STUDIUM DIFUZE V TERNÁRNÍCH SYSTÉMECH. PŘÍPAD DIFUZNÍHO SPOJE Ni/Ni 3 Al- Fe



Podobné dokumenty
STUDY OF INTERACTION OF ELEMENTS IN THE Ni/Ni 3 Al-Me (Me = Ti, Cr, Nb, Zr) JOINTS

INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT

Matematika I A ukázkový test 1 pro 2018/2019

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MODELOVÁNÍ A SIMULACE

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

Jednosložkové soustavy

MIKROSTRUKTURNÍ VLASTNOSTI V DIFUZNÍCH SPOJÍCH Ni 3 Al-Ni A NiAl-Ni. Barabaszová K., Losertová M., Kristková M., Drápala J. a

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

MOŽNOSTI STUDIA POVRCHOVÉHO NAPĚTÍ OXIDICKÝCH TAVENIN. Rostislav Dudek Ľudovít Dobrovský Jana Dobrovská

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má

Otto DVOŘÁK 1 NEJISTOTA STANOVENÍ TEPLOTY VZNÍCENÍ HOŘLAVÝCH PLYNŮ A PAR PARABOLICKOU METODOU PODLE ČSN EN 14522

Určení tvaru vnějšího podhledu objektu C" v areálu VŠB-TU Ostrava

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

Zkouškový test z fyzikální a koloidní chemie

í I Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

Mechatronické systémy s elektronicky komutovanými motory

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ ANALÝZA A SIMULACE CHOVÁNÍ MATERIÁLŮ PRO VYSOKÉ

Modelování rizikových stavů v rodinných domech

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ

4 Parametry jízdy kolejových vozidel

Bořka Leitla Bolometrie na tokamaku GOLEM

VÝPOČET NÍZKOCYKLOVÉ ÚNAVY JADERNÉ ARMATURY DLE NORMY NTD A.S.I. SEKCE III. JIŘÍ TÁBORSKÝ*, LINA BRYUKHOVA KRÁLOVOPOLSKÁ STRESS ANALYSIS GROUP, s.r.o.

Využití logistické regrese pro hodnocení omaku

TEORIE PROCESŮ PŘI VÝROBĚ ŽELEZA A OCELI Část II Teorie ocelářských pochodů studijní opora

USE OF FUGACITY FOR HEADSPACE METHODS VYUŽITÍ FUGACITNÍ TEORIE PRO METODY HEADSPACE

Implementace bioplynové stanice do tepelné sítě

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Mechanické vlastnosti materiálů.

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz

ALGORITMUS SILOVÉ METODY

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

Hodnocení využití parku vozidel

VYUŽITÍ STECHIOMETRICKÝCH VZTAHŮ PŘI POČÍTAČOVÉM MODELOVÁNÍ OHNIŠŤ

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

LABORATORNÍ PŘÍSTROJE A POSTUPY

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1

11 Tachogram jízdy kolejových vozidel

Fyzika biopolymerů. Elektrostatické interakce makromolekul ve vodných roztocích. Vodné roztoky. Elektrostatická Poissonova rovnice.

Staré mapy TEMAP - elearning

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

11 Kvantová teorie molekul

Numerické metody optimalizace

31 : : : : : 39

Určování parametrů elektrického obvodu v MS Excelu

Interference na tenké vrstvě

Transport hmoty a tepla v mikrofluidních systémech

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů

Transformace dat a počítačově intenzivní metody

DETERMINATION OF THE NUMBER OF PERIODIC AND UNDPLANNED REPAIRS CAUSED BY VIOLENT DAMAGE ON RAILWAY TRACTION VEHICLES FOR NEWLY PROPOSED REPAIR SHOP

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

6 LINEÁRNÍ REGRESNÍ MODELY

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

PŘÍSPĚVEK K TERMODYNAMICKÝM A DIFÚZNÍM INTERAKČNÍM KOEFICIENTŮM A JEJICH VZÁJEMNÉMU VZTAHU

Aplikace simulačních metod ve spolehlivosti

FORANA. 1. Úvod. 2 Vznik akustického signálu řeči v mluvidlech. Pavel GRILL 1, Jana TUČKOVÁ 2

Matematika IV, Numerické metody

3 Základní modely reaktorů

MĚRNÁ DEFORMAČNÍ ENERGIE OTEVŘENÉHO OCELOVÉHO

Regresní a korelační analýza

REGRESNÍ ANALÝZA. 13. cvičení

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

Bezpečnost chemických výrob N111001

PODKLADY PRO PRAKTICKÝ SEMINÁŘ PRO UČITELE VOŠ. Logaritmické veličiny používané pro popis přenosových řetězců. Ing. Bc. Ivan Pravda, Ph.D.

Kinetika spalovacích reakcí

TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ

INŽ ENÝ RSKÁ MECHANIKA 2002

Určení tlouštky folie metodou konvergentního elektronového svazku (TEM)-studijní text.

Statistická šetření a zpracování dat.

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Energie elektrického pole

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN. The End Stage Renal Disease Treatment Model

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits

KINETICKÁ TEORIE PLYNŮ

SORPCE NASYCENÝCH PAR PERCHLORETHYLENU NA ZEMINY A POROVNÁNÍ VÝTĚŽKŮ EXTRAKČNÍCH TECHNIK. BORISLAV ZDRAVKOV, JIŘÍ JORDAN ČERMÁK a JOSEF JANKŮ.

VÝPOČET VELIKOSTNÍCH PARAMETRŮ KOMPOSTÁREN NA ZPEVNĚNÝCH PLOCHÁCH THE SIZE PARAMETER CALCULATION OF COMPOST PLANTS LOCALIZED ON COMPACTED AREAS

Měření základních materiálových charakteristik propustnosti řetězového filtru Mgr. Radek Melich. 2. Použité metody

Autokláv reaktor pro promíchávané vícefázové reakce

INTERAKCE PRVKŮ V TERNÁRNÍM SYSTÉMU WOLFRAM - MOLYBDEN - RHENIUM INTERACTIONS OF ELEMENTS IN THE TERNARY SYSTEM TUNGSTEN- MOLYBDENUM-RHENIUM

ROZBOR POVRCHOVÝCH VLASTNOSTÍ LICÍCH PRÁŠKŮ Z HLEDISKA BAZICITY A ZASTOUPENÍ SIO 2

ANALÝZA PRODUKCE OLEJNIN ANALYSIS OF OIL SEED PRODUCTION. Lenka Šobrová

Rizikového inženýrství stavebních systémů

MĚŘENÍ INDUKČNOSTI A KAPACITY

Ing.fi.Václavík CSc. - VZUP.ÓJP Zbraslav,pracovi Stě MuíStk

Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny

PŘEROZDĚLENÍ UHLÍKU A MANGANU VE SVAROVÝCH SPOJÍCH MANGANOVÝCH OCELÍ THE REDISTRIBUTION OF CARBON AND MANGANESE IN STEEL WELDMENTS OF MANGANESE STEELS

DOBA DOZVUKU V MÍSTNOSTI

Laboratorní cvičení L4 : Stanovení modulu pružnosti

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek

STANOVENÍ DIFUZNÍCH CHARAKTERISTIK A INTERAKČNÍCH KOEFICIENTŮ Al V SYSTÉMU Ni 3 Al-Ni

Úloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku

MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY

GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1

ZÁPADOČESKÁ UNIVERZITA V PLZNI

Transkript:

STUDIUM DIFUZE V TERNÁRNÍCH SYSTÉMECH. PŘÍPAD DIFUZNÍHO SPOJE / 3 - STUDY OF DIFFUSION IN TERNARY SYSTEMS. A CASE OF THE / 3 - DIFFUSION JOINT Jaromír Drápala a, Jana Sudrová a, Jří Vrbcký a Bořvoj Mllon b a VŠB Techncká unverzta Ostrava, tř. 17. lstopadu 15, 708 33 Ostrava Poruba, ČR, E-mal: Jaromr.Drapala@vsb.cz b Ústav fyzky materálů AV ČR, Žžkova 22, 616 62 Brno, ČR, E-mal: mllon@pm.cz Abstrakt Koncentrační profly, které se vytvoří v ternární dfuzní dvojc během zotermckého žíhání, mohou být přímo analyzovány pro určení středních hodnot ternárních nterdfuzních koefcentů. Je prezentována metoda pro stanovení průměrných hodnot hlavních a křížových nterdfuzních koefcentů přes vybrané oblast v dfuzní zóně. Pomocí ntegrace nterdfuzních toků jsou příslušné parametry vypočteny přímo z expermentálních koncentračních proflů. Výhoda takové analýzy je v tom, že př stanovení dfuzních toků není nutno určovat polohu Matano rovny. Metoda poskytuje dále vztahy pro kontrolu různých komponent ve vícesložkovém systému. Analýza byla aplkována na vybrané dfuzní spoje sltn / 3 - podrobené vakuovému žíhání př teplotě 1050 C po dobu 100 hodn a 1100 C/72 hodn. Abstract Concentraton profles that develop n a ternary dffuson couple durng an sothermal annealng can be analyzed drectly for average ternary nterdffuson coeffcents. An analyss s presented for the determnaton of average values for the man and cross-nterdffuson coeffcents over selected regons n the dffuson zone from an ntegraton of nterdffuson fluxes, whch are calculated drectly from expermental concentraton profles. Such analyss crcumvents the need for the locaton of the Matano plane and provdes addtonal relatons for checkng of the varous components n a mult-component assembly. The analyss was appled to selected sothermal dffuson couples nvestgated wth / 3 - alloys at the temperature 1050 C and tme 100 hours and 1100 C/72 hours. 1. ÚVOD K materálům, které jsou vystaveny dlouhodobým účnkům vysokých teplot, patří supersltny na báz nklu, používané v letectví jako konstrukční materál v strojírenském a energetckém průmyslu (lopatky plynových turbín). Tyto sltny jsou tvořeny dvoufázovou strukturou tuhého roztoku (γ) s precptáty 3 (γ'). Pomocí klasckého dfuzního spoje dvou kovových materálů / 3 bylo prokázáno, že př vysokých teplotách probíhají přes hranc obou fází dfuzní procesy. Poznatky získané př studu chování svarových spojů / 3 za vysokých teplot lze do jsté míry využít pro posouzení chování matrce supersltn nklu, v nchž jsou uloženy částce ntermetalckých fází. Intermetalcké sloučenny na báz alumndů, jako např. 3, legované dalším prvky (, Cr, Nb, T, Zr, B) jsou rovněž určeny k technckému využtí pro prác za zvýšených teplot, v některých případech př teplotách 1100 C. Techncké využtí těchto materálů v prax často vyžaduje, aby byly svařtelné, takže svarové spoje musí rovněž odolávat zvýšeným teplotám. 1

Mez materály, které jsou př exploatac vystaveny procesům dfuze, patří také funkčně gradentní materály (FGM) jako skupna heterogenních vícefázových systémů s gradentem chemckého složení, struktury, fyzkálních a mechanckých vlastností. Vzhledem k plynulé změně vlastností napříč objemem materálu nacházejí FGM potencální využtí v mnoha specálních odvětvích průmyslu, ať už jako součást leteckých proudových motorů, elektrotechncké kontakty, materály pro ochranu termočlánků, materály pro fltry, bomaterály pro mplantáty, apod. Sledování chování složených systémů kov polovodč, kov ntermetalcká sloučenna za vyšších teplot může značně přspět k poznání strukturních a chemckých změn v materálu. Vytvořením dfuzního spoje a dlouhodobou exploatací spojeného materálu v teplotním pol lze posoudt většnu dějů, které v materálu probíhají. Základním charakterstkam, určujícím přerozdělování prvků v gradentním materálu jsou nterakční a nterdfuzní koefcenty přítomných prvků včetně jejch koncentračních závslostí a rychlost pohybu mezfázového rozhraní. Způsob zjštění těchto parametrů závsí na vytvoření vhodného dfuzního spoje, na možnost přesného stanovení koncentračních křvek. Expermentální sledování dfuze, dfuzvt v jednotlvých fázích, nterakčních koefcentů a aktvt prvků je značně komplkovaná v případě, kdy dochází k pohybu mezfázových hranc. 2. METODY STANOVENÍ DIFUZIVIT V TERNÁRNÍCH SYSTÉMECH V odborné lteratuře je uvedena řada případů dfuze a určování dfuzních koefcentů v multfázových systémech př známých rovnovážných koncentracích na mezfázových hrancích. Jedná se např. o dfuz prvku z fáze α do β, o dfuz v heterogenní směs dvou fází vyvolanou povrchovým jevy (např. vypařováním), o dfuz v systému tvořeném na jedné straně směsí fází α + β a na druhé straně fází α nebo čstým kovem. V těchto případech se mohou pohybovat dvě mezfázová rozhraní různou rychlostí stejným směrem nebo opačným směrem, případně jedno mezfázové rozhraní je pevné a druhé pohyblvé. Př reaktvní dfuz nebo př kontaktu pevné fáze s tavennou dochází vždy k pohybu mezfázové hrance. Pohyb mezfázové hrance s časem je podřízen parabolckému zákonu. Pro výpočet dfuzních charakterstk a rychlost pohybu mezfázového rozhraní z expermentálních dat (koncentračních křvek) se v bnárních systémech praktcky dosud používá metoda Matano - Boltzmannova, která je matematcky exaktní, ale je velm ctlvá na expermentální chyby a nepřesnost analytckých měření. Je to způsobeno tím, že dfuzvta se určuje z poměru plochy, dané koncentračním proflem a koncentračního gradentu v konkrétním bodě. A právě tento koncentrační gradent bývá obvykle zatížen největší expermentální chybou. Rozptyly ve stanovených hodnotách dfuzvt mohou dosahovat řádové rozdíly a určení koncentrační závslost D(c) je pak málo spolehlvé. Wagner odvodl pozděj vztah vycházející ze zákona zachování dfundující hmoty na pohyblvé mezfázové hranc. V současné době se v podstatě používají dvě rovnce pro výpočet dfuzvt v bnárních systémech: Matano-Boltzmannova a Wagnerova na oborech s pohyblvým hrancem. Teor dfuze v ternárních systémech vytvořl Dayananda v r. 1983 [1] a postupně j zpřesňoval až do dnešní podoby [2-8]. Interdfuzní tok J ~ prvku v ternárním systému může být na základě Onsagerova tvaru Fckova zákona, vyjádřen pomocí dvou nezávslých koncentračních gradentů δ / δ x C j ~ ~ 3 δ C1 ~ 3 δ C2 J = D 1 D 2 ( = 1, 2) (1) δ x δ x ~ 3 kde D a ~ 3 1 D představují hlavní a křížové nterdfuzní koefcenty. Expermentální stanovení 2 čtyř koncentračně závslých nterdfuzních koefcentů vyžaduje použtí Matano- Boltzmannovy analýzy s dvěma nezávslým dfuzním dvojcem, u kterých mohou být nterdfuzní koefcenty vyhodnoceny v dfuzní zóně se společným složením. Interdfuzní toky 2

všech prvků lze stanovt přímo z koncentračních proflů, anž by bylo nutné anebo byly použty nterdfuzní koefcenty. c ( x) 1 J ~ = ( x xo) dc ( = 1, 2,, n) (2) 2t + _ o c resp. c kde t je čas, c a + c jsou mezní koncentrace a x o je poloha Matano rovny. Z přímého stanovení nterdfuzních toků může být vyhodnoceno dfuzní chování prvků a zjštěny tzv. rovny nulového toku (angl. zero-flux planes). Nejnovější model výpočtů jednotlvých dfuzních parametrů (stanovení nterdfuzních toků, koncentrace všech komponent a nterdfuzních koefcentů) vypracoval Ram-Mohan a Dayananda [5] pomocí metody transformace matc. Dfuzí v ternárních systémech se základním komponentam hlníku a nklu př přídavku dalšího prvku se zabýval např. Čermák [9-10] a další autoř [11-14]. 3. EXPERIMENT Jednou z metod přípravy funkčně gradentních materálů je dfuzní spojování materálů. Pro studum dfuzních procesů a vznkající mkrostruktury na rozhraní mez dvěma spojeným materály byl vybrán systém -. V prvé etapě byly přpraveny dfuzní spoje: -, - 3 a -. Pro studum mkrostrukturních a mechanckých vlastností ternárních (vícekomponentních) systémů byly zhotoveny dfuzní spoje: - 3 (,T), -(,) 3, - 3 (,Zr) a další. K realzac dfuzních spojů - byl použt elektrolytcky přetavený nkl o čstotě 3N5 (tj. 99,95 hm.% ) a hlník o čstotě 4N (tj. 99,99 hm.% ). Intermetalcké sloučenny 3 s přídavkem třetího prvku byly staveny v plazmové pec a následně přetaveny ve vakuové pec s odltím do kokly s třem válcovým dutnam o průměru 10 mm a hloubce cca 100 mm. Válečky kruhového průřezu byly následně metalografcky upraveny na čelní ploše a spojeny odporovým svařováním na tupo (ÚFM AV ČR Brno) nebo pomocí elektronového svazku ve vakuu na VŠB-TU Ostrava. Následovalo dlouhodobé vysokoteplotní žíhání dfuzních dvojc v evakuovaných ampulích př režmech 1050 C/100 h, 1100 C/72 h apod. Dále byla provedena rtg. lnová chemcká mkroanalýza ve společnost Vítkovce - výzkum a vývoj, spol. s r.o. Ostrava a metalografe. Získané mkrostrukturní snímky a koncentrační profly sloužly jako vstup pro studum dfuzních procesů. V dalším textu se budeme zabývat pouze studem dfuzních spojů / 3 -. 4. ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ DIFUZE 4.1 Vzorek 100 % / 26.6 % 2.4 % 71 % (1100 C/72 h) V prvé etapě byly výsledky měření dfuze v dfuzním páru 100 /26.6 A1-2.4-71 zpracovány v ÚFM AV ČR v Brně [15]. Data (koncentrační profly, a po dfuzním žíhání) byla upravena opravou artefaktu pro x = 10 µm nterpolací ze sousedních hodnot. K jejch analýze byla použta metodka vypracovaná v článku Dayanandy z r. 1983 [1]. Pro další zpracování je výhodné transformovat koncentrace z atomových procent c na relatvní koncentrace Y podle vztahu Y = (c c + ) / (c c + ), (3) kde c, resp. c + jsou dfuzí neovlvněné koncentrace v levé (x < 0), resp. pravé (x > 0) polovně dfuzního vzorku. Výhoda spočívá v tom, že př použtí Y není třeba př stanovení toků určovat polohu Boltzmann-Matanovy rovny a není překážkou přítomnost extrémů na křvkách Y = f(x). V daném případě bylo získané měření neúplné (obr. 1), neboť scházela měření pro větší vzdálenost od dfuzního rozhraní, Dfuzní měření se v řadě případů dají prokládat funkcí erfc(x). Proto byl učněn pokus proložt expermentálním měřením metodou nejmenších čtverců dvě funkce erfc(x) - jednu pro x < x f, druhou pro x > x f : 3

pro x < x f Y = Y p + 0.5 (l Y p ) erfc{( x x p ) / A 1 }, (4) pro x > x f Y = Y f2 erfc{( x x f ) /A 2 } (5) 3 - / 1100 C / 72 h 30 100 95 25 90 obsah, (At.%) 20 15 10 5 () 85 80 75 70 65 obsah (At.%) 60 3-55 0-100 -80-60 -40-20 0 20 40 60 x (µm) 50 Obr. 1. Koncentrační profly,, v dfuzním spoj / 3 - po dfuzním žíhání 1100 C/72 h Fg. 1. Concentraton profles of,, n the / 3 - jont after annealng 1100 C/72 h Obr. 2. Relatvní koncentrace Y versus vzdálenost x Fg. 2. Relatve concentraton Y versus dstance x Význam symbolů je patrný ze schématu na obr. 2. Pro první error funkc je osou symetre x p, pro druhou pak x f. Orentační proložení expermentálních bodů pomocí rovnc (4) a (5) ukázalo dobrý soulad expermentálních a ftovaných hodnot a prokázalo tedy použtelnost tohoto postupu, ovšem s jednou úpravou. Daynandova metoda umožňuje jednoduše stanovt polohu Boltzmann-Matanovy rovny (BM) pomocí rovnce xo L + L ( Y ) dx Y dx = xo xbm 1 (6) xo kde x o může být zvoleno lbovolně. V ternárním systému je poloha BM rovny z defnce pro všechny složky totožná. Orentační výpočet to neprokázal. Jsté možnost poskytuje využtí nejstoty ve stanovení polohy x f (v daném případě leží v ntervalu 35 až 40 µm). Jak se odrazí změna polohy x f v poloze BM rovny ukazuje tab. 1. Tab. 1. Poloha Boltzmann-Matano rovny v závslost na volbě x f. Table 1. Poston of the Boltzmann-Matano plane n dependence on choce of x f. * ) Údaje po korekc koncentrací. x f [µm] x A1 BM [µm] x BM [µm] 35.2 37.5 39.8-17.75-17.15-16.66-9.71-10.31-10. 68 38.25* ) -16.88-16.88 Problém tedy nelze takto uspokojvě vyřešt. Př analýze vznklého problému se ukázalo, že řešením je malá modfkace chemckého složení dfuzí neovlvněné zóny100/26.64-2.25-71.1. Přepočtená expermentální data jsou uvedena na obr. 3 včetně výsledku stanovení polohy BM rovny s takto upraveným koncentracem a př optmalzac x f. Ve FORTRANu byl napsán program pro prokládání dat metodou nejmenších čtverců s využtím programového systému OPTIPACK [16]. Pro prokládání byly použty rovnce (4) a (5) pro a pro x < x f Y = Y P + 0.5 (l Y P ) erfc{( x x p ) / A 1 } (7) Y = Y P + 0.5 (l Y P ) erfc{( x x p ) / A 1 } (8) a pro x > x f Y = Y f2 erfc{( x x f ) / A 2 } (9) Y = Y f2 erfc{( x x f ) / A 2 } (10) Hodnoty Y byly dopočítávány ze vztahu 4

Y = [ Y (c c + ) Y (c c + ) / (c c + ) (11) Obr. 3. Relatvní koncentrace Y versus vzdálenost x Obr. 4. Vypočtené koncentrace,, v dfuzním (X BM Matano rovna, X f fázové rozhraní) spoj / 3 - Fg. 3. Relatve concentraton Y versus dstance x Fg. 4. Calculated concentraton of,, n (X BM Matano plane, X f phase nterface) the / 3 - dffuson jont Pomocí rovnc (7-11) byly současně ftovány naměřené koncentrace, a. Systém OPTIPACK umožňuje prác s chybam, proto bylo pro jednoduchost předpokládáno, že koncentrace byly naměřeny se stejnou absolutní chybou c ± 0,05 at.%. Z toho pak byly vypočteny chyby a váhy Y. Program stanovuje kromě hledaných parametrů rovněž jejch střední chyby. Výsledky prokládání jsou uvedeny na obr. 4. Pokud je parametr zadán, resp. vypočten s nulovou chybou, znamená to, že se jedná buďto o pevný parametr (např. x f ) nebo o parametr, který se dopočítává z ostatních (např. x BM ). Obr. 3 a 4 potvrzují, že použté error funkce umožňují velm dobrou aproxmac expermentálních dat a tedy další zpracování. Přímo z proložení lze získat nformac o koncentracích složek na mezfázové hranc γ(){15.85-l.72-82,43}[at.%]; γ'( 3 ) (23.24A1-1.22-75.54) [at.%]. Podle Daynandy [1] lze dfuzní toky složek v ternárním systému vyjádřt rovncí * + x L J = (c c + * * ) Y ( 1 Y ) dx + ( 1 Y ) Y dx / 2 t (12) * L x Pro dervace platí c = (c c + ) Y (13) Z defnce pak platí n 1 j = 1 n J = D c (14) j j Pomocí parametrů proložených error funkcí můžeme spočítat hodnoty dervací a ntegrálů v rovncích (12-13) a ty pak vynést do obr. 5 (pro výpočet J použto t = 192 hod). Exaktně vyhodnott koefcenty dfuze podle původní Dayanandovy metody [1] je u ternárních systémů možné jen pří měření na vhodně sestavených dvou dfuzních párech, u nchž se dfuzní cesty protínají, a to pouze pro koncentrac, odpovídající tomuto průsečíku. Podle obecně zavedené symbolky lze pro náš konkrétní případ ternárního systému -- psát J = D c D c (15) 5

J = D c D c (16) Obr. 5. Výpočet koncentračních gradentů a nterdfuzních toků pro a v dfuzním spoj / 3 - Fg. 5. The calculaton of concentraton gradents and nterdffuson fluxes for and n the / 3 - Zajímavý je průběh dfuzních cest uvedený na obr. 6 a 7. Zatímco pro Y = f(y ) a Y = f(y ) získáváme typcký průběh pro ternární systém se dvěm fázem (obr. 6), pro Y = f(y ) je průběh dfuzní cesty velm blízký bnárnímu systému (obr. 7). Př blžším pohledu na pravou stranu rovnce (15) se dá usuzovat, že druhý člen lze zanedbat oprot prvnímu D c >> D c (17) Obr. 6. Funkce Y = f(y, Y ) Obr. 7. Funkce Y = f(y ) Obr. 8. Závslost D (x) Fg. 6. Functon Y = f(y, Y ) Fg. 7. Functon Y = f(y ) Fg. 8. Dependence D (x) Protože pro známe hodnoty dfuzních toků a dervací, můžeme hodnoty D = D stanovt (vz obr. 8). Nabízelo by se takto vypočítané koefcenty srovnat s naměřeným koefcenty vzájemné dfuze v bnárním systému -, což však přesahuje rámec provedené stude. Ve spoluprác s katedrou matematky a deskrptvní geometre (Mgr. J. Vrbcký, Ph.D.) se v současnost odlaďuje výpočetní program v MATLAB využívající modelu transformace matc dle [5] pro určení dfuzních toků, stanovení hlavních a křížových nterdfuzních koefcentů, včetně zpětné kontroly správnost postupu výpočtů zobrazením koncentračních proflů v ternárních systémech. Na základě materálové blance pro všechny tř přítomné prvky,, byla nejprve určena poloha Matano rovny x o = 1.9629E 3 cm od mezfázového rozhraní. Celá oblast dfuzí ovlvněné zóny byla rozdělena na vhodné úseky a pro každou oblast byly stanoveny jednotlvé hlavní D 11, D 22 a křížové D 12, D 21 nterdfuzní koefcenty, tedy pro náš systém se jedná o D, D, D a D [m 2.s 1 ]: 6

Úsek: (do 50 µm) ( 50µm x o ) (x o 0) vpravo do koncentračního skoku D 0.0175E -13 0.0407E -13 0.0486E -13 0.1064E -13 0.0663E -14 [m 2.s 1 ] D 0.1656E -13 0.1641E -13 0.1874E -13 0.7323E -13 0.105E -14 [m 2.s 1 ] D 0.0007E -13 0.0014E -13 0.0005E -13 0.0010E -13 0.0282E -14 [m 2.s 1 ] D 0.0069E -13 0.0049E -13 0.0010E -13 0.0152E -13 0.0426E -14 [m 2.s 1 ] Dále uvádíme první dílčí výsledky výpočtů na stejném vzorku dle obr. 1 ve formě závslost nterdfuzního toku jednotlvých komponent J (x x o ) vztaženého k poloze Matano rovny x o na vzdálenost x vz obr. 9. Na obr. 10 je zakreslen expermentálně zjštěný a vypočtený koncentrační profl ndvduálních prvků na základě stanovených hlavních a křížových nterdfuzních koefcentů v ternárním systému / -. 6 x 10-16 4 1 0.9 0.8 J.(x-xo) 2 0-2 concentraton 0.7 0.6 0.5 0.4 0.3-4 x o 0.2 0.1-6 -10-8 -6-4 -2 0 2 4 6 dstance [cm] x 10-5 Obr. 9. Vypočtené nterdfuzní toky J (x x o ) vztažené k poloze Matano rovně x o Fg. 9. Calculated nterdffuson fluxes J (x x o ) for a dffuson couple /-- 0-10 -8-6 -4-2 0 2 4 6 dstance [cm] x 10-5 Obr. 10. Expermentální a vypočtené koncentrační profly pro dfuzní pár /-- Fg. 10. Expermental and calculated concentraton profles for a dffuson couple /-- Vzorky 100 % / 7 10 at. % (1050 C/100 h) Další sére vzorků dfuzních dvojc o složení 100 at. % / 21 22 at. % A1 7 10 at. % zbytek byla tepelně zpracována žíháním př teplotě 1050 C po dobu 100 h v evakuovaných ampulích s následným prudkým zchlazením ve vodě. Výsledky koncentračního proflu jednoho ze vzorků prezentuje obr. 11. Závslost dfuzních koefcentů a na vzdálenost od mezfázového rozhraní v oblast tuhého roztoku zjštěných klasckou metodou Matano-Boltzmannovou je uvedena na obr. 12. mol. zlomek, 0.25 0.2 0.15 0.1 0.05 v v 3A- v / 3-8.5 - Brno v 3A- 1050 C, 100 hod., WDX: 3.4.2008 y = 3.6707E+03x 4 + 4.6893E+02x 3-6.6699E+01x 2 + 2.4541E+00x + 1.8968E-01 R 2 = 9.9249E-01 y = 1.3534E+10x 6 + 1.0902E+09x 5 + 3.1921E+07x 4 + 3.6926E+05x 3 + 8.2678E+02x 2-2.2417E-01x + 1.3433E-01 R 2 = 9.9968E-01 y = -1.1135E+05x 4 + 1.0546E+04x 3-3.6657E+02x 2 + 5.6185E+00x + 5.3893E-02 R 2 = 9.8271E-01 y = -1.1307E+06x Obr. 12. Funkční závslost D(x) 4-5.8108E+04x 3-7.7643E+02x 2 + 2.0447E+00x + 6.7695E-02 R 2 = 9.9886E-01 0 v oblast () pro vzorek dle obr. 11-0.03-0.02-0.01 0 0.01 0.02 0.03 0.04 Fg. 12. Functonal dependence D(x) n vzdálenost x [cm] the regon of () for sample n Fg. 11 Obr. 11. Koncentrační profly a v dfuzním spoj 100 / 69.3 22 8.7 po žíhání 1050 C /100 h Fg. 11. Concentraton profles of and n dffuson couple 100 / 69.3 22 8.7 after annealng at the temperature1050 C /100 h D [cm.s -1 ] 2.0E-09 1.5E-09 1.0E-09 5.0E-10 0.0E+00 / 3-8.5 % - Brno -0.014-0.012-0.01-0.008-0.006-0.004-0.002 0 vzdálenost x [cm] 1050 C, 100 hod. 7

5. DISKUSE V rámc tohoto příspěvku byly dskutovány používané metody stanovení nterdfuzních charakterstk ve vybraném ternárním systému. Ze zjštěných koncentračních proflů po dfuzním žíhání byl zjštěn na mezfázovém rozhraní koncentrační skok u všech tří přítomných prvků, přčemž došlo v případě železa k jeho vdtelnému poklesu těsně u rozhraní v oblast fáze γ vz tab. 2. Vzorek číslo Tabulka 2 Koncentrační poměry zjštěné na fázovém rozhraní [údaje v at. %] Table 2 Composton of elements at the nterphase boundary [concentraton n At. %] Podmínky žíhání vých. vých. vých. v () v () v () 1. 1100 C / 72 h 26.6 2.4 71 15.9 23.2 1.7 1.28 82.4 75.5 2. 1050 C / 100 h 22.7 8.6 68.7 13.5 19.2 6.85 5.0 77.6 75.8 3. 1050 C / 100 h 21.6 7.0 71.4 13.2 17.3 5.0 4.6 81.8 78.1 4. 1050 C / 100 h 21 10 69 12.6 18.7 8.0 6.5 79.4 74.8 5. 1050 C / 100 h 21.6 8.3 70.1 13.4 16.4 5.2 4.5 81.4 79.1 Z koncentračního proflu na obr. 11 vyplývají zajímavé skutečnost: Koncentrační skok na fázovém rozhraní γ() / γ ( 3 -) je v rozmezí 3 až 6 at. %, přčemž byly praktcky ve všech případech pozorovány téměř konstantní koncentrace ve vzdálenost 10 až 40 µm v oblast tuhého roztoku nklu od fázového rozhraní vz obr. 11. Prozatím jsme nenašl vysvětlení pro tento jev. Další zvláštností byl pokles koncentrace železa u všech vzorků v oblast γ ( 3 -) přlehlé fázovému rozhraní oprot koncentrac na straně tuhého roztoku () vz obr. 1 a 11. V oblast mez Matano rovnou a fázovým rozhraním byl u všech vzorků pozorován výskyt Krkendallových pórů. Jejch rozbor je předmětem dalšího studa. Další zajímavostí byla skutečnost, že poloha Matano rovny u většny vzorků žíhaných př podmínkách 1050 C / 100 h byla pro téměř shodná a odpovídala 40 µm od fázového rozhraní, zatímco v případě byla Matano rovna vzdálena od rozhraní 54 µm (vzorek 4). Př porovnání dosažených kvazrovnovážných koncentrací s publkovaným ternárním dagramy bylo zjštěno, že všechny výchozí vzorky svým složením ležely právě na hranc dvoufázové oblast γ / γ + γ, koncentrace všech prvků zjštěná na fázovém rozhraní ze strany tuhého roztoku nklu leží přesně na hranc dvoufázové oblast γ / γ + γ ve shodě s Výchozí sltna Fázové rozhraní fázovým dagramem. cméně složení prvků odpovídající oblast γ na fázovém rozhraní se dle fázového dagramu nacházejí jednoznačně v oblast dvoufázové vz obr. 13. Bude to dáno tím, že chemcké složení výchozích vzorků odpovídalo mnmální koncentrac výskytu fáze γ v ntermetalcké sloučenně pro teplotu 1050 C. Obr. 13. Izotermcký řez v ternárním dagramu př 1050 C v oblast γ /γ + γ s vyznačením expermentálně zjštěných bodů na fázovém rozhraní u dfuzních dvojc γ()/γ ( 3 -) [17] Fg. 13. Isothermal secton at 1050 C n ternary system n area of γ /γ + γ [17] and expermental ponts at the phase boundary for dffuson couples γ()/γ ( 3 -) 8

7. ZÁVĚR Sére vzorků dfuzních párů byla spojena lokálním svařením přímým průchodem elektrckého proudu nebo elektronovým svazkem ve vakuu. Jednalo se o spoje typu γ() / γ ( 3 -), které byly následně podrobeny vysokoteplotnímu žíhání za účelem zjštění koncentračních proflů jednotlvých komponent. Pro stanovení dfuzních charakterstk byla použta klascká Matano Boltzmannova metoda. Koncentrační profly byly účelně vyhlazeny za použtí vhodných typů polynomů. Z nch byla určena poloha Matano rovny a odtud dále závslost D(c) pro jednotlvé prvky v dfuzí ovlvněných oblastech výskytu fází γ a γ. Pro určení nterdfuzních toků jednotlvých komponent byla využta v prvém kroku Dayanadova metoda z r. 1983 [1] a vylepšená metoda Ram-Mohana a Dayanandy z r. 2006 [5]. Za tímto účelem byl vytvořen program v MATLAB, který je v současnost ve stádu testování a odlaďování. První výsledky jsou pro řadu systémů slbné. PODĚKOVÁNÍ Tato práce vznkla v rámc řešení projektu Grantové agentury ČR, reg. č. 106/06/1190 Studum procesů krystalzace vícekomponentních sltn s cílem stanovení zákontostí nterakce prvků a tvorby struktury a v rámc výzkumného záměru fakulty Metalurge a materálového nženýrství VŠB TU Ostrava, reg. č. MSM 6198910013 Procesy přípravy a vlastnost vysoce čstých a strukturně defnovaných specálních materálů. LITERATURA [1] DAYNANDA, M.A. An analyss of concentraton profles for fluxes, dffuson depths, and zero-flux planes n multcomponent dffuson. Metallurgcal Transactons A. 1983, 14A, p. 1851. [2] DAYNANDA, M.A., SOHN, Y.H. Average effectve nterdffuson coeffcents and ther applcatons for sothermal multcomponent dffuson couples. Scrpta Materala, 1996, Vol. 35, 6, p. 683-688. [3] DAYNANDA, M.A., SOHN, Y.H. A new analyss for the determnaton of ternary nterdffuson coeffcents from a sngle dffuson couple. Metallurgcal and Materals Transactons A. 1999, 30A, p. 535-543. [4] SOHN, Y.H., DAYNANDA, M.A. A double-serpentne dffuson path for a ternary dffuson couple. Acta Materala, 2000, 48, p. 1427-1433. [5] RAM-MOHAN, L.R., DAYNANDA, M.A. A transfer matrx method for the calculaton of concentratons and fluxes n multcomponent dffuson couples. Acta Materala, 2006, 54, p. 2325-2334. [6] DANIELEWSKI, M., BACHORCZYK, R., MILEWSKA, A., UGASTE, Y. Dffuson paths n ternary systems comparson of Onsager and Darken models. Defect and Dffuson Forum, 2001, Vols. 194-199, p. 223-228. [7] GLICKSMAN, M.E., LUPULESCU, A.O. Dynamcs of multcomponent dffuson wth zero flux planes. Acta Materala, 2003, 51, p. 1181-1193. [8] BOUCHET, R., MEVREL, R. A numercal nverse method for calculatng the nterdffuson coeffcents along a dffuson path n ternary systems. Acta Materala, 2002, 50, p. 4887-4900. [9] ČERMÁK, J., ROTHOVÁ, V. Concentraton dependence of ternary nterdffuson coeffcents n 3 / 3 -X couples wth X = Cr,, Nb and T. Acta Materala, 2003, 51, p. 4411-4421. [10] ČERMÁK, J., GAZDA, A., ROTHOVÁ, V. Interdffuson n ternary 3 / 3 -X dffuson couples wth X = Cr,, Nb and T. Intermetallcs, 2003, 11, p. 939-946. [11] MOYER, T.D., DAYNANDA, M.A. Dffuson n β 2 -- alloys. Metallurgcal Transactons A, 1976, 7A, p. 1035-1040. [12] KARUNARATNE, M.S.A., CARTER, P., REED, R.C. On the dffuson of alumnum and ttanum n the -rch --T system between 900 and 1200 C. Acta Materala, 2001, 49, p. 861-875. [13] ENGSTRÖM, A., MORRAL, J.E., ÅGREN, J. Computer smulaton of -Cr- multphase dffuson couples. Acta Materala, 1997, 45, 3, p. 1189-1199. [14] FUJIWARA, K., HORITA, Z. Intrnsc dffuson n 3. Defect and Dffuson Forum, 2001, Vols. 194-199, p. 565-570. [15] MILLION, B. Zpracování výsledků měření dfuze v dfuzním páru 100/26.6-2.4-71. Interní zpráva pro VŠB-TU Ostrava, ÚFM AV ČR Brno, duben 2007. [16] KUČERA, J., HŘEBÍČEK, J., LUKŠAN, L., KOPEČEK, I. OPTIPACK - užvatelský pops modfkace 2.2. Výzkumná zpráva 609/730, ÚFM Brno, 1985. [17] BRAMFITT, B.L., MICHAEL, J.R. AEM mcroanalyss of phase equlbra n 3 ntermetallc alloys contanng ron. Mater. Res. Soc. Symp. Proc., 1986, p. 62. 9