CVIČENÍ 5: Stabilita částice v korytě, prognóza výmolu v oblouku

Podobné dokumenty
Výpočet stability (odolnosti koryta)

Výpočet stability (odolnosti koryta)

Hydraulická funkce mostních objektů a propustků Doc. Ing. Aleš Havlík, CSc. Ing. Tomáš Picek, Ph.D.

silový účinek proudu, hydraulický ráz Proudění v potrubí

Proudění mostními objekty a propustky

Vzorové příklady - 5.cvičení

Uplatnění prostého betonu

pedagogická činnost

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta životního prostředí Katedra biotechnických úprav krajiny

1141 HYA (Hydraulika)

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků.

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ. Katedra hydrauliky a hydrologie BAKALÁŘSKÁ PRÁCE. Úprava a zkapacitnění Lomnice

1141 HYA (Hydraulika)

Prostý beton Pedagogická činnost Výuka bakalářských a magisterský předmětů Nosné konstrukce II

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE. Planetární geografie seminář

Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ

Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie C. t 1 = v 1 g = b gt t 2 =2,1s. t + gt ) 2

Návrh opevnění. h s. h min. hmax. nános. r o r 2. výmol. Obr. 1 Definice koryta v oblouku z hlediska topografie dna. Vztah dle Apmanna B

STABILITA SVAHŮ staveb. inženýr optimální návrh sklonu

Příloha č. 1. Pevnostní výpočty

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky

Příloha-výpočet motoru

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas

NEDESTRUKTIVNÍ ZKOUŠENÍ

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN

Proudění s volnou hladinou (tj. v otevřených korytech)

(Aplikace pro mosty, propustky) K141 HYAR Hydraulika objektů na vodních tocích

Hydraulika a hydrologie

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený translační pohyb

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

PŘÍČNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ SIDE TILT STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS

1141 HYA (Hydraulika)

Vzorové příklady - 7. cvičení

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef

Hydraulické výpočty spádových objektů (stupeň) zahrnují při známých geometrických parametrech přelivného tělesa stanovení měrné křivky objektu (Q-h

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Vodní skok, tlumení kinetické energie Řešení průběhu hladin v otevřených korytech

7 PARAMETRICKÁ TEPLOTNÍ KŘIVKA (řešený příklad)

Výpočtová únosnost U vd. Cvičení 4

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v

Výpočtová únosnost pilot. Cvičení 8

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země

Návrh a posudek osově namáhaného nosníku podle obou MS

K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průběhu semestru


CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:

Konstrukční zásady. Na toku budou technicky řešeny tyto objekty: spádové objekty (stupně, prahy, skluzy)

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B)

1141 HYA (Hydraulika)

Zakládání staveb 5 cvičení

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t

CVIČENÍ 4: PODÉLNÝ PROFIL, NÁVRH NIVELETY, VÝPOČET PŘÍČNÉHO PROFILU.

dx se nazývá diferenciál funkce f ( x )

9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad)

Geometricky válcová momentová skořepina

Fakulta životního prostředí HYDRAULIKA PŘÍKLADY

VLIV SLUNEČNÍHO ZÁŘENÍ NA VĚTRANÉ STŘEŠNÍ KONSTRUKCE

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět VIZP K141 FSv ČVUT. Vodní toky. Doc. Ing. Aleš Havlík, CSc.

Určete počáteční rázový zkratový proud při trojfázovém, dvoufázovém a jednofázovém zkratu v označeném místě schématu na Obr. 1.

Betonové konstrukce (S) Přednáška 3

Odolnost vozidel proti smyku

Návrh žebrové desky vystavené účinku požáru (řešený příklad)

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)

Podmínky k získání zápočtu

Vyztužení otvoru v plášti válcové nádoby zatížené vnějším přetlakem

kopci a tuto představu přetavit do náčrtku celé situace, viz. obr.1. Aby však tento náčrt nebyl

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

HYDROTECHNICKÝ VÝPOČET

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017

LOKOMOTIVA ročník 2010;2011

6. NÁVRH BIOTECHNICKÝCH (vč. REVITALIZAČNÍCH) OPATŘENÍ NA BYSTŘINÁCH POVODÍ + VODNÍ TOK = KOMPLEXNÍ CELEK

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH

Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

Definice derivace v bodě

Popis měřeného předmětu: Zde bude uvedeno - základní parametry diod - zapojení pouzdra diod - VA charakteristika diod z katalogového listu

Základní škola Kaplice, Školní 226

Postup řešení: Výkon na hnacích kolech se stanoví podle vztahu: = [W] (SV1.1)

3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze

Vodohospodářské stavby BS001 Hydraulika 1/3

tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

Dynamika vozidla Hnací a dynamická charakteristika vozidla

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu

Parciální derivace a diferenciál

Technologie výroby ozubení I.

Přednáška pro posluchače předmětu Projekt z vodních toků. Petr Sklenář

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.


Vzdálenosti a východ Slunce

Transkript:

CVIČENÍ 5: Stabilita částice korytě prognóza ýmolu oblouku Výpočet stability (odolnosti koryta) metoda tečnýc napětí Výpočtem stability se prokazuje že koryto jako celek je pro nároé ydraulické zatížení stabilní. Nároé ydraulické zatížení pro stabilitu dna a pro stabilitu sau se liší zledem k zajištění ekonomické efektinosti ynaloženýc inestic při úpraě toku. Nároý průtok pro odolnost koryta se určí se zřetelem na pořizoací náklady a se zřetelem na praděpodobnou škodu která by nastala případě porušení koryta (některé jeo části). Informatině lze uést tyto odnoty: Nároý průtok pro odolnost dna Q až Q 5 Nároý průtok pro odolnost saů břeu a berem a) pro neopeněný bře a berm b) pro openěný bře a bermu Q 5 až Q 20 Q 20 až Q 00 Nároý průtok pro odolnost ocrannýc rází Q 00 U upraoaném úseku Comutoky tedy toku přirozenéo carakteru mimo zastaěnou oblast bude olen nároý průtok pro odolnost dna Q kap=-2 a pro odolnost noě zřizoanýc openění saů Q 20. Stanoení nároýc loubek Pro stabilitu dna A. Dno na Q NÁVRH -2. přímé τ = ρgr i [Pa] od d NÁVRH S R = d d b η = 2τ od ( ρ s ρ ) gd e ; SF = η 2. oblouku R τ o B z grafu od max = ( 2 ) τ R o od poloměr oblouku olit pro ýpočty průměr z menšíc použitýc poloměrů τ... maximální tečné napětí na nějším oblouku u dna od max

τ od... průměrné tečné napětí na dno 2τ od max η = ; SF = ρ ρ gd η ( s ) e Pro určení odolnosti saů koryta je nutno stanoit polou ladiny 20 pro průtok Q 20. Při kapacitě koryta cca Q -2 dojde k ylití tooto průtoku z koryta. Při proudění mimo koryto lze inundaci rozdělit na aktiní a pasiní. V pasiní inundaci oda prakticky stojí a nedocází k jejímu proudění. Na proedení průtoku se podílí pouze lastní koryto a aktiní část inundace. Pro daný úsek Comutoky lze s přijatelnou mírou přesnosti (na straně bezpečnosti) uažoat ýpočet pro scéma složenéo koryta dle obrázku B.Sa na Q 20. oblouku B (pro > 4 τ os = 075ρg20 i 2τ os η = ( ρ s ρ ) gd e 20 tg λ = 55 r λ... úel odcýlení tečnéo napětí od podélnéo směru toku 20... loubka při Q NÁVRH 20 r... poloměr ose oblouku cosλ tg β = (7.67 8.20) * 2sinγ + sin λ η tgϕ * / číslo ronice e skriptec Úpray toků Mareš číslo ronice učebnici Úpray toko-raplík Výbora Mareš

β... úel pro ýpočet čísla stability na sau γ... úel sklonu sau (naržený) ϕ... úel nitřnío tření pod odou Číslo stability na sau + sin( λ + β ) η s = η 2 (7.7 8.2) cosγ tgϕ SF = (obykle menší než ) (7.48 8.22) ηs tgϕ + sinγ cos β proto nár openění sau nár poozu tento ýpočet je pouze orientační pro posouzení elikosti odolné částice pokud se nepoužije pooz. Nár poozu Nár poozu je předstaoán opakoaným ýpočtem pro změněná φ a d e již narženéo materiálu poozu a to tak dlouo dokud není splněna podmínka SF> (max. 2). Výpočtem musí být zjištěna odnota d e poozu. Vzta mezi φ a d udáá záislost 7.30 na str.54 skript. Obr. Úel nitřnío tření poozů

Výpočet stability metoda neymílacíc ryclostí Pro inženýra je často názornější předstaa o limitu neymílacíc ryclostí poronááme zde limitní spočítanou odnotu ryclostí při níž je zrno dané elikosti při aktuální loubce scopno ještě zůstat klidu se skutečnou ryclostí s která odpoídá danému proudění. A.Dno přímé na Q NÁVRHkoryta tj. 2 d e určíme např. z ýpočtu 6 = 7 24 R d d 6 90 2 R d... ydraulický poloměr dna nebo tabelárně z odnot uedenýc e skriptec Tab. 8.2 od str.83 dle druu openění. Při parabolickém rozdělení sislicoýc ryclostí korytě platí pro maximální sislicoou ryclost s a ryclost průřezoou (spočítanou z Cézyo ronice!!) zta 0945s = s = 0945 Posouzení pro dno přímé s B. Say (Q 20 ) cosγ 2 SO K = O m ( ) = 2 SF tgλ SFm tgϕ SF m = tgγ oblouk (rozdělení dle Rozoskéo) 2 Obr.2 mezní úel ϑ

C20 20 mezní úel : ϑ = 23 [rad] (graf 2) (pro graf 2 nutno přeést na!!!) g r z grafu Δ max přírůstek sislicoé ryclosti zakřiením ( + Δ ) SOmax = s max kde SOmax Posouzení pro patu sau přímé > S S je maximální sislicoá ryclost oblouku Posouzení pro patu sau a oblouku > SOmax (pokud neyjde je třeba íce openit) SO Pokud cceme určit úroeň kam až moou zasaoat traní porosty ( SOmax ) s S < kde s na sau VsoA = A 05 je limit neymílací ryclosti pro jednotlié druy A somax VStráy 2 iz obr. 3 Obr. 3 loubka A určuje dosa openění traou pod ladinou při Q 20

Graf

Část Tabulky 8.2

Graf 2 -

Topografie dna oblouku. Stanoení loubky ýmolu konkání části břeu a nánosu konexní části břeu. Výpočet se proádí pro stejný průtok pro nějž byla stanoena odolnost břeů tj. Q 20. Q 20 B s min max nános r o r 2 b ýmol Obr. 4 Definice koryta oblouku z lediska topografie dna Vzta dle Apmanna B 35 max r2 ) = 3 5 s B r2 dle KHH (Lužnice Blanice) 2) max.min b 2 = ± s r o min 55tgϕ Prognózu ýmolu proeďte dle obou ztaů a zájemně poronejte. Dle stanoené loubky ýmolu proeďte úau o openění konkání paty sau (eentuální zapuštění patní konstrukce záozoá pata aťoštěrkoý álec apod.).