciální chování veličin, nácvik dovednosi dodržování prvidel (kreslení derivovných
Digitální učební materiál
Čílo rojeku Náze rojeku Čílo a náze šablony klíčoé akiiy Digiální učební maeriál CZ..07/..00/4.080 Zkalinění ýuky rořednicím ICT III/ Inoace a zkalinění ýuky rořednicím ICT Příjemce odory Gymnázium, Jeíčko,
Matematika v automatizaci - pro řešení regulačních obvodů:
. Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.
Výpočet obsahu rovinného obrazce
Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh
Derivace funkce více proměnných
Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projek relizoný n SPŠ Noé Měo nd Meují finnční podporou Operční progru Vzděláání pro konkurencechopno Králoéhrdeckého krje Úod do dyniky Ing. Jn Jeelík Dynik je čá echniky, kerá e zbýá pohybe ěle ohlede
POSOUZENÍ VÝKONNOSTI STYKOVÉ KŘIŽOVATKY PO ZMĚNĚ PŘEDNOSTI V JÍZDĚ APPRAISAL OF T-INTERSECTION CAPACITY AFTER TRANSFORMATION OF TRAFFIC PRIORITY
OSOUZENÍ VÝKONNOST STYKOVÉ KŘŽOVATKY O ZMĚNĚ ŘENOST V JÍZĚ ARASA OF T-NTERSETON AATY AFTER TRANSFORMATON OF TRAFF RORTY Vldisl Křid 1 Anoce: říspěek se zbýá problémem kpciního ýpoču neřízené sykoé křižoky.
třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy:
SPŠ VOŠ KLADO SAIKA - PASIVÍ ODPORY PASIVÍ ODPORY Při vzájemném pohybu těles vznikjí v reálných vzbách psivní odpory, jejichž práce se mění v teplo. Psivní odpory předstvují ztráty, které snižují účinnost
Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti
Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad
Motivácia. Väčšina úloh vo fyzike je založená na hľadaní závislosti nejakých veličín od iných veľmi často od času: x(t) U(t) I(t)
Moiváci Väčšin úloh vo fyzike je zložená n hľdní závislosi nejkých veličín od iných veľmi čso od čsu: () U() I() Väčšin fyzikálnych zákonov nehovorí primo o ýcho čsových priebehoch, le o om, ko rýchlo
Předmět studia klasické fyziky
Přemě sui klsiké fik mehnik, emonmik, elekonmik, opik klsiká fik eoeiká fik epeimenální fik eoie elii sisiká fik knoá fik moení fik Přemě sui klsiké fik Fik oeně koumá sukuu hmo její ákon, hoání přío se
Univerzita Tomáše Bati ve Zlíně
Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí
II. 5. Aplikace integrálního počtu
494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
2
2 4 5 6 7 8 9 1 2 4 4 1 2 10 11 1 2 4 4 1 2 7241B 12 1 1 2 4 4 2 1 14 15 1 2 4 4 1 2 7241B 16 17 1 2 4 4 1 2 18 19 1 2 4 4 1 2 20 21 1 2 4 4 2 1 22 2 1 2 4 4 1 2 7241B 24 25 1 2 4 4 1 2 26 27 1 2 4 4
4. Střední radiační teplota; poměr osálání,
Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění
SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO
Dynamika hmotného bodu
Dynmik hmoného bou Dynmik - obo mechniky, yšeřující zájemné působení ěles, keé ee ke změně pohybu Síl - ekooá eličin, je míou zájemného působení ěles, keé ee ke změnám pohybu nebo efomci ěles Síly mohou
7.3.7 Přímková smršť. Předpoklady: 7306
737 Přímkoá smršť Předpokldy 7306 Pedgogiká poznámk Hodin znikl jko reke n prní průhod učenií Třeoni se třídou 42011 Ukázlo se, že studenti mjí prolémy s přiřzením spráného ektoru k různým druhům roni
M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)
5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete
NMAF061, ZS Písemná část zkoušky 16. leden 2018
Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
1.8. Mechanické vlnění
1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát
Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.
Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno
asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia :
Dmk I, 3. předášk Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm
(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení
.. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému
MATEMATIKA III. Program - Křivkový integrál
Matematia III MATEMATIKA III Program - Křivový integrál 1. Vypočítejte řivové integrály po rovinných řivách : a) ds, : úseča, spojující body O=(0, 0), B = (1, ), b) ( + y ) ds, : ružnice = acos t, y= a
Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu
Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je
Dopravní kinematika a grafy
Dopraní kinemaika a grafy Sudijní ex pro řešiele F a oaní zájemce o fyziku Přemyl Šediý Io Volf bah 1 Základní pojmy dopraní kinemaiky 1.1 Poloha.... 1. Rychlo... 3 1.3 Zrychlení.... 5 Grafy dopraní kinemaice
Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.
Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní
Příklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
Křivočarý pohyb bodu.
Křočý pohb bodu. Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm
26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC
Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ..0/.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol SLOVNÍ ÚLOHY VEDOUCÍ
Základy fyziky + opakovaná výuka Fyziky I
Úsav fyziky a měřicí echniky Pohodlně se usaďe Přednáška co nevidě začne! Základy fyziky + opakovaná výuka Fyziky I Web úsavu: ufm.vsch.cz : @ufm444 Zimní semesr opakovaná výuka + Základy fyziky 2 hodiny
Sbírka B - Př. 1.1.5.3
..5 Ronoměrný pohyb Příklady sřední obížnosi Sbírka B - Př...5. Křižoakou projel rakor rychlosí 3 km/h. Za dese minu po něm projela ouo křižoakou sejným směrem moorka rychlosí 54 km/h. Za jak dlouho a
Křivkový integrál prvního druhu verze 1.0
Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm
NMAF061, ZS Písemná část zkoušky 25. leden 2018
Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4
III.4. Fubiniova (Fubiniho) věta pro trojný integrál
E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E
3. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE
Euklidoský prostor. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE Průodce studiem Geometrii lze budoat metodou syntetickou nebo metodou analytickou. Při syntetické metodě pracujeme přímo s geometrickými objekty.
OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI
OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka
Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()
FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2
. Do dou sejných nádob nalijeme odu a ruť o sejných objemech a eploách. Jaký bude poměr přírůsků eplo kapalin, jesliže obě kapaliny přijmou při zahříání sejné eplo? V = V 2 =V, T = T 2, Q =Q 2 c = 9 J
Matematické metody v kartografii
Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími
Logaritmická funkce, logaritmus, logaritmická rovnice
Logritmická funkce. 4 Logritmická funkce, ritmus, ritmická rovnice - získá se jko funkce inverzní k funkci eponenciální, má tvr f: = Pltí: > 0!! * * = = musí být > 0, > 0 Rozlišujeme dv zákldní tp: ) >
F n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
29. OBJEMY A POVRCHY TĚLES
9. OBJEMY A POVRCHY TĚLES 9.. Vypočítejte poch kádu ABCDEFGH, jestliže ) AB =, BC = b, BH = u b) AB =, BH = u, odchylk AG EH je ϕ H G Poch kádu učíme podle zoce: S = b + c + bc ( ) c E F D b C ) A B u
Řešení úloh celostátního kola 48. ročníku fyzikální olympiády. Autořiúloh:J.Jírů(1),P.Šedivý(2)aKvant(3,4)
Řešení úloh celosáního kola 48. ročníku fyzikální olympiády. Auořiúloh:J.Jírů(),P.Šedivý()aKvan(3,4). a) Zvolme souřadnicovou osu x procházející oběma hmonými body a s počákem vboděsnábojem Q.Pakelekrickýpoenciálnaspojniciobounábojůvbodě
I. část - úvod. Iva Petríková
Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,
Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ
Přijímací zkoušky z matematiky pro akademický rok 8/9 NMgr studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 3 4 5 Celkem Body Ke každému příkladu uved te
KINEMATIKA. 1. Základní kinematické veličiny
KINEMATIKA. Základní kinemaické veličiny Tao čá fyziky popiuje pohyb ěle. VZTAŽNÁ SOUSTAVA je ěleo nebo ouava ěle, ke kerým vzahujeme pohyb nebo klid ledovaného ělea. Aboluní klid neexiuje, proože pohyb
Symbolicko - komplexní metoda I Opakování komplexních čísel z matematiky
Symbolicko - komplexní metod I pkování komplexních čísel z mtemtiky Použité zdroje: Blhovec,.: Elektrotechnik II, Informtorium spol.s r.o., Prh 005 Wojnr, J.: Zákldy elektrotechniky I, Tribun EU s.r.o.,