Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností
|
|
- Irena Němečková
- před 10 lety
- Počet zobrazení:
Transkript
1 . Základí cheické výpočty toová hotostí jedotka, relativí atoové a olekulové hotosti toová hotostí jedotka u se používá k relativíu porováí hotostí ikročástic, atoů a olekul a je defiováa jako hotosti atou uklidu 6 C : ( C),6657. g,6657. kg 7 u. 6 Srováí hotostí atoů kokrétích uklidů s hotostí u ískáváe beroěré veličiy oačovaé jako relativí atoové hotosti: M r ( X ) ( X ) ev. ev. [ ] u g g kg kg tabulkách jsou uváděy středí relativí atoové hotosti M ( X ) r repreetující přírodí sěsi iotopů s přihlédutí k astoupeí jedotlivých uklidů. Středí relativí olekulové hotosti M r (M) pak obvykle ískáváe jako součet M r ( X ) jedotlivých atoů tvořících olekulu: M r M M r X ( ) ( ) Mol jako jedotka látkového ožství a vybraé olárí veličiy ol je takové látkové ožství, v ěž je obsaže stejý počet eleetárích jedotek, etit (atoů, olekul, vorcových jedotek, cheických ekvivaletů, iotů, eleetárích částic, kvat eergie apod.), kolik je atoů C ve, kg uhlíku 6 C. eličiy vtažeé a ol látky se aývají olárí. Molárí hotost M je hotost olu látky a je defiováa vtahe M, kde je hotost [kg] a je počet olů [ol] Dosud se olárí hotosti běžě užívají v roěru g.ol -. Počet částic v olu látky se aývá vogadrova kostata: 6,5. + ol, kde je počet částic. Pokusíe se krátce aačit vtah u a, čehož současě vyplye vtah M r a M. ypočítáe s použití obou veliči hotost jedé částice, ejlépe atou: M r (X). u Srováí látkového ožství vyjádřeého jedak poocí hotosti, jedak poocí počtu částic je, ato M M toho M r ( X ). u, a tedy M M r (X). u. O vtahu M a M r (X) rohoduje velikost součiu u.
2 Dosadíe-li defiice a u ( C) 6 a uvědoíe-li si, že atoů ol, který je defiová a, kg g uhlíku, je souči u., je-li hotost vyjádřea v [g]. Je tedy u [g] a současě plye, že 6 C je právě M M r (X), uericky jsou obě veličiy shodé, liší se poue roěre. Stadardí olárí obje ideálího plyu je obje olu ideálího plyu a stadardích (orálích) podíek, kterýi jsou: T 7,5 K ( o C), p 5. - (dříve fyikálí atosféra děleá a 76 Torr) :,.. ol příp., d. ol, kde je obje plyu a stadardích podíek. Je a ístě poaeat, že ideálí plyu je vlastě odelová představa předpokládající, že částice plyu jsou bodové útvary (s ulový objee), které a sebe vájeě epůsobí žádýi silai. Reálé plyy se svý chováí blíží plyu ideálíu obecě a íkých tlaků a vysokých teplot. šechy uvedeé defiice olárích veliči poslouží dobře k určováí látkového ožství (počtu olů) v soustavách, což bude všestraě použitelé pro výpočty: M Stav ideálího plyu a obecých podíek p, T, popisuje stavová rovice: p RT í R je tv. uiverálí plyová kostata, jejíž hodota vyplývá e vtahu R p 8, J. ol K T (. ).(. ol ) K Pro účely cheických výpočtů le stavovou rovici použít též k určeí látkového ožství, le však s její poocí dokáat i ěkteré ákoy využívaé ve výpočtech: Objeový áko: slučují se dva ebo více plyů bee bytku, pak poěr jejich objeů a týchž teplot a tlaků představuje alá celá čísla. vogadrův áko: stejé objey plyů obsahují a stejých teplot a tlaků stejý počet olekul. Obě ákoitosti plyou příé úěry ei objee a látkový ožství (a tedy i počte částic ), jak je řejé e stavové rovice. /: ypočítejte hotost atou lata, je-li M(u) 97, g.ol. Z defiice M r plye, že u.m r (u),66. g.97,,7. g. Stejý výsledek dostaee s použití látkového ožství, pro hotost je
3 . M Pro je. M u M u) 97, g. ol 6,. ol (,7. g /: ypočítejte hotost olekuly oou O. M(O) 6 g.ol. Z obou postupů aačeých v příkladu / uvádíe již je druhý: M( O ). 6 g.ol 7, 96. g 6,. ol /: Zjistěte počet atoů Hg v l kapalé rtuti, která á specifickou hotost,6. + kg.. M(Hg),6 g.ol Hg. ρ 6.,6. kg.,6. kg,6 g.6,. ol., toho,8. atoů Hg M,6 g. ol /: Určete, kolik olekul dusíku je obsažeo a stadardích podíek v l tohoto plyu. Počet částic vyjádříe poocí látkové ožství dusíku, a ěž dosadíe:., toho d, d. ol 6,. ol,69. 9 olekul /5: Jaký obje a stadardích podíek aujíá g vodíku H? g., po dosaeí, d ol 6, d M( H ), 6 g.ol /6: Kolik litrů O (ěřeo a stadardích podíek) vike roklade g H O a vodu a kyslík? Z rovice rokladu H O H O + O plye, že poěrlátkových ožství (H O ) : (O ) :, toho ( H O ) : M ( H O ) : g, d ol 6, 69 d O ( litrů O ).M( H O ). g.ol Úkoly: /7: Jakou hotost v graech á a) jede ato hořčíku, (M(Mg), g.ol ) b) jeda olekula ethau. /8: Kolik atoů Z je obsažeo v graech tohoto kovu? M(Z) 65, g.ol ) /9: Kolik olekul Br je obsažeo v 5 l kapalého brou (M(Br) 79,9 g. ol ), je-li specifická hotost Br (l),. kg.? /: Kolik olekul kyslíku je obsažeo v 5 litrech plyého kyslíku a stadardích podíek? /: Kolik olekul je obsažeo ve g CO a jaký obje a stadardích podíek toto ožství plyu aujíá?.
4 Určováí epirického vorce a výpočty podle epirického vorce Jak již bylo uvedeo ve. kapitole, epirický (stechioetrický, suárí) vorec se odvouje výsledků cheické aalýy a představuje ejjedodušší celistvý poěr počtu atoů prvků astoupeých ve sloučeiě. Protože poěr počtu atoů a poěr počtu olů atoů je shodý, ůžee a určováí koeficietů x, y, ve stechioetrické vorci x B y C pohlížet jako a určováí počtu olů astoupeých prvků, B, C v libovolé ožství této sloučeiy: B C x : y : : : M ( ) M ( B) M ( C) Jsou-li výsledky cheické aalýy preetováy jako hotostí loky w i (vi íže, le si ve voleé ožství látky (apř. v g) sado představit, že hotostí loek repreetuje w i aísto hotostí i, ůstává tedy poěr achová : x : y : w wb wc : : M ( ) M ( B) M ( C) Po výpočtu čleů poěru upravíe poěr vyděleí eješí člee poěru a výsledek podle potřeby ještě upravíe rošířeí. /: Sloučeia želea a síry obsahuje 5,7 % Fe a 6,7 % S. Určete její epirický vorec. w( Fe) w( S),57,67 x : y : :,96:, :,5 : M ( Fe) M ( S) 55,85,6 Epirický vorec je Fe S. /: Mierál karalit obsahuje,8 % K, 8,75 % Mg, 8,9 % Cl a 8,88 % vody. Určete jeho epirický vorec. Pro K x Mg y Cl.wH O je % K % Mg % Cl % H O,8 8,75 8,9 8,88 x : y : : w :. : : : : M ( K) M ( Mg) M ( Cl) M ( H O) 8,, 5,5 8,6,6 :,6 :,9 :,6 : : : 6 orec je KMgCl.6H O /: Při orgaické eleetárí aalýa bylo,6 g orgaické látky spáleo a viku,5 g CO a, g H O. Určete její epirický vorec. eí-li uvedee jiak, předpokládáe složeí C x H y O. Možství vodíku obsažeé v látce vypočtee hotosti viklé vody: M ( H ),6 H H O,., g H M ( H O) 8,6 Možství uhlíku, obsažeé v látce, vypočtee hotosti viklého oxidu uhličitého:
5 M ( C), C CO.,5., 6 M ( CO ), g C Možství kyslíku se dopočítá do adaé avážky látky:,6 ( H + C ),6,766,85 g O C H O,6,,85 x : y : : : : :,5:,:, 5 M ( C) M ( H ) M ( O),,8 6 :, : : 7 : Epirický vorec látky je C H 7 O. Při výpočtech podle epirického vorce vycháíe áoré představy, že celek repreetovaý ole látky x B y C o olárí hotosti M( x B y C ) je tvoře součásti x.m(), y.m(b),.m(c). Obsah jedotlivých složek v % je pak x.m ( ) y.m ( B ).M( C ) %, %B, %C M( B C ) M( B C ) M( B C ) /5: Kolik % dusíku je obsažeo v dusičau aoé? M ( ). % 5% M ( H O ) 8 /6: Kolik % vody tratí sušeí petahydrát sírau ěďatého? 5 M ( H O) 5.8,6 % H O 6,% H O M ( CuSO 5H O) 9,68 /7: Kolik kg P O 5 je forálě obsažeo ve 5 kg CaHPO.H O? ol P O 5 je obsaže ve olech CaHPO.H O M(P O 5 )....M(CaHPO.H O) CaHPO. H O P O 5 P O 5 CaHPO M ( CaHPO M( P O O ) M( P O5 ) ) 5..M( CaHPO. H. H O 5. H počet olů hydrogefosforečau,6 kg P O 5 x y počet olů P O 5 x y přepočítávací faktor 9, 5 O ). 7, Složeí přepočítávacího faktoru stojí a krátké obecěí: v čitateli je vždy olárí hotost látky, kterou výpočte hledáe, ve jeovateli olárí hotost látky, íž při výpočtu vycháíe, olárí hotosti jsou bráy tolikrát, aby ve faktoru byl v čitateli i ve jeovateli stejý počet atoů klíčového prvku. aše případě jsou v čitateli i jeovateli astoupey olárí hotosti olů P. Řada přepočítávacího faktorů je tabelováa. Použití vyplývá i řešeí příkladu / x y
6 (výpočet H a C ). podstatě se jedá o určitý typ údaje o složeí, jeovitě o tv. hotostí loek w i, o ěž bude pojedáo v další subkapitole. Úkoly: /8: Určete epirický vorec látky, která obsahuje 7, % Pb,,5 % P a 9, % O. /9: g hydratovaého sírau agaatého tratilo sušeí veškerou krystalovou vodu a bylo,5 g bevodého sírau agaatého. ypočtěte, s kolika olekulai vody krystaliuje MSO (vorec MSO.xH O). /: g orgaické látky (C, H, O) poskytly spáleí,9 g CO a, g H O. Určete epirický vorec látky. /: Kolik hotostích % Fe obsahuje sloučeia Fe O a kolik kg Fe le teoreticky ískat redukcí tuy této sloučeiy? /: Kolik g Mg P O 7 bude po vyžíháí 5 g H MgPO.6H O? /: Kolik hotostích procet P O 5 obsahuje teoreticky superfosfát, který le přibližě pokládat a sěs, v íž a oly Ca(H PO ) připadá 7 olů CaSO.H O. Poáka: Potřebé olárí hotosti aleete v tabulkách. Rotoky a kocetrace Rotok je hoogeí soustava tvořeá alespoň dvěa složkai. Kocetrace je írou relativího složeí rotoku a podle voleých jedotek k vyjádřeí složeí dostáváe jedotlivé typy vyjádřeí kocetrace. Pro kapalé rotoky, jejichž využití v laboratorí praxi je ejhojější, jsou ejvíce používaýi údaji o kocetraci hotostí loek a proceto a látková kocetrace, dříve oačováa jako olárí kocetrace ebo olarita. Hotostí loky w: i jsou hotosti složek sěsi w, c% h.(). w i s. i Látková kocetrace: c [ ol. d ] s kde je látkové ožství ropuštěé látky a s je obje rotoku. [] /: ypočtěte hotosti složek a přípravu 5 g 5% rotoku acl. (acl) s. w acl 5.,5 7,5 g acl (H O) 5 7,5,5 g H O /5: Jakou hotost FeSO.7H O a jaký obje vody je třeba použít k přípravě g % rotoku FeSO? FeSO. w., g FeSO s FeSO ol FeSO je obsaže v olu FeSO.7H O, toho (FeSO )(FeSO.7H O) a M ( FeSO.7H O) 78 FeSO. 7H O.. 7, g FeSO. 7H O M ( FeSO ) 5,9
7 H O 7, 6,8 g vody, H O 6,8 l /6: Jakou hotost KOH a jaký obje vody je třeba použít a přípravu 5 l % KOH, jehož specifická hotost je,86. kg.. Z objeu rotoku je ebyté ejprve vypočítat hotost: s s. ρ,5..,86.,59 kg KOH s. w KOH 59., 8,6 g KOH 59 8,6 7, g, tj. přibližě 7, l vody. H O /7: Jaký obje 65% HO, ρ,9, a vody je třeba použít a přípravu litru % rotoku HO (ρ,5). s.,5 5 g 5., g HO HO Látky, která eí čistá, stoprocetí, je třeba použít úěrě více, v aše případě (65% HO ). g HO (platí epříá úěra), druhá složka se 65 ásadě dopočítává do hotosti celku: 5 77 g vody H O objeové vyjádřeí: HO 6,8 l 65% HO,9 77 l vody H O (Po.:objey ejsou aditiví, při sěšováí často docháí k objeové kotrakci). /8: Jakou hotost acl je třeba odvážit a přípravu 5 l rotoku acl o látkové kocetraci, ol.d -? acl acl c acl, acl, spojeí dostaee: s M ( acl) acl c. s. M(aCl),.,5. 58,5,6 g acl /9: Jaký obje 96% H SO (spec. hotost,8. kg. ) je třeba použít k přípravě l rotoku H SO o látkové kocetraci, ol/d? Podle kušeostí příkladů /8 a 7 dodržíe ásledující postup: H M w ρ SO HSO 96%HSO 96% H SO s. c.,, olu H SO H SO. M,. 98,8 9, g H SO (čisté) (96% H SO ) 9,.,8 g (opět epříá úěra) 96 ρ, 8 8,, l 96% H SO Úkoly: /: Jakou hotost CuSO.5H O a jaký obje vody je třeba použít k přípravě g % rotoku CuSO?
8 /: Jakou hotost aoh a jaký obje vody je třeba použít a přípravu litrů % rotoku aoh (spec. hotost,8. kg. )? /: Jakou hotost K Cr O 7 je třeba avážit k přípravě litrů,m K Cr O 7? /: Jaký obje 6% HCl (spec. hotost,8. kg. ) je třeba použít k přípravě 5 litrů rotoku HCl o látkové kocetraci ol.d -? ýpočty podle cheických rovic Stechioetrické koeficiety vystupující u jedotlivých látek ve vyčísleé cheické rovici eurčují sice absolutí látkové ožství reagujících a vikajících kopoet, poskytují ale iforaci o jejich olárí poěru. apř. rovice l + 6HCl H + lcl plye, že reagují-li oly l, je k tou apotřebí 6 olů HCl a vikou při to oly H oly lcl. Toto sloví vyjádřeí sloužící k sestaveí úěry le vyjádřit i jiak, apř. H 6 HCl ebo l l /: Jaký obje vodíku (ěřeo a stadardích podíek) vike při ropouštěí, olu l v kyseliě chlorovodíkové? H l, olu H, který aujíá obje.,., 6,7 litrů H /5: Srážeí se á připravit g BaSO. Jaká hotost BaCl.H O a jaký obje 5% H SO (ρ,) je k tou třeba? BaCl + H SO BaSO + HCl BaSO,8565 olu BaSO M ( BaSO ),5 Z rovice je řejé, že BaSO BaCl. HO H SO BaCl H O.. M(BaCl.H O),8565.,,9 g H SO. M(H SO ), ,8 8, g H SO 5% rotoku bude třeba více (opět podle epříé úěry), a sice 68 5 % H 8,. 68 g, SO toho 5 % H SO 6, l 5% H SO 5, /6: Jakou hotost 9% CaCO a jaký obje % HCl (ρ,) je třeba použít k přípravě l CO (ěřeo při tlaku kpa a teplotě o C)? CaCO + HCl CO + CaCl + H O Ze stavové rovice jistíe, jaké látkové ožství CO áe připravit: 5 p,... CO, ol RT 8,..ol.K. 9K Z rovice plye, že počet olů CaCO á být stejý, počet olů HCl dvojásobý:
9 a. (CaCO ). M(CaCO ),.,, g čistého CaCO 9 % CaCO,. 7 g 9 b. HCl HCl. M(HCl),8. 6,5,8 g čistého HCl % HCl,8. 5 g % HCl 5 l % HCl, /7: Plyá sěs obsahuje obj.% CH, 5 obj.% H a obj.% CO. Kolik vduchu se spotřebuje a spáleí plyé sěsi (ěřeo a stejých podíek p, T)? plyé sěsi je l CH, 5 l H a l CO. Pro každou složku sěsi je třeba apsat rovici spalováí vlášť: CH + O CO + H O H + O H O CO + O CO Podle objeového ákoa se a spáleí l CH spotřebuje l O 5 l H 5 l O a l CO 5 l O, celke tedy 8 litrů O. Obsahuje-li vduch asi obj.% kyslíku, bude spotřeba čiit,8.,8. Úkoly: /8: Chloreča draselý se áhřeve rokládá a chlorid draselý a kyslík. apište rovici rokladu a vypočtěte, jaký obje plyého O (ěřeo a stadardích podíek) le připravit roklade, olu KClO. /9: Jakou hotost KOH a jaký obje 96% H SO (ρ,8. kg. - ) je třeba použít k přípravě 5 g K SO? /: Jakou hotost MO a jaký obje 6% HCl (ρ,8. kg. - ) je třeba teoreticky použít pro přípravu litrů plyého Cl (ěřeo a tlaku 5 Pa a teploty 7 o C)? /: Plyá sěs obsahuje obj.% CH a 7 obj.% CO. Jaký obje kyslíku je třeba použít a spáleí litrů této sěsi a CO a vodu (oba objey jsou ěřey a stejé teploty a tlaku)? /: Rotok chloridu želeitého se sráží rotoke hydroxidu sodého, viká hydroxid želeitý a chlorid sodý. Hydroxid želeitý se žíháí převede a oxid želeitý. Popište oba děje rovicei a vypočítejte, jakou hotost FeCl.6H O a jaký obje % rotoku aoh (ρ,9. kg. - ) se použije a přípravu g Fe O. /: Reakcí H O a KMO v prostředí H SO viká kyslík, MSO, K SO a voda. yčíslete rovici a vypočítejte: a) jaký obje O (ěřeo a stad. podíek) le připravit při použití g KMO, b) jaký obje % rotoku H O (ρ,. kg. - ) a c) jaký obje 5% H SO (ρ,. kg. - ) je k tou třeba. /: Jaký obje plyého aoiaku (ěřeo a stadardích podíek) se spotřebuje a eutraliaci 5 l 6% H SO (ρ,98 g.c - ) a jakou hotost bude ít reakcí viklý síra aoý?
Didaktika výpočtů v chemii
Didaktika výpočtů v cheii RNDr. ila Šídl, Ph.D. 1 Didaktické zpracováí Pojy: olárí hotost (), hotostí zloek (w), látková ožství (), olárí obje ( ), Avogadrova kostata N A, látková a hotostí kocetrace (c,
5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu
. ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se
4. Základní výpočty vycházející z chemických rovnic
4. Základí výpočty vycházející z cheických rovic heické rovice vyjadřující eje jaké látky spolu reagují (reaktaty, edukty) a jaké látky reakcí vzikají (produkty), ale i vztahy ezi ožstvíi spotřebovaých
Výpočty podle chemických rovnic
Výpočty podle cheických rovnic Cheické rovnice vyjadřují průběh reakce. Rovnice jednak udávají, z kterých prvků a sloučenin vznikly reakční produkty, jednak vyjadřují vztahy ezi nožstvíi jednotlivých reagujících
4. Výpočty vycházející z chemických rovnic nevyžadující uplatnění vztahů mezi stavovými veličinami plynů.
4. Výpočty vycházející z cheických rovic evyžadující uplatěí vztahů ezi stavovýi veličiai plyů. Cheické rovice vyjadřující eje jaké látky spolu reagují (reaktaty, edukty) a jaké látky reakcí vzikají (produkty),
Příklady a úlohy z obecné chemie
Příklady a úlohy z obecé cheie Obsah. Hotost a látkové ožství 5. Sěsi, sěšováí a ředěí roztoků, vylučováí látek z roztoků 0. Cheické vzorce 9. Typy cheických vzorců 9. Výpočty hotostích zloků atoů jedotlivých
Experimentální postupy. Koncentrace roztoků
Experimetálí postupy Kocetrace roztoků Kocetrace roztoků možství rozpuštěé látky v roztoku. Hmotostí zlomek (hmotostí proceta) Objemový zlomek (objemová proceta) Molárí zlomek Molarita (molárí kocetrace)
SRÁŽECÍ REAKCE. Srážecí reakce. RNDr. Milan Šmídl, Ph.D. Cvičení z analytické chemie ZS 2014/
1.1.01 SRÁŽECÍ REACE RNDr. Mila Šídl, Ph.D. Cvičeí z aalytické cheie ZS 01/015 Srážecí reakce působeí srážedla a ějakou látku vziká obtížě rozpustá látka sražeia vzik takové sražeiy je popsá součie rozpustosti
10 částic. 1,0079 1, kg 1, kg. 1, kg. 6, , kg 0, kg 1,079g
..7 oláí veličiy I Předpoklady: 0 Opakováí z iulé hodiy: Ato uhlíku A C C je přibližě x těžší ež ato H. Potřebujee,0 0 atoů uhlíku C abycho dohoady získali g látky. Pokud áe,0 0 částic látky, říkáe, že
Chemie - cvičení 1- příklady
U 12118 - Ústav procesí a zpracovatelské techiky FS ČVUT Chemie - cvičeí 1- příklady Kocetrace 1/1 Jaká je molová hmotost M vody, sírau sodého, hydroxidu sodého, oxidu siřičitého? M Na 22,99 kg.kmol -1
Inovace studia molekulární a buněčné biologie
Ivestice do rozvoje vzděláváí Iovace studia olekulárí a buěčé biologie Teto projekt je spolufiacová Evropský sociálí fode a státí rozpočte České republiky. Ivestice do rozvoje vzděláváí Předět: LRR/CHPI/Cheie
1. Měření ve fyzice, soustava jednotek SI
. Měřeí ve fyzice, soustava jedotek SI Fyzika: - je věda o hotě (ta eistuje ve dvou forách jako látka, ebo jako pole), o jejích ejobecějších vlastostech, stavech, zěách, iterakcích Rozděleí fyziky: a)
Kinetická teorie plynů - tlak F S F S F S. 2n V. tlak plynu. práce vykonaná při stlačení plynu o dx: celková práce vykonaná při stlačení plynu:
Kietická teorie plyů - tlak tlak plyu p práce vykoaá při stlačeí plyu o d: d celková práce vykoaá při stlačeí plyu: kdyby všechy molekuly měly stejou -ovou složku rychlost v : hybost předaá při árazu molekuly
CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se:
CEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ Teorie Složení roztoků udává vzájený poěr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: MOTNOSTNÍM ZLOMKEM B vyjadřuje poěr hotnosti rozpuštěné látky k hotnosti
Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:
ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy
Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
IV. Chemické rovnice A. Výpočty z chemických rovnic 1
A. Výpočty z chemických rovnic 1 4. CHEMICKÉ ROVNICE A. Výpočty z chemických rovnic a. Výpočty hmotností reaktantů a produktů b. Výpočty objemů reaktantů a produktů c. Reakce látek o různých koncentracích
2.4. INVERZNÍ MATICE
24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:
CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.
CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu
POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde
POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti
Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B)
Hmotnostní jednotka: Atomová relativní hmotnost: Molekulová relativní hmotnost: Molární hmotnost: Hmotnost u = 1,66057.10-27 kg X) Ar(X) = m u Y) Mr(Y) = m u Mr(AB)= Ar(A)+Ar(B) m M(Y) = ; [g/mol] n M(Y)
1. Hmotnost a látkové množství
. Hotnost a látkové nožství Hotnost stavební jednotky látky (například ato, olekly, vzorcové jednotky, eleentární částice atd.) označjee sybole a, na rozdíl od celkové hotnosti látky. Při požití základní
3. DIFERENCIÁLNÍ ROVNICE
3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se
Značí se A r Určí se z periodické tabulky. Jednotkou je 1/12 hmotnosti atomu uhlíku. A r (H) = 1 A r (O) = 16
CHEMICKÉ VÝPOČTY Značí se A r Určí se z periodické tabulky. Jednotkou je 1/12 hmotnosti atomu uhlíku. A r (H) = 1 A r (O) = 16 12 6 C Značí se M r Vypočítá se jako součet relativních atomových hmotností
Hydrochemie koncentrace látek (výpočty)
1 Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) 1 mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve
veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
I. Výpočet čisté současné hodnoty upravené
I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě
ln ln (c Na + c OH ) L = (c Na + c OH ) P (c H + c Cl ) L = (c H + c Cl ) P
1. MEMRÁNOÉ RONOÁY Ilustračí příklad 1 Doaova rovováha, Doaův poteciál...1 01 Doaova rovováha...3 0 Doaova rovováha...3 0 Doaova rovováha, Doaův poteciál...3 05 Doaova rovováha, Doaův poteciál...3 06 Doaova
Výpočty za použití zákonů pro ideální plyn
ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání
-1- Finanční matematika. Složené úrokování
-- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí
Deskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
SBÍRKA PŘÍKLADŮ Z CHEMIE PRO OBOR TECHNICKÉ LYCEUM
BÍRK PŘÍKLDŮ Z CHEIE PRO OBOR TECHNICKÉ LYCEU ilan ZIPL 006 Obsah Obsah... Úvod... 3 1. Základní výpočty.... 4 1.1 Hotnost atoů a olekul... 4 1. Látkové nožství, olární hotnost.... 5 1.3 Výpočet obsahu
Chemické veličiny, vztahy mezi nimi a chemické výpočty
SBÍRKA ŘEŠENÝCH PŘÍKLADŮ PRO PROJEKT PŘÍRODNÍ VĚDY AKTIVNĚ A INTERAKTIVNĚ CZ.1.07/1.1.24/01.0040 Chemické veličiny, vztahy mezi nimi a chemické výpočty Mgr. Jana Žůrková, 2013, 20 stran Obsah 1. Veličiny
Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
N A = 6,023 10 23 mol -1
Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,
Úlohy: 1) Vypočítejte tepelné zabarvení dané reakce z následujících dat: C 2 H 4(g) + H 2(g) C 2 H 6(g)
Úlohy: 1) Vypočítejte tepelné zabarvení dané reakce z následujících dat: C 2 H 4(g) + H 2(g) C 2 H 6(g) C 2 H 4(g) + 3O 2(g ) 2CO 2(g) +2H 2 O (l) H 0 298,15 = -1410,9kJ.mol -1 2C 2 H 6(g) + 7O 2(g) 4CO
Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
Sekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
Metodický postup pro určení úspor primární energie
Metodický postup pro určeí úspor primárí eergie Parí protitlaká turbía ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. Obsah abulka hodot vstupujících do výpočtu...3
n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1
[M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti
Složení soustav (roztoky, koncentrace látkového množství)
VZOROVÉ PŘÍKLADY Z CHEMIE A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava Doporučená literatura z chemie: Prakticky jakákoliv celostátní učebnice
Chemické výpočty. výpočty ze sloučenin
Cheické výpočty výpočty ze sloučenin Cheické výpočty látkové nožství n, 1 ol obsahuje stejný počet stavebních částic, kolik je atoů ve 1 g uhlíku 1 C počet částic v 1 olu stanovuje Avogadrova konstanta
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
Komplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu
. ýpočty s využití vztahů ezi stavovýi veličinai ideálního plynu Ze zkušenosti víe, že obje plynu - na rozdíl od objeu pevné látky nebo kapaliny - je vyezen prostore, v něž je plyn uzavřen. Přítonost plynu
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VÝPOČTY Z CHEMICKÝCH ROVNIC VY_32_INOVACE_03_3_18_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VÝPOČTY Z CHEMICKÝCH
2. Definice plazmatu, základní charakteristiky plazmatu
2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se
Zobrazení čísel v počítači
Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke
Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)
Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.
Matematika I, část II
1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího
Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,
KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ)
KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ) Úloha 1 Ic), IIa), IIId), IVb) za každé správné přiřazení po 1 bodu; celkem Úloha 2 8 bodů 1. Sodík reaguje s vodou za vzniku hydroxidu sodného a dalšího produktu.
2 STEJNORODOST BETONU KONSTRUKCE
STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
2 Cu + S Cu 2 S n(cu)=2mol n(cu 2 S)=1mol M(Cu)=63,5 g mol M(Cu 2 S)=159 g mol
n... látkové množství látky (mol) M... molární hmotnost látky (g/mol) m... hmotnost látky (m) III. Výpočty z chemických rovnic chemické rovnice umožňují vypočítat množství jednotlivých látek, které se
Spojitost a limita funkcí jedné reálné proměnné
Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v
Hydrochemie koncentrace látek (výpočty)
Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve 2
CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK
CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK Význam stechiometrických koeficientů 2 H 2 (g) + O 2 (g) 2 H 2 O(l) Počet reagujících částic 2 molekuly vodíku reagují s 1 molekulou kyslíku za vzniku
Ústřední komise Chemické olympiády. 47. ročník 2010/2011. OKRESNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH
Ústřední koise Cheické olypiády 47. ročník 010/011 OKRESNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH Řešení okresního kola ChO kat. D 010/011 TEORETICKÁ ČÁST (70 BODŮ) Úloha 1 Palivo budoucnosti 5 bodů 1.
Cvičení z termomechaniky Cvičení 5.
Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko
Těžiště a moment setrvačnosti Nalezení práce polohy těžiště a momentu setrvačnosti vůči zadané ose u homogenních těles v třírozměrném prostoru.
Těžiště a momet setrvačosti Naleeí práce polohy těžiště a mometu setrvačosti vůči adaé ose u homogeích těles v tříroměrém prostoru. Př. 1 Najděte těžiště a momet setrvačosti kulové vrstvy vůči rotačí ose
Pojem času ve finančním rozhodování podniku
Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé
2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II
2,3 ČTYŘI STADARDÍ METODY I, ČTYŘI STADARDÍ METODY II 1.1.1 Statické metody a) ARR - Average Rate of Retur průměrý ročí čistý zisk (po zdaěí) ARR *100 % ( 20 ) ivestic do projektu V čitateli výrazu ( 20
Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc
Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se
Základní požadavky a pravidla měření
Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu
Iterační metody řešení soustav lineárních rovnic
Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro
STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6
Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II
7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )
DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce
Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců
Výpočty z chemických vzorců 1. Hmotnost kyslíku je 80 g. Vypočítejte : a) počet atomů kyslíku ( 3,011 10 atomů) b) počet molů kyslíku (2,5 mol) c) počet molekul kyslíku (1,505 10 24 molekul) d) objem (dm
MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15
VŠB - T Ostrava, FE MĚŘENÍ PARAMETRŮ OVĚTLOVACÍCH OTAV VEŘEJNÉHO OVĚTLENÍ NAPÁJENÝCH Z REGLÁTOR E5 Řešitelé: g. taislav Mišák, Ph.D., Prof. g. Karel okaský, Cc. V Ostravě de.8.2007 g. taislav Mišák, Prof.
k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln
Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =
1.2. NORMA A SKALÁRNÍ SOUČIN
2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;
ACIDOBAZICKÉ TITRACE ALKALIMETRIE A ACIDIMETRIE
ACIDOBAZICKÉ TITRACE ALKALIMETRIE A ACIDIMETRIE I. Stadardizace roztoku hydroxidu sodého a/ Příprava 0, M roztoku hydroxidu sodého M(NaOH) = 40,00 g.mol - Na předvážkách se aváží do kádiky předem vypočteé
Názvosloví anorganických sloučenin
U 12118 - Ústav procesí a zpracovatelské techiky FS ČVUT Názvosloví aorgaických sloučei Základe českého ázvosloví jsou eziárodí syboly prvků, oxidačí čísla a ji příslušé valečí kocovky. Obecé zásady tvorby
A. Výpočty z chemických vzorců B. Určení vzorce sloučeniny. Čas potřebný k prostudování učiva kapitoly: 0,5 + 2 hodiny (teorie + řešení úloh)
III. Chemické vzorce 1 1.CHEMICKÉ VZORCE A. Výpočty z chemických vzorců B. Určení vzorce sloučeniny Klíčová slova této kapitoly: Chemický vzorec, hmotnostní zlomek w, hmotnostní procento p m, stechiometrické
8.1.2 Vzorec pro n-tý člen
8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají
Chemické výpočty 11. Stechiometrické výpočty (včetně reakcí s ideálními plyny); reakce s přebytkem výchozí látky
Chemické výpočty 11 Stechiometrické výpočty (včetně reakcí s ideálními plyny); reakce s přebytkem výchozí látky Ing. Martin Pižl Skupina koordinační chemie místnost A213 E-mail: martin.pizl@vscht.cz Web:
3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Iovace studia molekulárí a buěčé biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHP1/Chemie pro biology 1 Roztoky, teorie kyseli a zásad Mgr. Karel Doležal Dr. Cíl předášky: sezámit posluchače s
8. Základy statistiky. 8.1 Statistický soubor
8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě
SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ
SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ ALEŠ KAJZAR BRNO 2015 Obsah 1 Hmotnostní zlomek 1 1.1 Řešené příklady......................... 1 1.2 Příklady k procvičení...................... 6 2 Objemový zlomek 8 2.1
I. Výpočet čisté současné hodnoty upravené
I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě
Definice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc.
IDEÁLÍ PLY I Prof. RDr. Eanuel Soboda, CSc. DEFIICE IDEÁLÍHO PLYU (MODEL IP) O oleulách ideálního plynu ysloujee 3 předpolady: 1. Rozěry oleul jsou zanedbatelně alé e sronání se střední zdáleností oleul
1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.
Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.
10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
13. Kolik molů vodíku vznikne reakcí jednoho molu zinku s kyselinou chlorovodíkovou?
Hmotnosti atomů a molekul, látkové množství - 1. ročník 1. Vypočítej skutečnou hmotnost jednoho atomu železa. 2. Vypočítej látkové množství a) S v 80 g síry, b) S 8 v 80 g síry, c) H 2 S v 70 g sulfanu.
12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
Rozklad přírodních surovin minerálními kyselinami
Laboratoř aorgaické techologie Rozklad přírodích surovi mierálími kyseliami Rozpouštěí přírodích materiálů v důsledku probíhající chemické reakce patří mezi základí techologické operace řady průmyslových
STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby.
V kapitole Ituitiví kobiatorika jse řešili příklady více éě stejý způsobe a stejých pricipech. Nyí si je zobecíe a adefiujee obvyklou teriologii. pravidlo součtu: Jestliže ějaký objekt A ůžee vybrat způsoby
Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W )
5. Sdíleí tepla. pomy: Pomem tepelá eergie ozačueme eergii mikroskopického pohybu částic (traslačího, rotačího, vibračího). Měřitelou mírou této eergie e teplota. Teplo e část vitří eergie, která samovolě
L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM
Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře
IAJCE Přednáška č. 12
Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích
Popis fyzikálního chování látek
Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna
1 ROVNOMĚRNOST BETONU KONSTRUKCE
ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
P. Girg. 23. listopadu 2012
Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt