Matematika I. Název studijního programu. RNDr. Jaroslav Krieg České Budějovice

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice"

Transkript

1 Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1

2 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké škole techické a ekoomické v Českých Budějovicích" s registračím číslem CZ.1.07./2.2.00/ Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky. 1. vydáí ISBN Vysoká škola techická a ekoomická v Českých Budějovicích, 2014 Vydala: Vysoká škola techická a ekoomická v Českých Budějovicích, Okruží 10, České Budějovice Za obsahovou a jazykovou správost odpovídají autoři a garati příslušých předmětů. 2

3 Obsah Začeí Kvatifikátory Logické spojky Možiové symboly Číselé obory Itervaly Kapitola 1 - Vektorové prostory Vektorové prostory Úvod Aritmetický vektorový prostor Příklad Příklad Defiice (aritmetického vektorového prostoru) Pozámka Defiice (vektorového podprostoru) Pozámka Defiice (lieárí kombiace) Pozámka Příklad Defiice (lieárí závislosti a ezávislosti) Pozámka Příklad

4 Věta (lieárí ezávislost podmožiy lieárě ezávislých vektorů) Defiice (lieárího obalu možiy) Pozámka Lemma (vlastosti vektorového podprostoru) Příklad Defiice (možiy geerátorů) Pozámka Lemma (elemetárí úpravy a možiě geerátorů) Pozámka Tvrzeí Příklad Příklad Příklad Pozámka Defiice (báze vektorového prostoru) Příklad Pozámka Věta (Steiitzova věta o výměě) Důsledek Steiitzovy věty (věta o dimezi) Defiice (dimeze vektorového prostoru) Důsledky (Steiitzovy věty) Věta (o jedozačém vyjádřeí souřadic vektoru) Defiice (souřadic vektoru)

5 Příklad Příklad Skalárí souči a ortogoalita vektorů Defiice (vektorového prostoru se skalárím součiem) Defiice (skalárího součiu aritmetických vektorů) Defiice (velikosti vektoru) Věta (vlastosti ulového vektoru, velikost ásobku vektoru) Defiice (kolmosti vektorů) Defiice (ortogoálího doplňku) Příklad Tvrzeí (základí vlastosti ortogoálích doplňků) Příklad Kapitola 2 - Matice Pojem matice Defiice (matice) Příklad Defiice (rovosti matic) Defiice (speciálích typů matic) Příklad Řádkový a sloupcový prostor matice Věta (o dimezi řádkového a sloupcového prostoru matice) Defiice (hodosti matice) Pozámka Tvrzeí (vlastosti trojúhelíkové a schodovité matice)

6 Defiice (elemetárích řádkových úprav matice) Defiice (ekvivaletích matic) Příklad Věta (o hodosti ekvivaletích matic) Pozámka Gaussova elimiačí metoda Příklad Pozámka Příklad Příklad Příklad Příklad Algebraické operace s maticemi Defiice (regulárí a sigulárí matice) Pozámka Příklad Defiice (součtu matic a skalárího ásobku matice) Defiice (součiu matic) Pozámka Příklad Vlastosti operací s maticemi Věta (vektorový prostor matic) Pozámka

7 Věta (vlastosti operací ásobeí a sčítáí matic) Pozámka Věta (další vlastosti operací s maticemi) Defiice (iverzí matice) Pozámka Věta (o existeci a uicitě iverzí matice) Příklad Tvrzeí (vlastosti iverzích matic) Příklad Maticové rovice Příklad Příklad Příklad Příklad Příklad Příklad Kapitola 3 - Řešeí soustav lieárích rovic Soustavy lieárích rovic Defiice (soustavy lieárích rovic) Pozámka Příklad Příklad Homogeí soustavy Defiice (homogeí soustavy)

8 3.2.2 Pozámka Defiice (ulového prostoru matice) Pozámka Věta (vztahy mezi řádkovým a ulovým prostorem matice soustavy A) Pozámka Řešeí homogeích soustav Gaussovou metodou Defiice (ekvivaletích soustav) Věta (o ekvivaletích soustavách) Pozámka Příklad Pozámka Příklad Nehomogeí soustavy Defiice (ehomogeí soustavy) Pozámka Věta (Frobeiova) Věta (o počtu řešeí řešitelé soustavy) Tvrzeí (řešitelost soustav lieárích rovic) Příklad (diskuse řešitelosti soustavy) Příklad (diskuse řešitelosti soustavy) Pozámka Řešeí ehomogeích soustav Gaussovou metodou Příklad

9 3.5.2 Defiice (posuutí vektorového prostoru o vektor) Věta (řešeí ehomogeí soustavy) Důsledek Pozámka Příklad Soustavy s regulárí maticí Tvrzeí (existece a jedozačost řešeí soustavy s regulárí maticí) Příklad Pozámka (Gaussova-Jordaova metoda) Výpočet iverzí matice Příklad Pozámka Formálí postup hledáí iverzí matice pomocí jedotkové matice Příklad Kapitola 4 - Determiaty, Fukce Úvod Determiaty 2. a 3. řádu Defiice (determiatu, algebraického doplňku, subdetermiatu) Pozámka (termiologie a začeí) Pozámka (Laplaceova věta) Pozámka (výpočet determiatu 2. a 3. řádu) Příklad Příklad Věta (determiat traspoovaé matice)

10 4.2.8 Pozámka Úmluva (řady determiatu) Pozámka (Laplaceova věta pro sloupce) Věta (o rozvoji determiatu podle j-tého sloupce Laplaceova věta) Příklad Pozámka (techická) Příklad Řadové úpravy determiatu Příklad Věta (řadové úpravy determiatu) Příklad Příklad (řešeí příkladu 4.3.1) Pozámka Pozámka (determiaty lišící se v jedé řadě) Determiat schodovité a trojúhelíkové matice Věta (determiat schodovité matice) Příklad Pozámka Věta (hodota determiatu regulárí a sigulárí matice) Příklad Věta (determiat, hodost matice, existece iverzí matice) Důsledek (další pravidla pro počítáí determiatů) Věta (o ásobeí determiatů)

11 4.4.9 Důsledek Determiaty a iverzí matice Defiice (adjugovaé matice) Pozámka Věta (výpočet iverzí matice) Příklad Cramerovo pravidlo Věta (Cramerovo pravidlo) Příklad Pozámka Použitá a doporučeá literatura

12 Začeí Kvatifikátory Kvatifikátory jsou symboly používaé v predikátové logice a matematice. Rozlišují se dva základí druhy kvatifikátorů obecý (též uiverzálí, velký) kvatifikátor (ozačujeme ) s výzamem pro každý a existečí (též malý) kvatifikátor (ozačujeme ) s výzamem existuje. Např. ( x R)( x 0) (epravdivý výrok) a ( x R)( x 0) výrok). <, tj. pro každé reálé číslo x platí, že je meší ež ula <, tj. existuje reálé číslo, které je záporé (pravdivý Logické spojky Nechť p a q jsou výroky. - kojukce, tj. p q zameá, že platí p a současě platí q. - disjukce, tj. p q zameá, že platí p ebo platí q. - implikace, tj. p q zameá, že z p plye q. - ekvivalece, tj. p q zameá, že p platí právě tehdy, když platí q. Možiové symboly x M - objekt x je prvkem možiy M x M - objekt x eí prvkem možiy M { x } M x x = 1, 2, K, - prvková možia zadaá výčtem svých prvků x1 x2 { ; ϕ ( )},, K, x M = x A x - možia těch prvků x z možiy A, které mají charakteristickou vlastost ϕ, apř. M { x R x } ( = ; 1 =,1. Možia zadaá charakteristickou vlastostí. 12

13 - prázdá možia = {(, );, } - kartézský souči moži A a B, obecě pro N A B a b a A b B {(,,, );,,, } A A K A = a a K a a A a A K a A A= B - rovost moži A B - možia A je podmožiou možiy B A B - možia A je vlastí podmožiou možiy B, tj. A B a A B, resp. B\ A A B - sjedoceí moži A a B A B - průik moži A a B A\ B - rozdíl moži A, B, tj. možia prvků x A a x B Číselé obory N - možia přirozeých čísel, tj. čísel 1,2,3,K (celá kladá čísla). N - možia přirozeých čísel a ula, tj. čísel 0 0,1,2,3,K (ula a celá kladá čísla). Z - možia celých čísel, tj. čísel K, 3, 2, 1,0,1,2,3, K Q - možia racioálích čísel, tj. čísel, která lze zapsat ve tvaru zlomku p q, kde p, q Z a q 0 R - možia reálých čísel. Graficky jsou vyjádřea body a číselé ose R + - možia kladých reálých čísel R možia ezáporých reálých čísel R \Q - možia iracioálích čísel, apř. π, e, 2, 3 R\ Q * R R {, } = - možia zobecěých reálých čísel, resp. rozšířeá reálá osa 13

14 Pro uspořádáí možiy * R platí ( x R) x,speciálě < < + < + ± = + Pro algebraické operace sčítáí a ásobeí defiovaé a možiě R a rozšířeé a možiu * R platí ( 1) ( ) ( 2) ( ) x R x + = + + x = + x R x = + x = + ( 3) ( x R ) x ( ) ( ) ± = ± x = ± ( 4) ( x R ) x ( ) ( ) ± = ± x = m x 5 = 0 ± ( ) ( x R) Nedefiovaé výrazy, tzv. eurčité výrazy ± a ± ±, +, 0 ( ± ), ( ± ) 0,, ( a R ), 1, 0, ( ± ) 0, 0 ± 0 * 0 C - možia komplexích čísel, apř. 2 3i, kde i C je imagiárí jedotka ( i 2 = 1) 14

15 Itervaly Nechť a, b R. ( ab, ) - otevřeý iterval, ( ab, ) = { x R; a < x < b} ab, - uzavřeý iterval, ab, = { x R; a x b} a, b ) - polouzavřeý iterval, a, b) = { x Ra x < b} (, a b - polouzavřeý iterval, ( a, b = { x R; a < x b} ( a, ) = { x R; a < x} ) { x R a x} a, = ; (, a) = { x R; x < a} (, a = { x R; x a} Pokud používáme a,b jako desetiá čísla, používáme zápis itervalu se středíkem, aby edošlo k záměě s desetiou čárkou, tj. místo ( ab, ) píšeme ( ; ) ab. 15

16 Kapitola 1 - Vektorové prostory KLÍČOVÉ POJMY Aritmetický vektorový prostor, vektorový podprostor, lieárí kombiace vektorů, lieárí závislost a ezávislost, možia geerátorů, Steiitzovy věty, souřadice vektoru, skalárí souči vektorů, velikost vektoru, ortogoalita vektorů CÍLE KAPITOLY Pochopeí vektorových prostorů, porozuměí sčítáí a odčítáí vektorů, skalárímu součiu vektorů ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodi VÝKLAD Lieárí algebra je odvětví matematiky, které se zabývá mimo jié vektory, vektorovými prostory, soustavami lieárích rovic a lieárími trasformacemi (tzv. homomorfismy) a vektorových prostorech. Vektorové prostory jsou totiž důležitou součástí moderí matematiky. Aplikovaá lieárí algebra má široké využití apříklad v přírodích, ekoomických a sociálích vědách, ale také v logistice a v ejrůzějších techických odvětvích. Lieárí algebra se proto des předáší prakticky ve všech kurzech matematiky a vysokých školách. 16

17 Historicky jako prví část lieárí algebry vzikla teorie řešeí soustav lieárích rovic a v souvislosti s jejich řešeím vzikl v roce 1693 i pojem determiatu. Cramerovo pravidlo je z roku 1750 a Gaussův elimiačí algoritmus pochází z roku Pojem matice se objevuje při tomto studiu mohem později a to poprvé v roce 1857 v pracích Arthura Cayleyho. Na základě pojmu hodost matice z roku 1877 pak bylo možo jedoduše vyjádřit podmíky řešitelosti soustav lieárích rovic. Studiem soustav lieárích rovic a determiatů se zabývali matematici v století. Cetrálími pojmy studia moderí lieárí algebry ve 20. století se staly vektorové prostory, homomorfismy vektorových prostorů, lieárí, bilieárí a kvadratické formy a obecě multilieárí formy a vektorových prostorech. Lieárí algebra má svoje počátky ve studiu vektorů v kartézském dvourozměrém a trojrozměrém prostoru, základy pro toto studium položil Reé Descartes zvaý Cartesius ( ), který zavedl pravoúhlou tzv. kartézskou soustavu souřadic, a ztotožil tak geometrické pojmy jako bod, přímka, rovia apod. s možiami řešeí soustav lieárích rovic a položil tak základy aalytické geometrie, která umožňuje algebraicky (rovicemi) popsat přímky, roviy a jejich podmožiy a jejich geometrické vztahy řešit algebraickými prostředky. Z geometrického vektoru a jeho umístěí jako orietovaé úsečky charakterizovaé svojí velikostí, která je dáa délkou úsečky a také jejím směrem tak vzikl v aalytické geometrii aritmetický vektor, resp. jeho umístěí charakterizovaé jeho souřadicemi v kartézské soustavě souřadic. Obecě jsou ale vektory jakékoliv objekty, které lze dobře sčítat a ásobit číslem (viz dále defiice vektorového prostoru). Vektory a jejich geometrická ebo algebraická představa slouží dobře ve fyzice jako reprezetace tzv. vektorových veliči (rychlost, síla, itezita pole, magetická idukce, ). Vektorem ale může být také polyom, fukce ebo posloupost. Z těchto vektorů můžeme avíc vybrat vektory s ějakou vlastostí, která se zachová při sčítáí i ásobeí reálým (komplexím) číslem (u fukcí spojitost ebo diferecovatelost, u polyomů ejvyšší stupeň, u posloupostí omezeost, ) 17

18 Podstatou lieárí algebry (obecě všech matematických teorií) je, že všecha dokázaá tvrzeí apříklad o vektorových prostorech platí pro všechy vektorové prostory, ezávisle a tom jak defiujeme sčítáí vektorů ebo jejich ásobeí číslem. Stačí, že příslušé objekty studia (azývaé jako vektory) splňují podmíky defiice vektorového prostoru. Obecá metoda, kdy je aleze způsob pohledu a ějaký problém z hlediska lieárí algebry a te je pak vyjádře pomocí matematického aparátu lieárí algebry a je vyřeše apříklad pomocí matic, tak to je jeda z velmi často používaých metod práce v matematice. 1.1 Vektorové prostory Úvod Ve výuce geometrie a fyziky a středí škole jste pozali pojem vektoru a jeho grafické vyjádřeí jako orietovaé úsečky v roviě či prostoru. Tyto tzv. geometrické vektory jsme se aučili graficky sčítat resp. odčítat a ásobit libovolým reálým číslem. Po zavedeí pravoúhlých kartézských souřadic jsme těmto geometrickým vektorům mohli přiřadit souřadice a vytvořit tzv. aritmetické vektory. Pomocí souřadic těchto vektorů je pak možo zavést jejich součet a ásobek reálým číslem jako ové operace a možiě aritmetických vektorů. V dalším textu, ebude-li řečeo jiak, se zaměříme právě a možiy aritmetických vektorů, eboť mají jisté výsadí postaveí mezi ostatími vektorovými prostory. Všechy koečě dimezioálí vektorové prostory lze reprezetovat právě aritmetickým vektorovým prostorem příslušé dimeze Aritmetický vektorový prostor Aritmetické vektory budeme chápat jako uspořádaé -tice reálých čísel a zapisovat a = ( a, K, a ) R, kde 1 R R R = K R. Možia R je možiou uspořádaých -tic krát reálých čísel. 18

19 Vektory v tisku obvykle začíme tučým písmem a, b, K, x, y a v psaém textu pak r r r r a, b, K, x, y. Čísla,, a1 K a R ve vektoru a = ( a1, K, a) R se azývají souřadice (složky) vektoru. Vektor o = ( 0,0,,0) Prvky (uspořádaé -tice) z K je tzv. ulový vektor. ebo jako -rozměré vektory. Rovost vektorů a ( a,, a ), b (,, ) R si můžeme představovat jako body v -rozměrém prostoru 1 K b1 K b R defiujeme takto: = = ( { 1,, }) ( 1,, ) ( 1,, ) Součet vektorů a ( a,, a ), b (,, ) Sčítáí vektorů je zobrazeí i K a Ka = b K b a = b. = = i i 1 K b1 K b R defiujeme jako ( a b a b ) a + b =,, K +. R R R Příklad Vypočtěme součet vektorů a = ( 1,2,3) a = ( 0, 2,13) Řešeí b. ( 1,2,3) ( 0, 2,13) ( 1 0,2 ( 2 ),3 13) ( 1,0,16) a + b = + = =. Skalárí c-ásobek vektoru ( ),, a = a1 K a R pro c R defiujeme vztahem ( ) ca = ca1, ca2, K, ca. Skalárí c-ásobek vektoru je zobrazeí R R R. Opačým vektorem k vektoru ( ),, a = a1 K a R azveme vektor ( a a ) ( a a ) a = 1, K, =, K,

20 Rozdílem vektorů a ( a,, a ) R, b (,, ) vektoru opačého k vektoru b tedy = = 1 K b1 K b R rozumíme součet vektoru a a ( ) ( a, a ) ( b,, b ) ( a b,, a b ) a b = a + b = K + K = K Příklad Nechť a = ( 1,7) a = ( 2, 4) Řešeí b. Vypočtěme 2a 3b. ( ) ( ) ( ) ( ) ( ) 2a 3b = 2 1,7 3 2,4 = 2,14 + 6, 12 = 8, Defiice (aritmetického vektorového prostoru) Možia R s operacemi sčítáí vektorů a skalárího ásobku vektoru se azývá -rozměrý aritmetický vektorový prostor, splňují-li tyto operace ásledující vlastosti ( u v R ) ( u v w R ) u + v = v + u ( u + v) + w = u + ( v + w) ( o R )( u R ) ( u R )( ( u) R ) u + o = u u + ( u) = o u u = o ( o R )( u R ) u o ( u R ) u u ( st R)( u R ) s( t u) = ( st ) u 1), komutativita sčítáí vektorů 2),, asociativita sčítáí vektorů 3) existece ulového vektoru 4), tj. existece opačých vektorů 5) 0 = ásobek vektoru 0 R 6) 1 = ásobek vektoru 1 R 7), "asociativita" ( )( u ) ( ) 8) st, R R s + t u = s u + t u "distributivita" ( )( ) ( ) 9) s R u, v R s u + v = s u + s v "distributivita" 20

21 1.1.6 Pozámka a) V této defiici se vyskytují pod stejým ozačeím dvě růzé operace sčítáí vektorů a sčítáí skalárů (reálých čísel) a dvě růzé operace ásobeí vektoru skalárem a ásobeí skalárů. Vzhledem k tomu, že ehrozí jejich záměa, eí uté je odlišě začit. b) Vektorový prostor R s operacemi sčítáí a skalárí ásobeí vektorů budeme též ozačovat V. Speciálě pro = 2 je V R 2 2 = aritmetický vektorový prostor dvoučleých aritmetických vektorů, a které můžeme též pohlížet jako a geometrické vektory v eukleidovské roviě a aalogicky pro = 3 je V = R 3 3 aritmetický vektorový prostor trojčleých aritmetických vektorů, a které můžeme též pohlížet jako a geometrické vektory v eukleidovském třírozměrém prostoru. c) Pokud v defiici vezmeme místo možiy R obecou eprázdou možiu V dostaeme obecou defiici vektorového prostoru. Této obecé defiici pak kromě možiy aritmetických vektorů s výše uvedeými operacemi vyhovuje i možia geometrických vektorů s obvyklými operacemi sčítáí vektorů a ásobeí vektorů reálým číslem (skalárem), ale také apříklad: Možia všech reálých fukcí defiovaých a libovolé eprázdé možiě s obvyklým sčítáím fukcí ( f + g)( x) = f ( x) + g( x) a ásobeí fukce reálým číslem ( rf )( x) = rf ( x). Speciálě možia všech reálých posloupostí s obvyklou operací sčítáí posloupostí { a } { b } { a b } { } { ra } r a =. + = + a ásobeí poslouposti reálým číslem Možia všech řešeí soustavy homogeích lieárích rovic, viz dále. Možia všech matic stejého typu s obvyklými operacemi sčítáí matic a ásobeí matice reálým číslem, viz dále. 21

22 Speciálě možia všech reálých (komplexích) čísel s obvyklými operacemi a těchto možiách Defiice (vektorového podprostoru) Možia vektorů W V je vektorový podprostor (vektorového) prostoru V, pokud W je eprázdá možia a pro každé dva vektory u, v W a libovolé skaláry s, t R platí su + tv W. Jiými slovy, W je uzavřeá a lieárí kombiace vektorů z W. Skutečost, že W je vektorový podprostor prostoru R budeme ozačovat W R Pozámka a) Uvedeá defiice je ekvivaletí s tvrzeím, že (, ) ( )( ) W V a b W a + b W r R a W ra W, tj. eprázdá podmožia W možiy V je podprostorem vektorového prostoru V právě tehdy, když je uzavřeá vzhledem k operaci sčítáí vektorů a ásobeí vektoru reálým číslem. b) Předpoklad W V implikuje, že W je sám také vektorovým prostorem, eboť splňuje defiici 1.1.5, speciálě V V. c) Každý vektorový podprostor W V obsahuje ulový vektor o vektorového W V v W V v v = o o W V. prostoru V, eboť ( ) d) Možia { o } obsahující pouze ulový vektor je vektorovým podprostorem libovolého vektorového prostoru V a azývá se triviálí vektorový prostor. Je to jediý vektorový prostor s koečým počtem prvků, totiž s jedím prvkem. Obsahujeli totiž vektorový prostor alespoň jede eulový vektor, pak musí s ím obsahovat všechy jeho reálé ásobky a těch je ekoečě moho. 22

23 1.1.9 Defiice (lieárí kombiace) Nechť je dá vektorový prostor V. Vektor u V je lieárí kombiací vektorů u,, 1 K um V, právě tehdy, když existují skaláry s,, 1 K sm R takové, že m = s sm m = si i i= 1 u u K u u. Čísla s,, 1 K s se azývají koeficiety lieárí kombiace. Lieárí kombiace vektorů, ve m které jsou všechy koeficiety rovy ule, se azývá triviálí lieárí kombiace Pozámka a) Nulový vektor o je triviálí lieárí kombiací libovolé skupiy vektorů, eboť ( V ) a, K, a o = 0 a + K + 0 a. 1 m 1 m b) Lieárí kombiace lieárích kombiací vektorů je opět lieárí kombiace vektorů Příklad Zjistěme, je-li vektor u = ( 1,2,3) lieárí kombiací vektorů a = ( 1,0, 1) a = ( 2,0, 1) Řešeí Podle defiice lieárí kombiace vektorů hledáme s1, s2 R tak, aby platilo b. u = s a + s b. 1 2 Do této rovice dosadíme souřadice daých vektorů a obdržíme ( 1,2,3) ( s 2 s,0s 0 s, s s ) = Z defiice rovosti aritmetických vektorů získáme ásledující soustavu rovic 1 = 1s + 2 s, = 0s + 0 s, = 1s 1 s

24 Druhá rovice jasě ukazuje, že eexistuje žádé řešeí této soustavy rovic, a proto vektor u eí lieárí kombiací vektorů a a b Defiice (lieárí závislosti a ezávislosti) Vektory u,, 1 K um V, kde V je vektorový prostor, se azývají lieárě závislé, právě když existuje jejich etriviálí lieárí kombiace, která je rova ulovému vektoru, tj. existují reálá čísla s,, 1 K s z ichž alespoň jedo je růzé od uly taková, že m s1u1 + K + smum = o. V opačém případě se vektory u,, 1 K um V azývají lieárě ezávislé. Mluvíme ve stejém slova smyslu o lieárí závislosti, resp. ezávislosti možiy vektorů { u u },, 1 K m Pozámka V celé této pozámce předpokládáme, že V je vektorový prostor. a) Vektory u,, 1 K um V jsou podle defiice lieárě závislé, jestliže existuje jejich etriviálí lieárí kombiace, která je rova ulovému vektoru. Naopak u,, 1 K um V jsou lieárě ezávislé, jestliže každá jejich etriviálí lieárí kombiace je růzá od ulového vektoru, tj. když ulovému vektoru je rova pouze jejich triviálí lieárí kombiace. b) Vektory u,, 1 K um V jsou lieárě závislé, pokud je ěkterý z ich lieárí kombiací ostatích vektorů, eboť z u = s1u1 + K + s 1u 1 + s + 1u K + s u i i i i i m m plye, že o = s1u1 + K + si 1ui 1 1ui + si+ 1ui+ 1 + K + smu a tedy existuje jejich m etriviálí lieárí kombiace, která je rova ulovému vektoru. c) Speciálě pro jede vektor ( 1) lieárě závislý právě tehdy, když je ulový. d) Speciálě pro dva vektory ( 2) m = dostáváme s 1u1 = o, takže jede vektor je m = dostáváme s1u1 + s2u2 = o, takže dva vektory jsou lieárě závislé právě tehdy, když jede z ich je reálým ásobkem druhého. 24

25 e) Vektory u,, 1 K um V jsou lieárě ezávislé, když platí ( { }) 1 u 1 u o 1 s R; i 1, K, m s + K+ s = s = K = s = 0. i m m m f) Jedotkové vektory (jejich velikost je jeda) z V jsou lieárě ezávislé. e e M e 1 2 = = = ( K ) ( K ) 1,0,0,,0,0, 0,1,0,,0,0, ( K ) 0,0,0,,0,1, g) Každá skupia vektorů obsahující ulový vektor je lieárě závislá. h) Dva geometrické vektory z rovoběžé. R (resp. R ) jsou lieárě závislé, právě když jsou 2 3 i) Tři geometrické vektory z j) Každé tři vektory z 3 R jsou lieárě závislé, právě když leží ve stejé roviě. 2 R jsou lieárě závislé Příklad Zjistěme, zda vektory z aritmetického vektorového prostoru dvoučleých vektorů jsou lieárě závislé ebo ezávislé. u = 1,2, u = 2,4 V, a) ( ) ( ) u = 1,2, u = 2,4 V. b) ( ) ( )

26 Řešeí Ve shodě s defiicí hledáme s1, s2 R, pro která platí s1u1 + s2u2 = o. Do rovice dosadíme souřadice zadaých vektorů a řešíme soustavu lieárích rovic. a) s + 2s = 0, 1 2 2s + 4s = Tato soustava má jedié řešeí s1 = s2 = 0 a tedy ulovému vektoru o je rova pouze triviálí lieárí kombiace vektorů u1, u. Vektory 2 u1, u jsou tudíž lieárě ezávislé. 2 b) s 2s = 0, 1 2 2s + 4s = Tato soustava má ekoečě moho řešeí tvaru s1 = 2 s2, s2 R a tedy ulovému vektoru o je rovo dokoce ekoečě moho etriviálích lieárích kombiací vektorů u1, u. 2 Pro ilustraci uveďme apříklad volbu s1 = 2, s2 = 1. Vektory u1, u jsou tudíž lieárě 2 závislé. O tomto výsledku je možé lehce rozhodout podle pozámky b), resp. d), eboť u2 = 2u1 2u1 u2 = o Věta (lieárí ezávislost podmožiy lieárě ezávislých vektorů) Nechť { u u },, 1 K je možia lieárě ezávislých vektorů z vektorového prostoru V a 2. Pak také { u K u } 1,, k, kde 1 k je možia lieárě ezávislých vektorů z vektorového prostoru V. Jiak řečeo, každá podmožia lieárě ezávislých vektorů je též lieárě ezávislá možia vektorů. 26

27 Defiice (lieárího obalu možiy) Lieárí obal [ M ] eprázdé možiy vektorů možia všech lieárích kombiací vektorů z M tj. M V, kde V je vektorový prostor, je [ M] = { u V; u = su + + s u, u,, u M, s,, s R} K K K. 1 1 m m 1 m 1 m Místo { u u K u } budeme psát krátce [ u u u ],,, m 1 2,, K, m Pozámka a) (, ) [ ] M V M M V, kde V je vektorový prostor.,, K, m je ejmeší (ve smyslu uspořádáí relací ) vektorový prostor b) [ u u u ] 1 2 obsahující vektory u1, u2, K, um M. c) Vektorový prostor [ ] = { s ; s R} = { } d) Je-li u o eulový vektor v o o o se azývá triviálí vektorový prostor. 2 R (resp. 3 R ), je [ ] = { s ; } přímka procházející počátkem, se směrovým vektorem u. e) Jsou-li u, v dva růzoběžé vektory v u u s R, tj. geometricky je [ u ] 3 R, je [, ] = { s + t ; st, R} uv u v, tudíž [, ] rovia procházející počátkem určeá vektory u, v, tj. jiak řečeo vektor z uv je 3 R je lieárí kombiací vektorů u a v právě když leží v roviě procházející počátkem, která je určea těmito dvěma vektory. f) Jsou-li u, v dva rovoběžé vektory v, což je přímka procházející počátkem. g) Jsou-li u, v dva růzoběžé vektory v kombiací a tudíž [ ] 2 h) Lieárím obalem přímky v i) Lieárím obalem přímky v u, v = R je celá rovia. tuto přímku a prochází počátkem. 3 R, pak v je ásobkem u, a proto [ uv, ] = [ u] 2 R, je každý vektor v 2 R, která eprochází počátkem, je celá rovia 2 R jejich lieárí 2 R. 3 R, která eprochází počátkem je rovia, která obsahuje 27

28 Lemma (vlastosti vektorového podprostoru) Následující vlastosti eprázdé podmožiy ekvivaletí. a) W V. b) W je uzavřeá a libovolé lieárí kombiace svých prvků. c) [ W ] = W. W V, kde V je vektorový prostor, jsou Příklad a) Triviálí vektorový prostor [ o] = { o } je podprostorem každého vektorového prostoru. N R R. b) ( ) c) Nechť 5 V R. 5 V R je možia těch vektorů, jejichž 2. a 4. souřadice jsou ulové, pak d) Možia ( ) prostoru {,2,,3, 5 ;,, } V = a b a c b R a bc R je vektorový podprostor vektorového 5 R. e) Podprostory 2 R. Nechť 2 M R, pak pokud M obsahuje pouze počátek (tj. ulový vektor), pak [ M ] = { o }, pokud M obsahuje jede eulový vektor, pak [ M ] = [ u ], což je geometricky přímka procházející počátkem, pokud M obsahuje dva růzoběžé vektory, V je tedy podprostorem procházející počátkem souřadic a ebo f) Podprostory uv, pak [ ] [ ] 2 M = u, v = R, 2 R právě tehdy, když je to buď { o } ebo přímka 2 R. 3 R. Aalogicky jako v předešlém bodě e) je V podprostorem 3 R tehdy a je tehdy, když je to buď { o } ebo přímka procházející počátkem souřadic ebo rovia procházející počátkem souřadic a ebo 3 R. 28

29 Defiice (možiy geerátorů) Říkáme, že koečá podmožia M vektorů z vektorového prostoru V, (tj. M V ) geeruje podprostor W vektorového prostoru V (resp. je možiou geerátorů W, kde W V ) právě tehdy, když je W jejím lieárím obalem, tj. [ ] M = W Pozámka a) Možia vektorů { u u } tehdy, když platí V = [ u u ],, 1 K k je možiou geerátorů vektorového prostoru V právě,, 1 K k. b) Triviálí vektorový prostor { o } je geerová ulovým vektorem o, tj. [ ] = { } o o Lemma (elemetárí úpravy a možiě geerátorů) Nechť { u,, 1 K uk} je možia vektorů z vektorového prostoru V a { v,, 1 v j} vektorů, která vzikla z možiy vektorů { u u },, 1 K k ásledujícími postupy a) záměou pořadí vektorů, b) vyásobeím libovolého vektoru eulovým reálým číslem, c) přičteím k libovolému vektoru lieárí kombiace ostatích vektorů, d) vyecháím vektoru, který je lieárí kombiací ostatích vektorů, e) přidáím vektoru, který je lieárí kombiací ostatích vektorů, u1, K, uk = v1, K, v j. pak platí [ ] Jestliže avíc je možia vektorů { u u } pak je možia vektorů { v,, 1 vj} K je možia,, 1 K k možiou geerátorů vektorového prostoru V, K rověž možiou geerátorů vektorového prostoru V. 29

30 Pozámka a) Lemma přiáší sezam tzv. elemetárích úprav, pomocí ichž můžeme z jedé možiy geerátorů získat jiou možiu geerátorů daého vektorového prostoru. b) Zároveň z tohoto lemmatu plye, že etriviálí vektorový prostor má ekoečě moho moži geerátorů. Bezprostředím důsledkem předešlého lemmatu je ásledující tvrzeí Tvrzeí Každá koečá možia vektorů M má lieárě ezávislou podmožiu M se stejým lieárím obalem, tj. M = [ M] Příklad Určeme, jsou-li vektory = ( 1,2 ), = ( 1,1) prostoru V 2. Řešeí Vektory a, b geerují vektorový prostor V 2, pokud a b geerátory aritmetického vektorového ( ( u, u ) V )( x, x R) u = u = x a + x b Dosadíme do předchozího vztahu souřadice a získáme vztah ( u, u ) = x ( 1,2) + x ( 1,1) a dostaeme soustavu dvou lieárích rovic o dvou ezámých x1, x 2 u = x x u = 2 x + x , 30

31 Sečteme-li obě rovice, obdržíme Dosazeím za x 1 do prví rovice získáme Takže každý vektor (, ) x x1 = u1 + u2. = 2u u u = u u V lze zapsat ve tvaru ( ) ( 2 ) u = x a + x b = u + u a + u u b, a proto je vektorový prostor V 2 geerová vektory a, b a ebo též řekeme, že možia vektorů { ab, } je možiou geerátorů vektorového prostoru V 2 a ebo také píšeme [, ] = V2 ab Příklad Ukažme, že vektory = ( 1,0,0 ), = ( 0,1,0 ), = ( 0,0,1) e e e jsou možiou geerátorů aritmetického vektorového prostoru V 3. Řešeí Je zřejmé, že každý vektor (,, ) e1, e2, e 3 ve tvaru u = u1e1 + u2e2 + u3e 3. u = u u u V lze zapsat jako lieárí kombiaci vektorů Příklad Dokažme, že vektory = ( 1,2 ), = ( 1,1 ), = ( 0,1) vektorového prostoru V 2. Řešeí a b c jsou možiou geerátorů Po dosazeí souřadic vektorů do defiičího vztahu má získaá soustava rovic ekoečě moho řešeí a apříklad pro volbu 3 0 x = platí ( u u ) ( u u ) u = + a + 2 b + 0c Pozameejme, že to ovšem eí lieárě ezávislá možia geerátorů prostoru V 2. 31

32 Pozámka a) Z předešlých příkladů vidíme, že možia geerátorů vektorového prostoru V 2 eí jediá, ai jedozačě určeá počtem svých čleů. A právě o těchto výsledcích hovoří obecě lemma b) Jsou-li vektory v koečé možiě všech geerátorů vektorového prostoru V lieárě závislé, pak utě alespoň jede z těchto vektorů je lieárí kombiací ostatích vektorů a takový vektor můžeme podle lemmatu z možiy geerátorů vyjmout, protože ostatí zbývající vektory geerují tetýž vektorový prostor V. Tuto úvahu můžeme opakovat a provádět ji tak dlouho, až po koečém počtu kroků dostaeme koečou možiu geerátorů, které již budou lieárě ezávislé (viz tvrzeí ) Defiice (báze vektorového prostoru) Podmožia B etriviálího vektorového prostoru V se azývá báze vektorového prostoru V právě tehdy, když je B možia lieárě ezávislých vektorů, které geerují vektorový prostor V Příklad e = 1,0,0, e = 0,1,0, e = 0,0,1 V tvoří bázi aritmetického Dokažme, že vektory ( ) ( ) ( ) vektorového prostoru V 3. Řešeí V příkladu jsme ukázali, že vektory e1, e2, e 3 V3 jsou možiou geerátorů vektorového prostoru V 3. 32

33 Rovice s1e1 + s2e2 + s3e3 = o vede a soustavu rovic která má jedié řešeí ( s s s ) s s s = 0, = 0, = 0, = = = a vektory e1, e2, e 3 V3 jsou tudíž lieárě ezávislé. Podle defiice tvoří bázi vektorového prostoru V Pozámka Příklad lze aalogicky zobecit a vektory e1, e2, K, e V z pozámky f) a tedy tyto vektory tvoří bázi V. Tato báze se azývá kaoická báze Věta (Steiitzova věta o výměě) Nechť V je vektorový prostor, echť vektory v,, 1 K vs geerují podprostor W V a dále w,, 1 K wr jsou libovolé lieárě ezávislé vektory z W. Pak platí a) r s, tj. počet lieárě ezávislých vektorů z W je ejvýše rove počtu jeho geerátorů, b) při vhodém přečíslováí vektorů v,, 1 K vs [ v,, v ] [ w,, w, v,, v ] W = 1 s = 1 r r+ 1 s K K K, tj. v systému geerátorů v,, 1 K vs prostoru W lze r vhodých vektorů vyměit za vektory w,, 1 K wr. Tato věta má pro praktické výpočty velmi důležité důsledky. je 33

34 Důsledek Steiitzovy věty (věta o dimezi) Každé dvě báze libovolého podprostoru vektorového prostoru V mají stejý počet vektorů. Číslo udávající počet vektorů v libovolé bázi je podle důsledku Steiitzovy věty určeo jedozačě a charakterizuje daý vektorový prostor. Tato skutečost ás opravňuje k ásledující defiici Defiice (dimeze vektorového prostoru) Počet vektorů v libovolé bázi vektorového prostoru V se azývá dimeze vektorového prostoru V a začí se dim V Důsledky (Steiitzovy věty) Nechť V je podprostor libovolého koečě geerovaého vektorového prostoru, speciálě =, pak platí V R a) Každá lieárě ezávislá podmožia možiy V se dá rozšířit a bázi V. b) Každá možia, která geeruje V, obsahuje bázi V. c) Položme dim V = m. Pak m. d) Každá podmožia možiy V, která má více ež m prvků, je lieárě závislá. e) Každá lieárě ezávislá podmožia možiy V, která má m prvků, je bází V. f) dim R =. 34

35 Věta (o jedozačém vyjádřeí souřadic vektoru) Nechť { u u },, 1 K k je možia geerátorů vektorového prostoru V (tj. každý vektor v V se dá vyjádřit ve tvaru v = s1u1 + K + skuk ). Pak vektory u,, 1 K uk tvoří bázi vektorového prostoru V právě tehdy, když koeficiety s,, 1 K sk R jsou určey jedozačě. Tato věta ás opravňuje k ásledující defiici Defiice (souřadic vektoru) Nechť B = { u u },, 1 K k je báze vektorového prostoru V a v = s1u1 + K + skuk V. Jedozačě určeé koeficiety s,, 1 K sk R této lieárí kombiace se azývají souřadice vektoru { } = ( s s ) v V vzhledem k bázi B = { u,, 1 K uk}. Tuto skutečost ozačujeme v,, 1 K k. Pokud je B kaoická báze (viz pozámka ), pak píšeme krátce B ( s s ) v =,, 1 K k Příklad Určeme souřadice vektoru u = ( 0,1,4) V3 vzhledem k bázi {( 1,2,3 ), ( 2,1,2 ), ( 3,2,1) } Řešeí Vektory ( 1,2,3 ), ( 2,1,2 ), ( 3,2,1 ) skutečě tvoří bázi prostoru B =. 3 3 = (ověřte samostatě). V R Nyí vyjádříme vektor u = ( 0,1,4) jako lieárí kombiaci vektorů ( ) ( ) ( ) tj. ( 0,1,4) x ( 1,2,3) x ( 2,1,2) x ( 3,2,1) ,2,3, 2,1,2, 3,2,1, = + +. Tato vektorová rovice vede a řešeí soustavy lieárích rovic x + 2x + 3x = 0, x + x + 2x = 1, x + 2x + x =

36 Tato soustava má právě jedo řešeí x1 = 1, x2 = 1, x3 = 1. Toto jsou zároveň souřadice vektoru { u } ( 1,1, 1) vzhledem k bázi {( 1,2,3 ), ( 2,1,2 ), ( 3,2,1) } B = Připomeňme, že zápis = ( 0,1,4) bázi = ( 1,0,0 ), = ( 0,1,0 ), = ( 0,0,1) 3 B = prostoru V = R. u vyjadřuje souřadice vektoru u vzhledem ke kaoické { } e e e Příklad a) Každá přímka v směrový vektor. b) Každá rovia v 2 R ebo v 3 R, která prochází počátkem, má dimezi 1. Bází je její 3 R, která prochází počátkem, má dimezi 2. Bází je dvojice vektorů, které figurují v její parametrické rovici. 1.2 Skalárí souči a ortogoalita vektorů Zatím jsme si řekli jak ve vektorových prostorech sčítat ebo odčítat vektory, jak je ásobit skalárem (tj. prodlužovat, zkracovat ebo měit jejich orietaci). Díky lieárím kombiacím umíme zjišťovat jejich vzájemou vazbu, resp. vzájemou polohu. Abychom však mohli určovat velikosti vektorů a úhly mezi imi, potřebujeme zavést tzv. skalárí souči. V ásledující defiici uvedeme základí vlastosti skalárího součiu defiovaého a vektorovém prostoru. 36

37 1.2.1 Defiice (vektorového prostoru se skalárím součiem) Vektorový prostor V R se azývá vektorový prostor se skalárím součiem právě tehdy, když je dáo zobrazeí V V R reálé číslo u v tak, že platí ( ) a) ( V ) 0 ( = 0 = ) u u u u u u o, b) (, V ) u v u v = v u, c) (,, V ) ( ) u v w u v + w = u v + u w, d) (, V )( a R)( a ) = a( ) u v u v v u. 2, které každé dvojici vektorů (, ) V u v přiřazuje Při daých u, v V azýváme reálé číslo součiem vektorů ua v. u v R (též krátce píšeme uv R) skalárím Defiice (skalárího součiu aritmetických vektorů) Skalárí souči vektorů x (,, ), y (,, ) = x x = y y R 1 K 1 K je reálé číslo = = i= 1 x y x y K x y x y. i i Defiice (velikosti vektoru) Nechť V je vektorový prostor se skalárím součiem a u je libovolý vektor z V, pak číslo u u azýváme velikostí vektoru u (ebo též ormou vektoru u) a začíme jí symbolem,, u = u1 K u R je u. Speciálě pro ( ) u = u + K + u

38 1.2.4 Věta (vlastosti ulového vektoru, velikost ásobku vektoru) Nechť V je vektorový prostor se skalárím součiem, pak platí a) ( V ) = 0 v v o, b) ( V ) 0 v v = v = o, v V a R av = a v. c) ( )( ) Defiice (kolmosti vektorů) Nechť V je vektorový prostor se skalárím součiem. Vektory u, v V se azývají kolmé (též ortogoálí) právě tehdy, když jejich skalárí souči je rove ule, tj. u v = 0. Speciálě pro V = R říkáme, že vektory x, y R jsou a sebe kolmé (ortogoálí) a píšeme x y, pokud platí x y = Defiice (ortogoálího doplňku) Nechť W je vektorový prostor se skalárím součiem a V jeho podprostor. Možiu všech těch vektorů z W, které jsou ortogoálí (kolmé) ke všem vektorům z V, azveme ortogoálí doplěk podprostoru V v prostoru W a začíme ho V. Speciálě ortogoálí doplěk V vektorového podprostoru V vektorového prostorur je možia všech vektorů z R, které jsou kolmé ke všem vektorům z V, tj. { ;( ) } V = v R u V v u. 38

39 1.2.7 Příklad 3 a) Je-li = ( abc,, ) R eulový vektor, pak { } ( ) to tedy rovia o rovici ax + by + cz = 0. Je-li X = s, kde s R, tj. V = [ ], je V { } si, že vektor ( ) 3 { x, y, z R 3 ; ax by cz 0 } = + + =. Je 3 V R přímka s parametrickou rovicí =, tedy rovia ax + by + cz = 0. Všiměme = abc,, R je tzv. ormálový vektor roviy zadaé rovicí ax + by + cz = 0. Normálový vektor je vektor, který je kolmý ke všem přímkám ležícím v daé roviě. b) Naopak, je-li 3 W R rovia ax by cz =, pak W ( a, bc, ) směrovým vektorem ( abc,, ) procházející počátkem. c) Nechť 3 W R je rovia z = 0. Její ortogoálí doplěk W je osa z. =, což je přímka se 3 Libovolý vektor u = ( x, y, z) R se dá rozložit a dva vektory = ( x, y,0) + ( 0,0, z) u, přitom prví z ich patří do W a druhý do W. Takový ortogoálí rozklad existuje pro každý podprostor a jeho ortogoálí doplěk Tvrzeí (základí vlastosti ortogoálích doplňků) Nechť V R, pak platí a) ( R )( V )( V ) u x y u = x + y, b) V V = { o }, c) ( ) S R S R, ( ) d) [ ] S R S = V S = V, ( ) e) ( V, W R ) ( V W ) ( W V ) f) ( V ) = =, = V, g) dimv = dimv. 39

40 1.2.9 Příklad Řešeí soustavy homogeích lieárích rovic Přepišme daou soustavu ve tvaru 2x + x 4x = 0, x 2x + 3x = 0, x x + 3x = Ozačme 0x + 2x + x 4x + 0x = 0, x + 0x 2x + 3x + 0x = 0, x + 0x x x + 3x = ( ) ( 0,2,1, 4,0 ), ( 1,0, 2,3,0 ), ( 0,0, 1, 1,3 ), x = x x x x x R r r r 5,,,,, = = = pak lze soustavu zapsat ásledujícím způsobem r x = 0, 1 r x = 0, 2 r x = 0. 3 Podle defiice je vektor řešeí x ortogoálí k tzv. řádkovým vektorům r x, r x, r x. 5 r1, r2, r 3 V R, tj Protože vektory tedy dimv = 3. 5 r1, r2, r 3 V R jsou lieárě ezávislé (ověřte), tvoří bázi [ 1, 2, 3] V = r r r a 40

41 Závěr 5 a) Vektor x = x, x, x, x, x R je řešeím zadaé soustavy rovic, právě když x V , tj. vektor x R je řešeím soustavy, právě když je kolmý k vektorům 5 r, r, r V R. 5 ( ) b) Možia všech řešeí homogeí soustavy lieárích rovic tvoří podprostor V prostoru 5 R, jehož dimeze je podle, jehož dimeze je podle tvrzeí g) dim V = dim V = 5 3 = 2. [ ] 1 BUBENÍK, F. a O. ZINDULKA, Matematika vyd. Praha: ČVUT, 159 stra. ISBN [ ] 2 CHARVÁT, J., V. KELAR a Z. ŠIBRAVA, MATEMATIKA 1: Sbírka příkladů.. 1. vyd. Praha: ČVUT, 163 stra. ISBN [ ] 3 KAŇKA, M., Sbírka řešeých příkladů z matematiky: pro studety vysokých škol. 1. vyd. Praha: Ekopress, 298 stra. ISBN [ ] 4 KAŇKA, M., J. COUFAL a J. KLŮFA, Učebice matematiky pro ekoomy.. 1. vyd. Praha: Ekopress, 198 stra. ISBN [ ] STUDIJNÍ MATERIÁLY 5 MOUČKA, J. a P. RÁDL, Matematika pro studety ekoomie.. 1. vyd. Praha: Grada, 272 stra. ISBN OTÁZKY A ÚKOLY Příklady v textu kapitoly. 41

42 KLÍČ K ŘEŠENÍ OTÁZEK viz. text 42

43 Kapitola 2 - Matice KLÍČOVÉ POJMY Matice, rovost matic, speciálí typy matic, řádkový a sloupcový prostor matice, hodost matice, ekvivaletí matice, Gaussova elimiačí metoda, regulárí a sigulárí matice, součet a souči matic, vlastosti operací s maticemi, iverzí matice, maticové rovice CÍLE KAPITOLY Pochopeí pojmu matice a algebraických operací s maticemi, maticových rovic ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodi VÝKLAD Teorie matic a determiatů představuje úvod do lieárí algebry. Nejrozsáhlejší aplikace mají matice a determiaty při řešeí systémů lieárích rovic. Pojem determiatu zavedl již v roce 1693 ěmecký matematik W. G. Leibiz ( ), 1716), ale jeho objev upadl v zapomeutí. V roce 1750 dospěl zovu k pojmu determiatu švýcarský matematik G. Cramer ( ). 1752). Všeobecě se začalo v matematice používat determiatů až kocem 18. století. Zasloužili se o to zejméa matematici A. T. Vadermode ( ) 1796) a A. L. Cauchy ( ). 1857). Současě s teorií determiatů se rozvíjela teorie matic, 43

44 jejímž zakladatelem je aglický matematik A. Cayley ( ). Na dalším rozvoji teorie matic se podíleli zejméa G. Frobeius ( ), J. J. Sylvester ( ) a K. Weierstrass ( ). 2.1 Pojem matice Defiice (matice) Matice typu m je uspořádaé obdélíkové schéma sestaveé z reálých čísel zapsaých do m řádků a sloupců, (1.1) Am ( aij ) i 1, K, m ; j 1, K, ; m, N. pro { } { } a11 a12 K a1 a a K a, K K K K am1 am2 K am = = m Čtvercová matice má stejý počet řádků jako sloupců, tj. m = a místo matice typu říkáme též čtvercová matice -tého řádu (resp. čtvercová matice řádu ). Matice, která eí čtvercová, se azývá obdélíková matice, tj. m. Matice obvykle začíme velkými písmey A, B, K, E ebo stručě A, B, K, E, resp. m k l ( aij ),( bij ), K,( eij ) ebo krátce ( aij ),( bij ),,( eij ) m k l K. Matici ( 1.1 ) lze též chápat jako m pod sebe vodorově zapsaých -rozměrých aritmetických vektorů z vektorového prostoru V, (,, ),, r (,, ) r = a Ka K = a K a V, které se azývají řádkové vektory (řádky) m m1 m tj. matice A. Matici ( 1.1 ) lze též považovat za vedle sebe svisle zapsaých m-rozměrých aritmetických vektorů z vektorového prostoru m V, tj. s (,, ),, s (,, ) = a Ka K = a K a V, které se 1 11 m1 1 m m azývají sloupcové vektory (sloupce) matice A. 44

45 Reálým číslům aij R říkáme prvky matice A. Idex i se azývá řádkový idex prvku a ij a idex j se azývá sloupcový idex prvku a ij, takže a ij ozačuje prvek, který leží v matici A v i-tém řádku a j-tém sloupci. Prvky a,,, 11 a m ( ) K matice ( ) mm 1.1, jsou diagoálí prvky a tvoří hlaví diagoálu matice 1.1. Je-li m, pak hlaví diagoálu tvoří diagoálí prvky a,, 11 K a. Podobě se defiuje pojem vedlejší diagoály. Vedlejší diagoálu pro m tvoří prvky a1,, a2, 1, K, a, m+ 1 a při m jsou to prvky a1,, a2, 1, K, a, Příklad Matice A = je matice typu 3 4 ( ) a vektor = ( ) r 3 3,0,6,1 je třetím řádkem matice A, vektor s 2 = 2,0,0 je druhým sloupcem matice A. Prvek a 23 = 1, ale prvek a 32 = 0. Hlaví diagoálu matice A tvoří prvky a11 = 1, a22 = 0, a33 = 6 a vedlejší diagoálu matice A tvoří a = 4, a = 1, a = 0. prvky Defiice (rovosti matic) Matice A, B stejého typu m jsou si rovy a píšeme A = B právě tehdy, když pro všecha i { 1, K, m} a j { 1,, } K platí aij = bij, tj. A = B zameá, že matice A, B jsou stejého typu a jejich prvky a odpovídajících si místech jsou si rovy. 45

46 2.1.4 Defiice (speciálích typů matic) a) Matice O typu m, pro jejíž všechy prvky platí ( { }) { } ( ) a = 0 i 1, K, m j 1, K,, se azývá ulová matice typu m a ij ozačujeme ji O m ebo je-li typ matice z kotextu zřejmý, stručě ji ozačíme O. b) Jedotková matice E (též se v literatuře začí jako I ebo J ) řádu je čtvercová matice řádu, jejíž prvky mimo hlaví diagoálu jsou uly a prvky a hlaví diagoále jsou rovy jedé, tj. { } ( i 1, K, )( j { 1, K, } ) 1) a = 1, ii ( i j aij = ) 2) 0. Zřejmě řádky jedotkové matice tvoří jedotkové vektory z V. c) Diagoálí matice je čtvercová matice, pro jejíž prvky platí i j a ij = 0. Zřejmě každá jedotková matice je diagoálí matice. d) Matice A typu m se azývá trojúhelíková matice, jestliže platí ( i { K m} ) j { K} ( i > j aij = ) ( ) 1,, 1,,, 1) m (tj. emá více řádků ež sloupců), 2) a 0 (tj. a hlaví diagoále emá žádou ulu), ii 3) 0 (tj. pod hlaví diagoálou má samé uly). e) Matice A typu m se azývá schodovitá matice, má-li každý eulový řádek, s výjimkou prvího, a začátku více ul ež řádek předchozí a všechy ulové řádky jsou a koci. 46

47 Jiak řečeo, azveme-li prví eulový prvek daého řádku vedoucím prvkem řádku, pak matice A typu m je ve schodovitém tvaru, jestliže pro každé dva její vedoucí prvky aij, a kl platí pro jejich idexy i < k j < l a ad eulovým řádkem v matici A eí žádý ulový řádek. Je jasé, že každá trojúhelíková matice je schodovitá. Schodovité a trojúhelíkovité matice mají výzam při určováí tzv. hodosti matice. f) Matice T A, která vzike z matice A tak, že zaměíme řádky za sloupce (resp. sloupce za řádky), přičemž zachováme jejich pořadí, se azývá matice traspoovaá k matici A. Je-li A matice typu m, pak T A je matice typu m a a = a, takže T ij ji traspoovaou matici hlaví diagoály. T A k matici A získáme překlopeím matice A podle Protože podle defiice je ( A traspoovaé. T ) T = A, říkáme, že matice A a T A jsou avzájem Dále je-li A diagoálí matice, pak platí A T = A a speciálě E T = E. O T = O O je čtvercová matice. g) Matice A se azývá symetrická, jestliže A T = A. h) Matice, která vzike z matice A typu m vyecháím ěkterých řádků ebo sloupců, se azývá submatice matice A. 47

48 2.1.5 Příklad a) Matice je ulová matice typu 2 3. O O = 2 3 = b) Matice je jedotková matice 3. řádu. E = c) Matice , 0 1 0, 0 0 0, jsou diagoálí matice. d) Matice , 0 5 1, jsou trojúhelíkové matice, matice , ejsou trojúhelíkové matice. 48

49 e) Matice jsou schodovité π e, 0 0 3, π f) K matici je traspoovaá matice A = T A = g) Matice je symetrická, protože platí A = A T = A. h) Matice 1 5 B = 3 0 je submaticí matice A z předešlého příkladu g), eboť vzikla z matice A vyecháím prvího a třetího řádku a druhého a třetího sloupce. 49

50 2.1.6 Řádkový a sloupcový prostor matice Řádky matice A typu m tvoří možiu vektorů v azývá řádkový prostor matice A a ozačíme ho R( A ). ( A) [ r K r ] a tedy R( ) R R = 1,, m Sloupce matice A typu m tvoří možiu vektorů v azývá sloupcový prostor matice A a ozačíme ho S ( A ). R. Lieárí obal této možiy se A. m ( A) [ s K s ] a tedy S ( ) R S = 1,, m R. Lieárí obal této možiy se A Věta (o dimezi řádkového a sloupcového prostoru matice) Nechť A je matice typu m, pak platí ( ) = dims ( ) dimr A A Defiice (hodosti matice) Dimeze řádkového prostoru matice A se azývá hodost matice A a ozačuje se h( A ) a tedy ( ) = dimr( ) h A A. 50

51 2.1.9 Pozámka a) Hodost ulové h ( O ) = 0. Jestliže h( ) A O A N. b) Podle Steiitzovy věty a jejích důsledků je hodost matice rova maximálímu počtu lieárě ezávislých řádků matice a podle předešlé věty též maximálímu počtu lieárě ezávislých sloupců matice, tj. Je-li A matice typu m, h ( ) mi ( m, ) A, c) Podle věty 2.1.7, je-li A libovolá matice typu m je hodost matice A rova hodosti matice traspoovaé T A, tj. T ( ) h( ) = h( ) A A A. Hodost matice budeme počítat s použitím trojúhelíkové matice (defiice d) ebo obecě schodovité matice (defiice e) Tvrzeí (vlastosti trojúhelíkové a schodovité matice) Je-li A trojúhelíková ebo schodovitá matice, pak a) její eulové řádky jsou lieárě ezávislé, b) její eulové řádky tvoří bázi řádkového prostoru R( A ), c) hodost h( A ) je rova počtu jejích eulových řádků. 51

52 Defiice (elemetárích řádkových úprav matice) Nechť A, B jsou matice typu m. Řekeme, že matice B vzikla elemetárími řádkovými úpravami z matice A, jestliže vzikla opakováím koečého počtu ásledujících úprav a) záměou pořadí dvou řádků, b) vyásobeím libovolého řádku matice eulovým reálým číslem, c) přičteím reálého ásobku libovolého řádku k libovolému řádku matice Defiice (ekvivaletích matic) Řekeme, že matice A, B jsou ekvivaletí právě tehdy, když matice B vzike z matice A koečým počtem elemetárích řádkových úprav. Začíme A~ B Příklad Jsou dáy matice A =, = B Protože matice B vzikla z matice A tak, že jsme k druhému řádku matice A přičetli ( 2) - ásobek prvího řádku, platí A~ B Věta (o hodosti ekvivaletích matic) Nechť matice B vzike provedeím koečé poslouposti elemetárích řádkových úprav a matici A, tj. ~ A B, pak R( B) = R( A ) a h( ) = h( ) B A. 52

53 Pozámka a) Budeme-li provádět elemetárí řádkové úpravy a matici T A, pak je to totéž jako bychom prováděli tyto úpravy a sloupce matice A, tj. tyto úpravy jsou vlastě elemetárí řádkové úpravy aplikovaé a sloupce matice A, a proto je azýváme elemetárí sloupcové úpravy matice A. b) Podle pozámky c) víme, že avzájem traspoovaé matice mají stejou hodost, proto můžeme při převodu matice a trojúhelíkovou ebo schodovitou matici používat též elemetárí sloupcové úpravy ebo kombiaci obou úprav. c) POZOR!!! Elemetárí řádkové úpravy aplikovaé a sloupce místo a řádky (tj. elemetárí sloupcové úpravy) matice A zachovávají hodost matice, ale emusí zachovávat řádkový prostor matice A. d) V této souvislosti též mluvíme o elemetárích úpravách eměících hodost matice, což je souhrý ázev pro elemetárí řádkové a sloupcové úpravy Gaussova elimiačí metoda Gaussova elimiačí metoda je obecý postup, jak pomocí elemetárích úprav eměících hodost matice získat z libovolé eulové matice A ekvivaletí schodovitou (speciálě trojúhelíkovou) matici B, která má stejou hodost jako matice A (hodost matice A je pak rova počtu eulových řádků ekvivaletí matice B). Celý postup Gaussovy elimiačí metody je ejpřehledější a kokrétích příkladech. 53

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Kapitola 5 - Matice (nad tělesem)

Kapitola 5 - Matice (nad tělesem) Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic

Více

Přednáška 7: Soustavy lineárních rovnic

Přednáška 7: Soustavy lineárních rovnic Předáška 7: Soustavy lieárích rovic 7.1. Příklad (geometrie v roviě) Rozhoděte o vzájemé poloze přímky p : x y 1 a přímky a) a : x y 3, b) b : 2x 2y 3, c) c :3x 3y 3. Jak víme ze středí školy, lze o vzájemé

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

Kapitola 4 Euklidovské prostory

Kapitola 4 Euklidovské prostory Kapitola 4 Euklidovské prostory 4.1. Defiice euklidovského prostoru 4.1.1. DEFINICE Nechť E je vektorový prostor ad tělesem reálých čísel R,, : E 2 R. E se azývá euklidovský prostor, platí-li: (I) Pro

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

1 Uzavřená Gaussova rovina a její topologie

1 Uzavřená Gaussova rovina a její topologie 1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho

Více

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí

Více

Matematika pro studenty ekonomie

Matematika pro studenty ekonomie w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Matematická analýza I

Matematická analýza I 1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

1.2. NORMA A SKALÁRNÍ SOUČIN

1.2. NORMA A SKALÁRNÍ SOUČIN 2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

GEOMETRIE I. Pavel Burda

GEOMETRIE I. Pavel Burda GEOMETRIE I Pavel Burda Obsah Úvod... 4 1. Vektorové prostory... 5. Vektorové prostory se skalárím ásobeím... 9. Afií prostory... 19 4. Afií přímka ( A 1 )... 5 5. Afií rovia (A )... 6 6. Afií prostor

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

Masarykova univerzita Přírodovědecká fakulta

Masarykova univerzita Přírodovědecká fakulta Masarykova uiverzita Přírodovědecká fakulta Zuzaa Došlá, Vítězslav Novák NEKONEČNÉ ŘADY Bro 00 c Zuzaa Došlá, Vítězslav Novák, Masarykova uiverzita, Bro, 998, 00 ISBN 80-0-949- 3 Kapitola 3 Řady absolutě

Více

P. Girg. 23. listopadu 2012

P. Girg. 23. listopadu 2012 Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt

Více

n-rozměrné normální rozdělení pravděpodobnosti

n-rozměrné normální rozdělení pravděpodobnosti -rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici

Více

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet

Více

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,

Více

Úvod do lineárního programování

Úvod do lineárního programování Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12 Předáška 3: Determiaty Pojem determiatu se prosadil původě v souvislosti s potřebou řešit soustavy lieárích rovic v 8 století (C Maclauri, G Cramer) Teprve později se pojem osamostatil, zjedodušilo se

Více

Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

11. přednáška 16. prosince Úvod do komplexní analýzy.

11. přednáška 16. prosince Úvod do komplexní analýzy. 11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám

Více

1 Základní pojmy a vlastnosti

1 Základní pojmy a vlastnosti Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).

Více

Spojitost a limita funkcí jedné reálné proměnné

Spojitost a limita funkcí jedné reálné proměnné Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

Analytická geometrie

Analytická geometrie Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

Zimní semestr akademického roku 2015/ listopadu 2015

Zimní semestr akademického roku 2015/ listopadu 2015 Cvičeí k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikovaé matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičeí Zimí semestr akademického roku 2015/2016 20. listopadu 2015 Předmluva

Více

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Úloha číského listooše ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Uvažujme situaci, kdy exstuje ějaký výchozí uzel a další uzly spojeé hraami (může jít o cesty, ulice

Více

4. Model M1 syntetická geometrie

4. Model M1 syntetická geometrie 4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programováí, dopraví úloha. 1 Úvodí pomy Metody a podporu rozhodováí lze obecě dělit a: Eaktí metody metody zaručuící alezeí optimálí řešeí, apř. Littlův algortimus, Hakimiho

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

5. Posloupnosti a řady

5. Posloupnosti a řady Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A ); 1 PSE 1 Náhodý pokus, áhodý jev. Operace s jevy. Defiice pravděpodobosti jevu, vlastosti ppsti. Klasická defiice pravděpodobosti a její použití, základí kombiatorické vzorce. 1.1 Teoretická část 1.1.1

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N? 1 Prví prosemiář Cvičeí 1.1. Dokažte Beroulliovu erovost (1 + x) 1 + x, N, x. Platí tato erovost obecě pro všecha x R a N? Řešeí: (a) Pokud předpokládáme x 1, pak lze řešit klasickou idukcí. Pro = 1 tvrzeí

Více

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické 5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí

Více

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování

Více

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC 22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se

Více

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x), a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte

Více

1 Základy Z-transformace. pro aplikace v oblasti

1 Základy Z-transformace. pro aplikace v oblasti Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

2. Definice plazmatu, základní charakteristiky plazmatu

2. Definice plazmatu, základní charakteristiky plazmatu 2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se

Více

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH OBRAZOVÁ ANALÝZA POVRCU POTISKOVANÝC MATERIÁLŮ A POTIŠTĚNÝC PLOC Zmeškal Oldřich, Marti Julíe Tomáš Bžatek Ústav fyzikálí a spotřebí chemie, Fakulta chemická, Vysoké učeí techické v Brě, Purkyňova 8, 62

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7]

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7] 6. Fukce a poslouposti ) Rozoděte, která z dvojic [ ;9[, 0; [, ; patří fukci daé předpisem y +. [všecy ) Auto má spotřebu 6 l beziu a 00 km. Na začátku jízdy mělo v plé ádrži 6 l beziu. a) Vyjádřete závislost

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) = NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více