4. Model M1 syntetická geometrie

Rozměr: px
Začít zobrazení ze stránky:

Download "4. Model M1 syntetická geometrie"

Transkript

1 4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze). 4.1 Iterpretae pojem vektor viz 1.4 rovost vektorů viz 1.5 sčítáí vektorů viz.1 ásoeí vektoru reál.č. viz.7 všehy vlastosti def 3.1 jsou splěy => jde skutečě o model Na tomto modelu jsme udovali své představy vektoru (primitiví pojmy i axiomy). Už proto musí model fugovat. 4. Příklad: šestiúhelíky Je dá pravidelý šestiúhelík ABCDEF. Určete vektory AB, AC, AD, AE, AF pomoí červeýh vektorů z orázku. (Určit vektory XY jako lieárí komiai červeýh vektorů.) a) ) ) d) e) a) AB = u umístěí vektoru u AC = u + v defiie součtu u + v AD = v defiie ásoeí v AE = AD + DA = v u DA má opačou orietai ež u AF = AE + EF = v u v = -u + v příklad a) ) ) d) e) AB = u -w r s m a AC = u + v -w + t r s m + 3/ a + 1/ AD = v -w + t r m + a + AE = -u + v -w + t r + s m + AF = -u + v t s -1/ a + 1/ 4.3 Příklad: osmiúhelík Je dá pravidelý osmiúhelík ABCDEFGH. Určete vektory AB, AC, AD, AE, AF, AG, AH pomoí vektorů u a v viz orázek.

2 AB = v AC = AH + HC = u + (1+ ) v AD = (1+ ) BC = (1+ ) (-v + u + (1+ ) v ) = =(1+ ) (u + v) = (1+ ) u + (+ ) v AE = AD + DE = AD + u = (+ ) u + (+ ) v AF = AE + EF = AE BA = AE v = (+ ) u + (1+ ) v AG = AD + DG = AD HC = = (1+ ) u + (+ ) v - (1+ ) v = (1+ ) u + v AH = u 4.4 Příklad: osmiúhelík Je dá pravidelý osmiúhelík ABCDEFGH. Určete vektory AB, AC, AD, AE, AF, AG, AH pomoí vektorů u a w viz orázek. ozačme 1 AB = -λu + t = - λu + (1- λ)w AC = -λu + (1- λ)w AD = w AE = u + w AF = (1 + λ)u + (1 - λ)w AG = AF BC = AF (AC - AB) = (1+ λ)u + λw AH = u 4.5 Příklad: od a úseče Nehť od C leží mezi ody A,B a pro vzdáleosti platí AC =m, BC =, m,>0. Dokažte, že pak platí pro liovolý od P PA mpb PC m Vektory AC a CB mají stejý směr je růzou velikost, vzhledem k podmíkám v zadáí tedy platí

3 AC m AC CB mcb (1) PA + AC = PC => PC PA = AC () PC + CB = PB => PB PC = CB (3) do (1) dosadíme z () a z (3) (PC PA) = m(pb PC) (m+)pc = PA + mpb PC PA m mpb q.e.d. 4.6 Pozámka: V matematikýh kiháh se důkazy ukočují zkratkou q.e.d. quod errat demostratum = ož ylo třea dokázat počešťovatelé to překřtili a..d. (ož ylo dokázat) 4.7 Pozámka: střed úsečky Je-li S střed úsečky AB, pak pro liovolý od P platí PS = ½ (PA+PB) Důkaz: do předhozího příkladu položme S=C a m== ½ a, kde a= AB. 4.8 Pozámka: CZ ykliká záměa pro trojúhelík ve stadardím začeí o platí pro a,,,α,β,γ,v a,v,v,t a,t,t platí i pro,,a,β,γ,α,v,v,v a,t,t,t a a pro,a,,γ,α,β,v,v a,v,t,t a,t Vzore, který se dokáže pro jedu sadu údajů platí i pro druhou a třetí. Například osah trojúhelíka S = ½ a v a CZ => poloměr kružie opsaé a r CZ představuje tři vzore, ještě r si S = ½ v, S = ½ v si, r si věta kosiová ATD. a aos CZ

4 4.9 Příklad: Je dá trojúhelík ABC. Dokažte, že platí: 1. AB + BC + CA = o. Ozačíme-li S XY střed úsečky XY, pak AS BC + BS CA + CS AB = o 3. Je-li T těžiště ABC, pak AT + BT + CT = o ad 1. AB + BC + CA = AC + CA = AC AC = o ad. AS BC = AB + AC CZ tedy BS CA = BC + BA CS AB = CA + CB a všehy tři vztahy sečteme z toho plye (AS BC + BS CA + CS AB ) = (AB + BC + CA) + (AC + CB + AC) = o + o AS BC + BS CA + CS AB = o ad 3. AT = /3 AS BC CZ opět všehy tři vztahy sečteme AT + BT + CT = /3 (AS BC + BS CA + CS AB ) = /3 o = o q.e.d Příklad: těžiště Je dá trojúhelík ABC, T je jeho těžiště a P je liovolý od. Dokažte, že platí PT 1 ( PA 3 PB PC) AT = PT PA BT = PT PB CT = PT PC CZ vztahy sečteme AT + BT + CT = 3 PT (PA + PB + PC) a levé straě je podle předhozího příkladu ulový vektor, tedy PA + PB + PC = 3 PT a poděleím 3 dostaeme to, o jsme měli dokázat.

5 q.e.d Pozámka: těžiště odů Zoeěí předhozíh příkladů Pro liovolý od P a těžiště T odů A 1, A, A 3,, A platí 1 PT ( PA PA PA3 PA 1 = T střed =3 T těžiště trojúhelíka i degeerovaého do přímky =4 T těžiště čtyřstěu i degeerovaého do roviy eo přímky 4.1 Příklad: ulový vektor Pro která reálá čísla x,y platí rovie (x+y-) u + (x-y+1) v = o, kde u, v jsou dva eulové ekolieárí vektory, tj. eexistuje žádé reálé číslo takové, ay vektor u yl ásokem vektoru v ( eexist. λ R: u=λv) Násoeí vektoru reálým číslem představuje pouhé atahováí vektoru v jedé eo druhé orietai při zahováí směru. Součet dvou vektorů se grafiky provádí doplěím a rovoěžík a součet je představová úhlopříčkou. Má-li ýt úhlopříčka ulová (výsledkem má ýt ulový vektor), musí mít stray rovoěžíka ulovou délku. Jediá možost jak to split je, že u dvou eulovýh vektorů to ude rovie 0 u + 0 v = o, Tedy musí platit x+y-=0 x-y+1=0 Soustava dvou lieáríh rovi pro dvě ezáme má jedié řešeí x = y = Příklad: osa úhlu Nehť AD je osa úhlu <BAC v trojúhelíku ABC. Dokažte, že platí AB AC AD, kde, jsou stray trojúhelíka ABC. ozačme X AB, Y AC tak, ay AX = AY =1 ) tedy AB = AX, AC = AY AZ = AX + AY hledat ozačme ho λ AD je ásoek AZ je evíme jak veliký, udeme ho

6 AD AZ AB AC AB AC ( AB AC) kde jsme ozačili ω=λ/() - musíme to přesě určit pomoí stra AB = AD + DB AC = AD + DC = AD - CD a dosadíme AD = ωad + ωdb + ωad - ωcd AD (1 ω ω) = ω DB ω CD vázaé vektory DB a CD jsou stejého směru, tedy existuje ějaké reálé číslo k, pro které ude platit, že CD=kDB upravme eo AD (1 ω ω) = ω DB ωk DB AD (1 ω ω) = DB(ω ωk) AD (1 ω ω) - DB(ω ωk) = o Podle příkladu 4.1 je tato rovie splitelá pouze tehdy, když ude platit: úprava výrazu vlevo po dosazeí 1 ω ω = 0 a zároveň ω = ωk AD ω = 1/(+) 1 ( AB Jako vedlejší produkt dostáváme úpravou výrazu vpravo: 0 k k 4.14 Pozámka: Předhozí příklad platí pouze pro osu úhlu AC) DC DB CZ qed AD AB AC Příklad 4.5 platí pro liovolé ody ABC kolieárí PC PA m mpb

7 Jestliže přiřadíme odům z 4.5 ody z 4.13 P->A, A->C, B->B, C->D, můžeme psát AC mab mab AC AB AC AD m m Toto je možé jediě, když existuje k R tak, že =km, =k, Tedy m DB DC CZ (srovejte s vedlejším produktem příkladu 4.13) Výsledek slovy: Osa úhlu v trojúhelíku dělí protější strau v převráeém poměru přilehlýh stra Příklad: čtyřstě Je dá čtyřstě ABCD, T je jeho těžiště; ody A, B, C, D jsou těžiště stě (trojúhelíků) BCD, ACD, ABD, ABC, P je liovolý od. Dokažte, že platí: 1. AA + BB + CC + DD = o. AT + BT + CT + DT = o 3. PT = ¼ (PA + PB + PC + PD) Návod: Těžiště ve čtyřstěu dělí těžii v poměru 1:3 1. AA = 1/3 (AB + AC + AD) CZ. AT = ¾ AA CZ 3. AT = PT PA CZ Úpravy po dosazeí podle ávodu jsou jedoduhé Příklad: kružie vepsaá Nehť a,, jsou stray ABC. Nehť O je střed kružie vepsaé ABC. Dokažte, že pro liovolý od P platí a OA OB OC o apa PB PC PO a OC = OB 1 + OA 1 = x OB + y OA OB1 x OB OB 1 a OB, mají opačou orietai. (číslo x musí ýt záporé, protože vektory z podoosti BOA 0 ~ BB 1 C prví rovost je defiie (zavedeí) čísla x x OB1 OB A0C A B 0 x = - OB 1 /OB

8 druhá rovost je z podoosti BOA 0 ~ BB 1 C, podoé jsou proto, že u vrholu B sdílejí úhel a vzhledem k rovoěžosti CB 1 a A 0 O mají stejý i úhel u vrholu B 1 resp O, tedy OB 1 /OB = A 0 C/A 0 B třetí rovost je z pozámky 4.14 AO je osa úhlu BAC, tedy BC je děleo v poměru stra, tedy A 0 C/A 0 B=/ podoě y = - a/ Dosadíme úprava OC = - / OB a/ OA a OA + OB + OC = o Druhý vztah se dokáže, když do právě dokázaého vztahu dosadíme OA = PA PO CZ a upravíme q.e.d Příklad: čtyřúhelík Dokažte, že středy stra liovolého čtyřúhelíka jsou vrholy rovoěžíka. Podaří-li se dokázat, že MN = QP, pak ude tvrzeí dokázáo. MN QP = MN + PQ = (MB + BN) + (PD + DQ) = MNPQ jsou středa stra = ½ AB + ½ BC + ½ CD + ½ DA = = ½ (AB + BC + CD + DA) = ½ o = o q.e.d Příklad: Víte, že pro vektory a,,u,v platí a = u + v, = ½ u v Vyjádřete vektory u, v jako lieárí komiai vektorů a,. Druhou rovii vyásome dvěma a sečtěme s prví, dostaeme a + = u v = ½ u = ¼ a + ½ - Tedy výsledě u = ½ a + v = ¼ a ½ KONEC

B A B A B A B A A B A B B

B A B A B A B A A B A B B AB ABA BA BABA B AB A B B A A B A B AB A A B B B B ABA B A B A A A A A B A A B A A B A A B A BA B A BA B D A BC A B C A B A B C C ABA B D D ABC D A A B A B C D C B B A A B A B A B A A AB B A AB A B A A

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Upozornění : barevné odstíny zobrazené na této stránce se mohou z důvodu možného zkreslení Vašeho monitoru lišit od fyzické dodávky.

Upozornění : barevné odstíny zobrazené na této stránce se mohou z důvodu možného zkreslení Vašeho monitoru lišit od fyzické dodávky. Upozornění : barevné odstíny zobrazené na této stránce se mohou z důvodu možného zkreslení Vašeho monitoru lišit od fyzické dodávky. ODSTÍN SKUPINA CENOVÁ SKUPINA ODRÁŽIVOST A10-A BRIGHT A 1 81 A10-B BRIGHT

Více

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich Normy matic Příklad 1 Je dána matice A a vektor y: A = 2 0 3 4 3 2 y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Ověřte, že platí Ay A y (1) Ay = (4, 14, 2) T 2 2 Frobeniova norma

Více

Tlačné pružiny. Všechny rozměry pružin uvedených v katalogu jsou standardizovány. Také jsou zde uvedena potřebná technická data.

Tlačné pružiny. Všechny rozměry pružin uvedených v katalogu jsou standardizovány. Také jsou zde uvedena potřebná technická data. Tlačné pružiny Všechny rozměry pružin uvedených v katalogu jsou standardizovány. Také jsou zde uvedena potřebná technická data. Každá pružina má své vlastní katalogové číslo. Při objednávce udávejte prosím

Více

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 4. května 2014 Název zpracovaného celku: STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI STEREOMETRIE geometrie

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

SIGNUM 3SB3 Tlačítka a signálky

SIGNUM 3SB3 Tlačítka a signálky SGNUM Tlačítka a signálky Ovladač s nosičem Kulaté plastové 0..-.. Kulaté kovové 5..-.. Čtvercové plastové 1..-.. pro otvor 26 26mm Upozornění! Prosvětlená tlačítka se dodávají včetně montážního můstku

Více

Polibky kružnic: Intermezzo

Polibky kružnic: Intermezzo Polibky kružnic: Intermezzo PAVEL LEISCHNER Pedagogická fakulta JU, České Budějovice Věta 21 z Archimedovy Knihy o dotycích kruhů zmíněná v předchozím dílu seriálu byla inspirací k tomuto původně neplánovanému

Více

Notice:Jagran Infotech Ltd. Printed by Fontographer 4.1 on 6/3/2003 at 7:12 PM

Notice:Jagran Infotech Ltd. Printed by Fontographer 4.1 on 6/3/2003 at 7:12 PM $ % $0 Undefined $1 Undefined $2 Undefined $3 Undefined $4 Undefined $5 Undefined $6 Undefined $7 Undefined $8 Undefined $9 Undefined $A Undefined $B Undefined $C Undefined $D Undefined $E Undefined $F

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. Najděte všechny dvojice prvočísel p, q, pro které existuje přirozené číslo a takové, že pq p + q = a + 1 a + 1. 1. Nechť p a q jsou prvočísla. Zjistěte, jaký

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometire Gradovaný řetězec úloh Téma: obsahy a obvody mnohoúhelníků, grafy funkcí s absolutní

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

I. kolo kategorie Z9

I. kolo kategorie Z9 58. ročník Matematické olympiády I. kolo kategorie Z9 Z9 I Do tří prázdných polí na obrázku patří taková přirozená čísla, aby součin tří čísel na každé straně trojúhelníku byl stejný. 42 6 72 Jakénejmenšíajakénejvětšíčíslomůžebýtzatétopodmínkyvepsánodošeděvybarveného

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n. 1 Sylvestrova věta Platí: Nechť A je symetrická matice řádu n, označme a 11 a 12... a 1i a D i = 21 a 22... a 2i.... a i1 a i2... a ii Pak A(a příslušná KF) je pozitivně definitní, právěkdyž D i >0provšechna

Více

13 Analytická geometrie v prostoru

13 Analytická geometrie v prostoru Anlytická geometrie v rostoru Nyní se změříme n tříimenzionální rostor využijeme vlstností, které ze ltí ozor v rovině neltí.. Poznámk: Okování u = (u,u,u ), v = (v,v,v ) - vektory sklární součin vektorů

Více

= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1.

= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1. 4 4 = 8 8 8 = 5 + 19 1 = 4 = 11 : 1 k > 0 k 4k x 1 x x k + (1 x) 4k = k x + 4 4x = x = x 1 x = 1 = : 1. v h h s 75 v 50 h s v v 50 s h 75 180 v h 90 v 50 h 180 90 50 = 40 s 65 v 80 60 80 80 65 v 50 s 50

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

ZÁSADY UPRAVUJÍCÍ VÝŠI UHRAD ČLENŮ DRUŽSTVA, OBČANŮ A ORGANIZACÍ ZA ČINNOST A ÚKONY DRUŽSTVA

ZÁSADY UPRAVUJÍCÍ VÝŠI UHRAD ČLENŮ DRUŽSTVA, OBČANŮ A ORGANIZACÍ ZA ČINNOST A ÚKONY DRUŽSTVA Stavební bytové družstvo DRUBYD, Ciolkovského 625/54, Karviná - Ráj, IČ: 000 52 159, zapsané v obchodním rejstříku u Krajského soudu v Ostravě, odd. Dr XXII, vložka 239 ZÁSADY UPRAVUJÍCÍ VÝŠI UHRAD ČLENŮ

Více

P S M

P S M Bezpístnicové válce řady S1, S5 a VL1 najdou své uplatnění zejména tam, kde není místo pro standardní válec. Z válce se totiž nevysouvá pístní tyč. Díky svému maximálnímu zdvihu až 6 metrů je možné je

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

7 Analytická geometrie

7 Analytická geometrie 7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.

Více

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině. ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě

Více

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC 22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

Příloha č. 4_A_1 ke Smlouvě č

Příloha č. 4_A_1 ke Smlouvě č Seznam smluvních lékáren provozovaných poskytovatelem lékárenské péče IČ 28511298 v působnosti Regionální pobočky VZP ČR Praha, pobočky pro Hl. m. Prahu a Středočeský kraj, uzavřená s účinností od 1. 1.

Více

Š É Á á á é č ě ž é ž á č ž é ě á ž ě č é č č ž č á Ž ě Í ě ž áž ě ž ň á ě ž á ž č á é é ě é á ě č ž á é é ě é é ě é č ě é é é á á ž á ž é á Š é Ž ž é č é á á á á ď č á Š é á ěž á č č ě ě é č ě ě é á Ž

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Mnohočleny z různých stran Mgr. Karel Pazourek Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

Syntetická geometrie II

Syntetická geometrie II Mnohoúhelníky Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Čtyřúhelníky Definice (Čtyřúhelník) Jsou dány čtyři body A, B, C, D v rovině, z nichž žádné tři nejsou kolineární. Čtyřúhelník ABCD

Více

Důkazy Ackermannova vzorce

Důkazy Ackermannova vzorce Důkazy Akermaova vzore Rady studetům: Důkaz je trohu zdlouhavý, ale přirozeý. Tak byste při odvozeí postupovali, kdybyste vzore předem ezali. Důkaz je krátký, ale je založe a triku, a který byste předem

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 PLANIMETRIE 000/001 Cifrik, M-ZT První příklad ze zadávacích listů 1 Zadání: Sestrojte trojúhelník ABC, pokud je dáno: ρ

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Interakce světla s prostředím

Interakce světla s prostředím Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos

Více

STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...

STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,... STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...

Více

Kombinatorika- 3. Základy diskrétní matematiky, BI-ZDM

Kombinatorika- 3. Základy diskrétní matematiky, BI-ZDM Kombiatorika- 3 doc. RNDr. Josef Kolář, CSc. Katedra teoretické iformatiky FIT České vysoké učeí techické v Praze c Josef Kolar, 2011 Základy diskrétí matematiky, BI-ZDM ZS 2011/12, Lekce 8 Evropský sociálí

Více

11 Analytická geometrie v rovině

11 Analytická geometrie v rovině Analytiá geometrie v rovině V této části se udeme zaývat pouze rovinou. Využijeme něterýh vlastností teré v prostoru neplatí.. Poznáma: Opaování u = (u u ) v = (v v ) u = (u + u ) u.v = u v + u v vetory

Více

B D ABCDEFB E EB B FB E B B B B E EB B E B B F B

B D ABCDEFB E EB B FB E B B B B E EB B E B B F B Toto rozhodnutí ze dne 11.01.2016, č.j. 085 EX 14048/15-11, nabylo právní moci dne 24.03.2016.Připojení doložky právní moci provedl Soudní exekutor JUDr. Milan Suchánek, dne 06.05.2016.Datum doložky provedení

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

D DE = = + [ + D[ [ D = - - XY = = + -

D DE = = + [ + D[ [ D = - - XY = = + - Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky Časopis pro pěstování mathematiky a fysiky Matyáš Lerch K didaktice veličin komplexních. [I.] Časopis pro pěstování mathematiky a fysiky, Vol. 20 (1891), No. 5, 265--269 Persistent URL: http://dml.cz/dmlcz/108855

Více

TECHNICKÁ ZPRÁVA ELEKTROINSTALACE

TECHNICKÁ ZPRÁVA ELEKTROINSTALACE TECHNICKÁ ZPRÁVA ELEKTROINSTALACE 1. Základní údaje 1.1. Rozsah projektu Předmětem této projektové dokumentace je dokumentace pro výběr zhotovitele akce Stavební úpravy MŠ Pražská 1908/2a, Svitavy SO 02

Více

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM. STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

9.5. Kolmost přímek a rovin

9.5. Kolmost přímek a rovin 9.5. Kolmost přímek a rovin Pro kolmost přímek a rovin platí následující věty, které budeme demonstrovat na krychli ABCDEFGH se středy podstav S, Q. Přímka kolmá k rovině je kolmá ke všem přímkám této

Více

názvy. Všechny uvedené důkazy jsou původní, často však pro svoji jednoduchost jsou jinde uvedeny ve velmi podobném znění.

názvy. Všechny uvedené důkazy jsou původní, často však pro svoji jednoduchost jsou jinde uvedeny ve velmi podobném znění. Kosinová věta pro čtyřúhelník Mgr. Barbora Št astná Přírodovědecká fakulta Masarykovy University e-mail: stastna@mail.muni.cz Abstrakt Při řešení mnoha úloh v euklidovské geometrii se využívá velmi dobře

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost.

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost. Úloha. V Americe se pro měření teploty používají místo Celsiových stupňů stupně Fahrenheitovy. PřepočetzCelsiovýchstupňůnaFahrenheitovylzeprovéstpodlevzorce f = 9 5 c+32(cjsoustupně Celsiovy, f Farenheitovy).

Více

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ..07/.5.00/4.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Kyvné pohony Série 6400. Miniaturní kompaktní suporty Série 6700. Tlumiče nárazu Série 6900

Kyvné pohony Série 6400. Miniaturní kompaktní suporty Série 6700. Tlumiče nárazu Série 6900 Manipulace Série 000 SpA 4050 LURANO (BG) - Italia Via Cascina Barbellina, 0 Tel. 035/49777 Fax 035/49740 035/4974 http://www.pneumaxspa.com CAP. SOC...700.000 I.V. R.E.A. BERGAMO N. 0798 R.E.A. MILANO

Více

VALAŠSKÝ KRPEC. Vsetín 9.kv tna 2015 rozplavání v 9:00 a ve 14:30 hod. zahájení v 10:00 a 15:30 hod. Krytý bazén Jiráskova 340

VALAŠSKÝ KRPEC. Vsetín 9.kv tna 2015 rozplavání v 9:00 a ve 14:30 hod. zahájení v 10:00 a 15:30 hod. Krytý bazén Jiráskova 340 VALAŠSKÝ KRPEC Vsetín 9.kv tna 2015 rozplavání v 9:00 a ve 14:30 hod. zahájení v 10:00 a 15:30 hod Krytý bazén Jiráskova 340 Název závodu : Valašský krpec v plavání Po adatel : Plavecký oddíl TJ ALCEDO

Více

č Ú ť é á č š é ň č á é á č á ňí á ň á é č á Š š ň Í áč ť ň áž á é á á á á ň é á č é é ň š č Ť é ňí é Ž ň š é á č á é á č á ň á á é á é é á é č é Ó ň é é é é é á é á ů č š š š Ť é é á á é áň á Ť á č š

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ. FAKULTA STAVEBNÍ Katedra technologie staveb BAKALÁ SKÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ. FAKULTA STAVEBNÍ Katedra technologie staveb BAKALÁ SKÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA STAVEBNÍ Katedra technologie staveb BAKALÁ SKÁ PRÁCE Stavebn technologický projekt - D1 Modernizace SSÚD Mirošovice 2. etapa 3. ešení technologické struktury Vendula

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice 63. ročník matematické olympiády Řešení úloh krajského kola kategorie B 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice (x y)(x + y 6) = 0, (y z)(y + z 6) = 0, které spolu s

Více

Návody k domácí části I. kola kategorie B

Návody k domácí části I. kola kategorie B Návody k domácí části I. kola kategorie B 1. Najděte všechna osmimístná čísla taková, z nichž po vyškrtnutí některé čtveřice sousedních číslic dostaneme čtyřmístné číslo, které je 2 019krát menší. (Pavel

Více

Kapitola 1. Tenzorový součin matic

Kapitola 1. Tenzorový součin matic Kapitola 1 Tenzorový součin matic Definice 1.1. Buď F komutativní těleso. Pro matice A F m n a B F r s definujeme tenzorový součin A B jako matici o rozměru mr ns zapsanou blokově: A 11 B A 12 B A 1n B

Více

3. ročník, 2013/ 2014 Mezinárodní korespondenční seminář iks

3. ročník, 2013/ 2014 Mezinárodní korespondenční seminář iks Řešení 3. série Úloha C3. Rovnostranný trojúhelník o straně délky n je vyplněný jednotkovou trojúhelníčkovou mřížkou. Uzavřená lomená čára vede podél této mřížky a každý vrchol mřížky potká právě jednou.

Více

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí.

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. . Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. Vyjádřete zlomkem, jakou část druhého obdélníku tvoří zatmavená plocha..

Více

Ověřená technologie montáže motokáry INDOOR 08

Ověřená technologie montáže motokáry INDOOR 08 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ Ústav progresivních technologií pro automobilový průmysl Ověřená technologie montáže motokáry INDOOR 08 Petr

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

OBSAH. strana. Hroty 1, 2. Céčka a eska. strana 2, 3. strana. Šišky. Gule a polgule. strana 5, strana

OBSAH. strana. Hroty 1, 2. Céčka a eska. strana 2, 3. strana. Šišky. Gule a polgule. strana 5, strana OBSAH Hroty 1, 2 Céčka a eska 2, 3 Šišky 3 Gule a polgule 4 Hrozno 5, 6 Lístky 7... 10 Tyčky a stĺpiky 11... 13 Pásoviny a madlá 14, 15 Pätky a krytky 16 Závesy 17 Kľučky 18, 19 Štítky Sortiment pojazdných

Více

Řada Popis Velikost Těleso Strana Tlakové ventily, manuální řízení R4V R4R. 10-3 10-9 Tlakové ventily, proporcionální řízení R4V*P2 R4R*P2

Řada Popis Velikost Těleso Strana Tlakové ventily, manuální řízení R4V R4R. 10-3 10-9 Tlakové ventily, proporcionální řízení R4V*P2 R4R*P2 Obsah Kapitola : Ventily pro montáž do potrubí Řada Popis Velikost Těleso Strana Tlakové ventily, manuální řízení R4V R4R Pojistné funkce Tlakové redukční funkce -3-9 Tlakové ventily, proporcionální řízení

Více

KYVNÉ POHONY. Náhradní díly. Objednací kódy, technická data. Základní rozmìry. Pracovní podmínky. Kyvný pohon s ozubeným høídelem Série 6410

KYVNÉ POHONY. Náhradní díly. Objednací kódy, technická data. Základní rozmìry. Pracovní podmínky. Kyvný pohon s ozubeným høídelem Série 6410 Manipulace Série 00 KYVNÉ POHONY Otoèný stùl s dvoupístovým pohonem Série 00 Strana Náhradní díly Objednací kódy, technická data Základní rozmìry Pracovní podmínky...3. Kyvný pohon s ozubeným høídelem

Více

Kombinatorika, výpočty

Kombinatorika, výpočty Kombinatorika, výpočty Radek Pelánek IV122 Styl jednoduché výpočty s čísly vesměs spíše opakování + pár dílčích zajímavostí užitečný trénink programování Kombinace, permutace, variace Daná množina M s

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

2D standard pro jízdní doklady ČD, a.s.

2D standard pro jízdní doklady ČD, a.s. 2D standard pro jízdní doklady ČD, a.s. Základní pravidla a popis struktur Odbor informatiky České dráhy, a.s. Dne: 28.5.2012 Verze. 1.00 1. Úvod Dokument popisuje základní pravidla pro sestavení kontrolního

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

Kapitola 5 - Matice (nad tělesem)

Kapitola 5 - Matice (nad tělesem) Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

2. Matice, soustavy lineárních rovnic

2. Matice, soustavy lineárních rovnic Matice, soustavy lineárních rovnic Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Irena Sýkorová Některé vlastnosti matic Uvažujmečtvercovoumatici A=(a ij ) n n Matice Asenazývásymetrická,jestližeplatí

Více

Varianty: - brání i C1 - situace 2 na 2 - povinná 3 překřížení A1 s B1 - D1 brání opačným držením hole Změníme orientaci cvičení

Varianty: - brání i C1 - situace 2 na 2 - povinná 3 překřížení A1 s B1 - D1 brání opačným držením hole Změníme orientaci cvičení cv. 308 Situace 2 na 1 Útočník A1 si naráží míček do běhu s útočníkem A2, kříží se a střílí na bližší branku. Mezitím obránci C1 a D1 vybíhají a střílí na druhou branku, poté C1bere volný míček, přihrává

Více

Přepínací ventily SSR 6-3 Zpětné ventily, přímo ovládané RK / RB 6-5 CS 6-9 SPZBE 6-11 SPV / SPZ 6-13 C4V. 6-15 Zpětné ventily, nepřímo ovládané CPS

Přepínací ventily SSR 6-3 Zpětné ventily, přímo ovládané RK / RB 6-5 CS 6-9 SPZBE 6-11 SPV / SPZ 6-13 C4V. 6-15 Zpětné ventily, nepřímo ovládané CPS Obsah Kapitola : Zpětné ventily Řada Popis Velikost Montáž Strana Parker Standard DIN / ISO 1/8 1/4 3/8 1/2 3/4 1 0 10 1 25 32 Přepínací ventily SSR -3 Zpětné ventily, přímo ovládané RK / RB -5 CS -9 SPZBE

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Počítání v planimetrii Michal Kenny Rolínek

Počítání v planimetrii Michal Kenny Rolínek Počítání v planimetrii Michal Kenny Rolínek Cílem této přednášky je obohatit vaše znalosti z planimetrie o nové metody, založené na algebraickém přístupu. Nebudeme ovšem sáhodlouze upravovat obrovskévýrazy,jakbysemohlozdát.naopaksiukážemepříklady,vnichžnástrocha

Více

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha. 18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa

Více

USNESENÍ RADY PARDUBICKÉHO KRAJE R/1471/ jednání konané dne

USNESENÍ RADY PARDUBICKÉHO KRAJE R/1471/ jednání konané dne R/1471/10 Informace hejtmana a radních o činnosti Rada Pk projednala předloženou zprávu a 1. b ere na vědomí přednesené informace hejtmana a radních o činnosti od posledního jednání rady v. r. R/1472/10

Více

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky

Více

Cvičení ze statistiky - 4. Filip Děchtěrenko

Cvičení ze statistiky - 4. Filip Děchtěrenko Cvičení ze statistiky - 4 Filip Děchtěrenko Minule bylo.. Dokončili jsme deskriptivní statistiku Tyhle termíny by měly být známé: Korelace Regrese Garbage in, Garbage out Vícenásobná regrese Pravděpodobnost

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Geometrie v rovině 1

Geometrie v rovině 1 OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PEDAGOGICKÁ FAKULTA Geometrie v rovině 1 Distanční text pro učitelství 1. stupně základní školy Renáta Vávrová OSTRAVA 2006 Obsah Úvod 5 1Přímkaajejíčásti 7 Klíčováslova...

Více

ž éď ě ě ď ž Ý š ě ě ě ž Íá č á ž ě ě Í ž č Í ě č é Í Í Ď ž é č Ý á ě áťí ď á ť č é Ť ť Ž ě š ň á éč á é é ě ž č Í á á Ť é č é ď ď č á ě é ď ž é č é č

ž éď ě ě ď ž Ý š ě ě ě ž Íá č á ž ě ě Í ž č Í ě č é Í Í Ď ž é č Ý á ě áťí ď á ť č é Ť ť Ž ě š ň á éč á é é ě ž č Í á á Ť é č é ď ď č á ě é ď ž é č é č ž ž č Ý ť ž ž Ó š á ď č č č ž Ó á ě é ě ž á ě š á ěč ě á ť ž á ď áš Ť ď Ž ď á š é é é á ž ď ď ďč á ž š ď á á é č č é é á ť ž ň ěď á é Ž á ž ď á ě Ť á ž é é é ě ě á žá žď é ě áť é á Ž č č é Ý ď ě é é ě

Více