{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2.

Podobné dokumenty
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/

4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

( ) ( ) Nezávislé jevy I. Předpoklady: 9204

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika

( ) ( ) Binomické rozdělení. Předpoklady: 9209

Řešené příklady z pravděpodobnosti:

( ) ( 1) Permutace II. Předpoklady: c) ( n ) Př. 1: Rozepiš faktoriály. a) 6! b)! ( n + ) a) 6! = = 720

( n) ( ) ( ) Kombinatorické úlohy bez opakování. Předpoklady: 9109

( ) ( ) Binomické rozdělení. Předpoklady: 9209

9.1.6 Permutace I. Předpoklady: 9101, 9102, 9104

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

4.5.9 Pravděpodobnost II

22. Pravděpodobnost a statistika

KOMBINATORIKA. 1. cvičení

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Další vlastnosti kombinačních čísel

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

9.2.1 Náhodné pokusy, možné výsledky, jevy

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Slovní úlohy o společné práci 2

( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.

CVIČNÝ TEST 23. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

4.3.4 Základní goniometrické vzorce I

Kvadratické rovnice (dosazení do vzorce) I

2.3.7 Lineární rovnice s více neznámými I

4.3.3 Základní goniometrické vzorce I

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

(bridžové karty : 52 karet celkem, z toho 4 esa) [= 0, 0194] = 7, = 4, = 1, = 9, = 1, 77 10

Statistika (KMI/PSTAT)

7.1.3 Vzdálenost bodů

2.9.4 Exponenciální rovnice I

3.2.3 Podobnost trojúhelníků I

Nerovnice v podílovém tvaru II. Předpoklady: 2303, x. Podmínky: x x 1, 2 x 0 x 2, 1 3x

Název: Pravděpodobnost a běžný život

Vzorce pro poloviční úhel

1.2.9 Usměrňování zlomků

( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x

Logaritmická rovnice

Rovnice a nerovnice v podílovém tvaru

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

MATEMATIKA III V PŘÍKLADECH

Poznámky k předmětu Aplikovaná statistika, 1. téma

Motivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma

náhodný jev je podmnožinou

Opakovací test. Kombinatorika A, B

Intuitivní pojem pravděpodobnosti

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS)

2.6.5 Další použití lineárních lomených funkcí

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;

pravděpodobnosti a Bayesova věta

Rozklad na součin vytýkáním

Kód uchazeče ID:... Varianta: 14

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I

( 4) Slovní úlohy vedoucí na lineární rovnice III. Předpoklady: 2211

tazatel Průměr ve Počet respondentů Rozptyl ve

5.1. Klasická pravděpodobnst

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015)

Slovní úlohy o směsích II

IB112 Základy matematiky

3.2.3 Podobnost trojúhelníků I

2.7.6 Rovnice vyšších řádů

Řešení slovních úloh pomocí lineárních rovnic

Matematika. Vlastnosti početních operací s přirozenými čísly. Sčítání a odčítání dvojciferných čísel do 1 000, zpaměti i písemně.

4.2.3 Oblouková míra. π r2. π π. Předpoklady: Obloukovou míru známe z geometrie nebo z fyziky (kruhový pohyb) rychlé zopakování.

4.2.5 Orientovaný úhel II. π π = π = π (není násobek 2π ) 115 π není velikost úhlu α. Předpoklady: Nejdříve opakování z minulé hodiny.

2.7.6 Rovnice vyšších řádů

Rovnoměrný pohyb II

Distribuční funkce je funkcí neklesající, tj. pro všechna

Převrácená čísla

2. přednáška - PRAVDĚPODOBNOST

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy

1.3.3 Množinové operace

KOMBINATORIKA. 1. cvičení

pravděpodobnost, náhodný jev, počet všech výsledků

Pokud se učitel rozhodne pro usměrněné složení skupin, vylosují zástupci lístek se slovním druhem (viz úkol č. 1).

( ) ( )( ) ( x )( ) ( )( ) Nerovnice v součinovém tvaru II. Předpoklady: Př.

Digitální učební materiál

Náhodné chyby přímých měření

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

Pravděpodobnost a statistika (BI-PST) Cvičení č. 2

5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy

Náhodné (statistické) chyby přímých měření

CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

Skaláry a vektory

Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte:

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Pravděpodobnost a aplikovaná statistika

4.2.5 Orientovaný úhel II

UŽITÍ GONIOMETRICKÝCH VZORCŮ

4.3.7 Součtové vzorce. π π π π. π π π. Předpoklady: 4306

Gymnázium. Přípotoční Praha 10

Transkript:

9..3 Pravděpodobnosti jevů I Předpoklady: 90 Opět se vrátíme k hodu kostkou. Pokus má šest stejně pravděpodobných náhodných výsledků pravděpodobnost každého z nich je 6. Do domečku nám chybí tři políčka. Jaká je pravděpodobnost, že padne číslo větší než? Nehledáme pravděpodobnost výsledku, ale jevu. Jev se skládá ze čtyř možných výsledků { 3;4;;6 } pravděpodobnost je zřejmě 4 =. 6 3 Jak jsme získali zlomek 4 6? Sečetli jsme pravděpodobnosti výsledků, které jsou jevu číslo větší než příznivé. Předchozí platí i obecně: Pravděpodobnost jevu A (značíme ( ) výsledků příznivých jevu A. P A p ω = vzorcem: ( ) ( ) ω A ( p ( ω) = součet těch čísel ( ) ω A P A ), definujeme jako součet pravděpodobností p ω, která odpovídají prvkům ω A) pokud má pokus m stejně pravděpodobných výsledků, je pravděpodobnost každého z nich je m a pravděpodobnost jevu A se rovná: ( ) m( A) P A =, kde m( A ) je počet výsledků m příznivých jevu A. V pokusu, jehož všechny výsledky jsou stejně pravděpodobné, je počet výsledků přiznivých jevu A pravděpodobnost jevu A rovna podílu. počet všech výsledků Teď už víme, proč je důležité sestavit množinu všech výsledků tak, aby všechny výsledky byly stejně pravděpodobné. V takovém případě totiž dokážeme: určit pravděpodobnost jednotlivých výsledků (podíl m ) určit pravděpodobnost jevů (podíl Bez toho jsme vcelku bezbranní. počet výsledků přiznivých jevu A ) počet všech výsledků Př. : Urči pravděpodobnost jevu při hodu kostkou padne prvočíslo. Hod kostkou 6 rovnocenných možností padne prvočíslo 3 možnosti (, 3, )

Pravděpodobnost jevu padne prvočíslo 3 = 6 Pedagogická poznámka: U předchozího příkladu je jediným problémem fakt, že se neřadí mezi prvočísla. Raději studenty upozorňuji předem, abychom neztráceli čas. Př. : V osudí je modrých, 3 černé, žluté a 4 červené koule. Jednu vytáhneme. Urči pravděpodobnost jevu: nevytáhneme modrou. Všechny výsledky jevu jsou rovnocenné pokud se tváříme jakoby koule byly rozlišitelné počet všech výsledků + 3 + + 4 = 4 počet příznivých výsledků (ne modrá koule) 3 + + 4 = 9 Pravděpodobnost jevu nevytáhneme modrou 9 4. Př. 3: Ve třídě je 3 studentů, v první den maturit jich maturuje 7. Urči jaká je pravděpodobnost, že student X bude maturovat hned v prvním dnu. 3 Počet všech možností, jak vybrat 7 studentů z 3: 7. 30 Skupina vybraných obsahuje konkrétního studenta: (vybíráme 6 studentů ze zbývajících 30) 30 6 7 Pravděpodobnost, že student X bude maturovat hned první den: = = 0,6. 3 3 7 Pedagogická poznámka: Předchozí příklad je trochu záhadný. Téměř všichni studenti ho správě vyřeší tak, že rovnou napíší výsledný zlomek 7, ale většinou nejsou 3 schopni vysvětlit, jak se k výsledku dostali. Za správnou považuji následující argumentaci: Maturantů je 3, a proto může maturant X maturovat jako první, druhý, třetí až třicátý první. Existuje tedy celkem 3 stejně pravděpodobných pořadí, ve kterých může maturant nastoupit ke zkoušce, pouze prvních sedm je příznivých. Přesto je potřeba se studenty projít i řešení uvedené v učebnici, je častěji použitelné v jiných případech, kdy nejsou různá pořadí stejně pravděpodobná nebo je jejich vyjádření hodně složité.

Př. 4: Maturita z matematiky má 60 okruhů. Dan se vůbec nenaučil na 6 z nich. Při zkoušce si losuje dva okruhy. a) Urči pravděpodobnost, že si vylosuje pouze okruhy, které umí? b) Urči pravděpodobnost, že si vylosuje pouze okruhy, které neumí? c) Urči pravděpodobnost, že jeden z vylosovaných okruhů umí a druhý ne? 60 Počet všech možných výsledků losování: (vybíráme ze 60) a) Urči pravděpodobnost, že si vylosuje pouze okruhy, které umí? 4 vybíráme okruhy z 4 okruhů, které umí: 4 = 0,808 b) Urči pravděpodobnost, že si vylosuje pouze okruhy, které neumí? vybíráme okruhy z 6 okruhů, které neumí: = 0,008 c) Urči pravděpodobnost, že jeden z vylosovaných okruhů umí a druhý ne? vybíráme okruh ze 6, které neumí a jeden z 4, které umí 6 4 možností 6 4 = 0,83 Velmi výhodná strategie řešení úloh z pravděpodobnosti: Nejdříve určíme počet všech možných výsledků (jmenovatel zlomku) a pak teprve určujeme počty příznivých výsledků (čitatel zlomku). Pedagogická poznámka: Pokud studenti příklad počítají záhadným způsobem, použitým u předchozího příkladu, vyjde jim výsledek špatně. Snadno si to mohou ověřit tím, že své výsledky sečtou a ty nedají dohromady (i když je jasné, že Dan nemůže táhnout žádným dalším způsobem, který není obsažen v jedno z bodů a), b), c). Naopak sečtení správných výsledků se rovná. Př. : Na zkoušku čeká sedm studentů mezi nimi Petr a Pavel. Pořadí studentů je určováno náhodně losem. Jaká je pravděpodobnost, že Petr a Pavel půjdou po sobě? Losujeme pořadí stejné jako když studenty řadíme do řady permutace bez opakování Všechny možnosti: 7! 3

Petr a Pavel vedle sebe: 6! (spojíme je jako jednoho člověka, možnosti jejich vzájemného prohození) 6! = 7! 7 Pedagogická poznámka: Předchozí příklad je zařazen schválně. Studenti začnou zcela automaticky řešit vše pomocí kombinačních čísel a proto malé připomenutí permutací nezaškodí. Př. 6: Urči pravděpodobnost výhry ve čtvrtém pořadí ve sportce. Při výhře ve čtvrtém pořadí jsou čtyři čísla ze šesti zaškrtnutých na sázence mezi šesti čísly vylosovanými při tahu. Výhru ve čtvrtém pořadí získáme, když se čtyři z našich šesti vsazených čísel budou mezi šesti vylosovanými. vybíráme čtyři se šesti vylosovaných čísel, která trefíme 4 43 vybíráme z nevylosovaných 43 čísel, která netrefíme 43 předchozí možnosti kombinujeme mezi sebou celkem možností 4 49 všechny možnosti losování: 43 4 = 0, 000969 49 Př. 7: 30 studentů třídy je rozděleno do pěti šesti členných skupin. Jaká je pravděpodobnost, že Petr a Pavel budou ve stejné skupině? Rozdělování si můžeme představit tak, že postavíme studenty do řady a prvních pět tvoří první skupinu, druhých pět druhou a tak dále. Počet možností jak do řady postavit Petra a Pavla: 30 9 Stavíme Petra a Pavla do stejné skupiny: počet možností jak vybrat skupinu: počet možností, jak je postavit ve skupině: 6 celkem: 6 6 = 30 9 9 4

Př. 8: Petáková: strana 7/cvičení 4 strana 7/cvičení 7 strana 7/cvičení 8 Shrnutí: Při řešení úloh na výpočty pravděpodobnosti je výhodné nejdříve určit počet všech možných výsledků (jmenovatel zlomku).