Matematika I. Název studijního programu. RNDr. Jaroslav Krieg České Budějovice

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice"

Transkript

1 Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1

2 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké škole techické a ekoomické v Českých Budějovicích" s registračím číslem CZ.1.07./2.2.00/ Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky. 1. vydáí ISBN Vysoká škola techická a ekoomická v Českých Budějovicích, 2014 Vydala: Vysoká škola techická a ekoomická v Českých Budějovicích, Okruží 10, České Budějovice Za obsahovou a jazykovou správost odpovídají autoři a garati příslušých předmětů. 2

3 Obsah Začeí Kvatifikátory Logické spojky Možiové symboly Číselé obory Itervaly Kapitola 1 - Vektorové prostory Vektorové prostory Úvod Aritmetický vektorový prostor Příklad Příklad Defiice (aritmetického vektorového prostoru) Pozámka Defiice (vektorového podprostoru) Pozámka Defiice (lieárí kombiace) Pozámka Příklad Defiice (lieárí závislosti a ezávislosti) Pozámka Příklad

4 Věta (lieárí ezávislost podmožiy lieárě ezávislých vektorů) Defiice (lieárího obalu možiy) Pozámka Lemma (vlastosti vektorového podprostoru) Příklad Defiice (možiy geerátorů) Pozámka Lemma (elemetárí úpravy a možiě geerátorů) Pozámka Tvrzeí Příklad Příklad Příklad Pozámka Defiice (báze vektorového prostoru) Příklad Pozámka Věta (Steiitzova věta o výměě) Důsledek Steiitzovy věty (věta o dimezi) Defiice (dimeze vektorového prostoru) Důsledky (Steiitzovy věty) Věta (o jedozačém vyjádřeí souřadic vektoru) Defiice (souřadic vektoru)

5 Příklad Příklad Skalárí souči a ortogoalita vektorů Defiice (vektorového prostoru se skalárím součiem) Defiice (skalárího součiu aritmetických vektorů) Defiice (velikosti vektoru) Věta (vlastosti ulového vektoru, velikost ásobku vektoru) Defiice (kolmosti vektorů) Defiice (ortogoálího doplňku) Příklad Tvrzeí (základí vlastosti ortogoálích doplňků) Příklad Kapitola 2 - Matice Pojem matice Defiice (matice) Příklad Defiice (rovosti matic) Defiice (speciálích typů matic) Příklad Řádkový a sloupcový prostor matice Věta (o dimezi řádkového a sloupcového prostoru matice) Defiice (hodosti matice) Pozámka Tvrzeí (vlastosti trojúhelíkové a schodovité matice)

6 Defiice (elemetárích řádkových úprav matice) Defiice (ekvivaletích matic) Příklad Věta (o hodosti ekvivaletích matic) Pozámka Gaussova elimiačí metoda Příklad Pozámka Příklad Příklad Příklad Příklad Algebraické operace s maticemi Defiice (regulárí a sigulárí matice) Pozámka Příklad Defiice (součtu matic a skalárího ásobku matice) Defiice (součiu matic) Pozámka Příklad Vlastosti operací s maticemi Věta (vektorový prostor matic) Pozámka

7 Věta (vlastosti operací ásobeí a sčítáí matic) Pozámka Věta (další vlastosti operací s maticemi) Defiice (iverzí matice) Pozámka Věta (o existeci a uicitě iverzí matice) Příklad Tvrzeí (vlastosti iverzích matic) Příklad Maticové rovice Příklad Příklad Příklad Příklad Příklad Příklad Kapitola 3 - Řešeí soustav lieárích rovic Soustavy lieárích rovic Defiice (soustavy lieárích rovic) Pozámka Příklad Příklad Homogeí soustavy Defiice (homogeí soustavy)

8 3.2.2 Pozámka Defiice (ulového prostoru matice) Pozámka Věta (vztahy mezi řádkovým a ulovým prostorem matice soustavy A) Pozámka Řešeí homogeích soustav Gaussovou metodou Defiice (ekvivaletích soustav) Věta (o ekvivaletích soustavách) Pozámka Příklad Pozámka Příklad Nehomogeí soustavy Defiice (ehomogeí soustavy) Pozámka Věta (Frobeiova) Věta (o počtu řešeí řešitelé soustavy) Tvrzeí (řešitelost soustav lieárích rovic) Příklad (diskuse řešitelosti soustavy) Příklad (diskuse řešitelosti soustavy) Pozámka Řešeí ehomogeích soustav Gaussovou metodou Příklad

9 3.5.2 Defiice (posuutí vektorového prostoru o vektor) Věta (řešeí ehomogeí soustavy) Důsledek Pozámka Příklad Soustavy s regulárí maticí Tvrzeí (existece a jedozačost řešeí soustavy s regulárí maticí) Příklad Pozámka (Gaussova-Jordaova metoda) Výpočet iverzí matice Příklad Pozámka Formálí postup hledáí iverzí matice pomocí jedotkové matice Příklad Kapitola 4 - Determiaty, Fukce Úvod Determiaty 2. a 3. řádu Defiice (determiatu, algebraického doplňku, subdetermiatu) Pozámka (termiologie a začeí) Pozámka (Laplaceova věta) Pozámka (výpočet determiatu 2. a 3. řádu) Příklad Příklad Věta (determiat traspoovaé matice)

10 4.2.8 Pozámka Úmluva (řady determiatu) Pozámka (Laplaceova věta pro sloupce) Věta (o rozvoji determiatu podle j-tého sloupce Laplaceova věta) Příklad Pozámka (techická) Příklad Řadové úpravy determiatu Příklad Věta (řadové úpravy determiatu) Příklad Příklad (řešeí příkladu 4.3.1) Pozámka Pozámka (determiaty lišící se v jedé řadě) Determiat schodovité a trojúhelíkové matice Věta (determiat schodovité matice) Příklad Pozámka Věta (hodota determiatu regulárí a sigulárí matice) Příklad Věta (determiat, hodost matice, existece iverzí matice) Důsledek (další pravidla pro počítáí determiatů) Věta (o ásobeí determiatů)

11 4.4.9 Důsledek Determiaty a iverzí matice Defiice (adjugovaé matice) Pozámka Věta (výpočet iverzí matice) Příklad Cramerovo pravidlo Věta (Cramerovo pravidlo) Příklad Pozámka Použitá a doporučeá literatura

12 Začeí Kvatifikátory Kvatifikátory jsou symboly používaé v predikátové logice a matematice. Rozlišují se dva základí druhy kvatifikátorů obecý (též uiverzálí, velký) kvatifikátor (ozačujeme ) s výzamem pro každý a existečí (též malý) kvatifikátor (ozačujeme ) s výzamem existuje. Např. ( x R)( x 0) (epravdivý výrok) a ( x R)( x 0) výrok). <, tj. pro každé reálé číslo x platí, že je meší ež ula <, tj. existuje reálé číslo, které je záporé (pravdivý Logické spojky Nechť p a q jsou výroky. - kojukce, tj. p q zameá, že platí p a současě platí q. - disjukce, tj. p q zameá, že platí p ebo platí q. - implikace, tj. p q zameá, že z p plye q. - ekvivalece, tj. p q zameá, že p platí právě tehdy, když platí q. Možiové symboly x M - objekt x je prvkem možiy M x M - objekt x eí prvkem možiy M { x } M x x = 1, 2, K, - prvková možia zadaá výčtem svých prvků x1 x2 { ; ϕ ( )},, K, x M = x A x - možia těch prvků x z možiy A, které mají charakteristickou vlastost ϕ, apř. M { x R x } ( = ; 1 =,1. Možia zadaá charakteristickou vlastostí. 12

13 - prázdá možia = {(, );, } - kartézský souči moži A a B, obecě pro N A B a b a A b B {(,,, );,,, } A A K A = a a K a a A a A K a A A= B - rovost moži A B - možia A je podmožiou možiy B A B - možia A je vlastí podmožiou možiy B, tj. A B a A B, resp. B\ A A B - sjedoceí moži A a B A B - průik moži A a B A\ B - rozdíl moži A, B, tj. možia prvků x A a x B Číselé obory N - možia přirozeých čísel, tj. čísel 1,2,3,K (celá kladá čísla). N - možia přirozeých čísel a ula, tj. čísel 0 0,1,2,3,K (ula a celá kladá čísla). Z - možia celých čísel, tj. čísel K, 3, 2, 1,0,1,2,3, K Q - možia racioálích čísel, tj. čísel, která lze zapsat ve tvaru zlomku p q, kde p, q Z a q 0 R - možia reálých čísel. Graficky jsou vyjádřea body a číselé ose R + - možia kladých reálých čísel R možia ezáporých reálých čísel R \Q - možia iracioálích čísel, apř. π, e, 2, 3 R\ Q * R R {, } = - možia zobecěých reálých čísel, resp. rozšířeá reálá osa 13

14 Pro uspořádáí možiy * R platí ( x R) x,speciálě < < + < + ± = + Pro algebraické operace sčítáí a ásobeí defiovaé a možiě R a rozšířeé a možiu * R platí ( 1) ( ) ( 2) ( ) x R x + = + + x = + x R x = + x = + ( 3) ( x R ) x ( ) ( ) ± = ± x = ± ( 4) ( x R ) x ( ) ( ) ± = ± x = m x 5 = 0 ± ( ) ( x R) Nedefiovaé výrazy, tzv. eurčité výrazy ± a ± ±, +, 0 ( ± ), ( ± ) 0,, ( a R ), 1, 0, ( ± ) 0, 0 ± 0 * 0 C - možia komplexích čísel, apř. 2 3i, kde i C je imagiárí jedotka ( i 2 = 1) 14

15 Itervaly Nechť a, b R. ( ab, ) - otevřeý iterval, ( ab, ) = { x R; a < x < b} ab, - uzavřeý iterval, ab, = { x R; a x b} a, b ) - polouzavřeý iterval, a, b) = { x Ra x < b} (, a b - polouzavřeý iterval, ( a, b = { x R; a < x b} ( a, ) = { x R; a < x} ) { x R a x} a, = ; (, a) = { x R; x < a} (, a = { x R; x a} Pokud používáme a,b jako desetiá čísla, používáme zápis itervalu se středíkem, aby edošlo k záměě s desetiou čárkou, tj. místo ( ab, ) píšeme ( ; ) ab. 15

16 Kapitola 1 - Vektorové prostory KLÍČOVÉ POJMY Aritmetický vektorový prostor, vektorový podprostor, lieárí kombiace vektorů, lieárí závislost a ezávislost, možia geerátorů, Steiitzovy věty, souřadice vektoru, skalárí souči vektorů, velikost vektoru, ortogoalita vektorů CÍLE KAPITOLY Pochopeí vektorových prostorů, porozuměí sčítáí a odčítáí vektorů, skalárímu součiu vektorů ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodi VÝKLAD Lieárí algebra je odvětví matematiky, které se zabývá mimo jié vektory, vektorovými prostory, soustavami lieárích rovic a lieárími trasformacemi (tzv. homomorfismy) a vektorových prostorech. Vektorové prostory jsou totiž důležitou součástí moderí matematiky. Aplikovaá lieárí algebra má široké využití apříklad v přírodích, ekoomických a sociálích vědách, ale také v logistice a v ejrůzějších techických odvětvích. Lieárí algebra se proto des předáší prakticky ve všech kurzech matematiky a vysokých školách. 16

17 Historicky jako prví část lieárí algebry vzikla teorie řešeí soustav lieárích rovic a v souvislosti s jejich řešeím vzikl v roce 1693 i pojem determiatu. Cramerovo pravidlo je z roku 1750 a Gaussův elimiačí algoritmus pochází z roku Pojem matice se objevuje při tomto studiu mohem později a to poprvé v roce 1857 v pracích Arthura Cayleyho. Na základě pojmu hodost matice z roku 1877 pak bylo možo jedoduše vyjádřit podmíky řešitelosti soustav lieárích rovic. Studiem soustav lieárích rovic a determiatů se zabývali matematici v století. Cetrálími pojmy studia moderí lieárí algebry ve 20. století se staly vektorové prostory, homomorfismy vektorových prostorů, lieárí, bilieárí a kvadratické formy a obecě multilieárí formy a vektorových prostorech. Lieárí algebra má svoje počátky ve studiu vektorů v kartézském dvourozměrém a trojrozměrém prostoru, základy pro toto studium položil Reé Descartes zvaý Cartesius ( ), který zavedl pravoúhlou tzv. kartézskou soustavu souřadic, a ztotožil tak geometrické pojmy jako bod, přímka, rovia apod. s možiami řešeí soustav lieárích rovic a položil tak základy aalytické geometrie, která umožňuje algebraicky (rovicemi) popsat přímky, roviy a jejich podmožiy a jejich geometrické vztahy řešit algebraickými prostředky. Z geometrického vektoru a jeho umístěí jako orietovaé úsečky charakterizovaé svojí velikostí, která je dáa délkou úsečky a také jejím směrem tak vzikl v aalytické geometrii aritmetický vektor, resp. jeho umístěí charakterizovaé jeho souřadicemi v kartézské soustavě souřadic. Obecě jsou ale vektory jakékoliv objekty, které lze dobře sčítat a ásobit číslem (viz dále defiice vektorového prostoru). Vektory a jejich geometrická ebo algebraická představa slouží dobře ve fyzice jako reprezetace tzv. vektorových veliči (rychlost, síla, itezita pole, magetická idukce, ). Vektorem ale může být také polyom, fukce ebo posloupost. Z těchto vektorů můžeme avíc vybrat vektory s ějakou vlastostí, která se zachová při sčítáí i ásobeí reálým (komplexím) číslem (u fukcí spojitost ebo diferecovatelost, u polyomů ejvyšší stupeň, u posloupostí omezeost, ) 17

18 Podstatou lieárí algebry (obecě všech matematických teorií) je, že všecha dokázaá tvrzeí apříklad o vektorových prostorech platí pro všechy vektorové prostory, ezávisle a tom jak defiujeme sčítáí vektorů ebo jejich ásobeí číslem. Stačí, že příslušé objekty studia (azývaé jako vektory) splňují podmíky defiice vektorového prostoru. Obecá metoda, kdy je aleze způsob pohledu a ějaký problém z hlediska lieárí algebry a te je pak vyjádře pomocí matematického aparátu lieárí algebry a je vyřeše apříklad pomocí matic, tak to je jeda z velmi často používaých metod práce v matematice. 1.1 Vektorové prostory Úvod Ve výuce geometrie a fyziky a středí škole jste pozali pojem vektoru a jeho grafické vyjádřeí jako orietovaé úsečky v roviě či prostoru. Tyto tzv. geometrické vektory jsme se aučili graficky sčítat resp. odčítat a ásobit libovolým reálým číslem. Po zavedeí pravoúhlých kartézských souřadic jsme těmto geometrickým vektorům mohli přiřadit souřadice a vytvořit tzv. aritmetické vektory. Pomocí souřadic těchto vektorů je pak možo zavést jejich součet a ásobek reálým číslem jako ové operace a možiě aritmetických vektorů. V dalším textu, ebude-li řečeo jiak, se zaměříme právě a možiy aritmetických vektorů, eboť mají jisté výsadí postaveí mezi ostatími vektorovými prostory. Všechy koečě dimezioálí vektorové prostory lze reprezetovat právě aritmetickým vektorovým prostorem příslušé dimeze Aritmetický vektorový prostor Aritmetické vektory budeme chápat jako uspořádaé -tice reálých čísel a zapisovat a = ( a, K, a ) R, kde 1 R R R = K R. Možia R je možiou uspořádaých -tic krát reálých čísel. 18

19 Vektory v tisku obvykle začíme tučým písmem a, b, K, x, y a v psaém textu pak r r r r a, b, K, x, y. Čísla,, a1 K a R ve vektoru a = ( a1, K, a) R se azývají souřadice (složky) vektoru. Vektor o = ( 0,0,,0) Prvky (uspořádaé -tice) z K je tzv. ulový vektor. ebo jako -rozměré vektory. Rovost vektorů a ( a,, a ), b (,, ) R si můžeme představovat jako body v -rozměrém prostoru 1 K b1 K b R defiujeme takto: = = ( { 1,, }) ( 1,, ) ( 1,, ) Součet vektorů a ( a,, a ), b (,, ) Sčítáí vektorů je zobrazeí i K a Ka = b K b a = b. = = i i 1 K b1 K b R defiujeme jako ( a b a b ) a + b =,, K +. R R R Příklad Vypočtěme součet vektorů a = ( 1,2,3) a = ( 0, 2,13) Řešeí b. ( 1,2,3) ( 0, 2,13) ( 1 0,2 ( 2 ),3 13) ( 1,0,16) a + b = + = =. Skalárí c-ásobek vektoru ( ),, a = a1 K a R pro c R defiujeme vztahem ( ) ca = ca1, ca2, K, ca. Skalárí c-ásobek vektoru je zobrazeí R R R. Opačým vektorem k vektoru ( ),, a = a1 K a R azveme vektor ( a a ) ( a a ) a = 1, K, =, K,

20 Rozdílem vektorů a ( a,, a ) R, b (,, ) vektoru opačého k vektoru b tedy = = 1 K b1 K b R rozumíme součet vektoru a a ( ) ( a, a ) ( b,, b ) ( a b,, a b ) a b = a + b = K + K = K Příklad Nechť a = ( 1,7) a = ( 2, 4) Řešeí b. Vypočtěme 2a 3b. ( ) ( ) ( ) ( ) ( ) 2a 3b = 2 1,7 3 2,4 = 2,14 + 6, 12 = 8, Defiice (aritmetického vektorového prostoru) Možia R s operacemi sčítáí vektorů a skalárího ásobku vektoru se azývá -rozměrý aritmetický vektorový prostor, splňují-li tyto operace ásledující vlastosti ( u v R ) ( u v w R ) u + v = v + u ( u + v) + w = u + ( v + w) ( o R )( u R ) ( u R )( ( u) R ) u + o = u u + ( u) = o u u = o ( o R )( u R ) u o ( u R ) u u ( st R)( u R ) s( t u) = ( st ) u 1), komutativita sčítáí vektorů 2),, asociativita sčítáí vektorů 3) existece ulového vektoru 4), tj. existece opačých vektorů 5) 0 = ásobek vektoru 0 R 6) 1 = ásobek vektoru 1 R 7), "asociativita" ( )( u ) ( ) 8) st, R R s + t u = s u + t u "distributivita" ( )( ) ( ) 9) s R u, v R s u + v = s u + s v "distributivita" 20

21 1.1.6 Pozámka a) V této defiici se vyskytují pod stejým ozačeím dvě růzé operace sčítáí vektorů a sčítáí skalárů (reálých čísel) a dvě růzé operace ásobeí vektoru skalárem a ásobeí skalárů. Vzhledem k tomu, že ehrozí jejich záměa, eí uté je odlišě začit. b) Vektorový prostor R s operacemi sčítáí a skalárí ásobeí vektorů budeme též ozačovat V. Speciálě pro = 2 je V R 2 2 = aritmetický vektorový prostor dvoučleých aritmetických vektorů, a které můžeme též pohlížet jako a geometrické vektory v eukleidovské roviě a aalogicky pro = 3 je V = R 3 3 aritmetický vektorový prostor trojčleých aritmetických vektorů, a které můžeme též pohlížet jako a geometrické vektory v eukleidovském třírozměrém prostoru. c) Pokud v defiici vezmeme místo možiy R obecou eprázdou možiu V dostaeme obecou defiici vektorového prostoru. Této obecé defiici pak kromě možiy aritmetických vektorů s výše uvedeými operacemi vyhovuje i možia geometrických vektorů s obvyklými operacemi sčítáí vektorů a ásobeí vektorů reálým číslem (skalárem), ale také apříklad: Možia všech reálých fukcí defiovaých a libovolé eprázdé možiě s obvyklým sčítáím fukcí ( f + g)( x) = f ( x) + g( x) a ásobeí fukce reálým číslem ( rf )( x) = rf ( x). Speciálě možia všech reálých posloupostí s obvyklou operací sčítáí posloupostí { a } { b } { a b } { } { ra } r a =. + = + a ásobeí poslouposti reálým číslem Možia všech řešeí soustavy homogeích lieárích rovic, viz dále. Možia všech matic stejého typu s obvyklými operacemi sčítáí matic a ásobeí matice reálým číslem, viz dále. 21

22 Speciálě možia všech reálých (komplexích) čísel s obvyklými operacemi a těchto možiách Defiice (vektorového podprostoru) Možia vektorů W V je vektorový podprostor (vektorového) prostoru V, pokud W je eprázdá možia a pro každé dva vektory u, v W a libovolé skaláry s, t R platí su + tv W. Jiými slovy, W je uzavřeá a lieárí kombiace vektorů z W. Skutečost, že W je vektorový podprostor prostoru R budeme ozačovat W R Pozámka a) Uvedeá defiice je ekvivaletí s tvrzeím, že (, ) ( )( ) W V a b W a + b W r R a W ra W, tj. eprázdá podmožia W možiy V je podprostorem vektorového prostoru V právě tehdy, když je uzavřeá vzhledem k operaci sčítáí vektorů a ásobeí vektoru reálým číslem. b) Předpoklad W V implikuje, že W je sám také vektorovým prostorem, eboť splňuje defiici 1.1.5, speciálě V V. c) Každý vektorový podprostor W V obsahuje ulový vektor o vektorového W V v W V v v = o o W V. prostoru V, eboť ( ) d) Možia { o } obsahující pouze ulový vektor je vektorovým podprostorem libovolého vektorového prostoru V a azývá se triviálí vektorový prostor. Je to jediý vektorový prostor s koečým počtem prvků, totiž s jedím prvkem. Obsahujeli totiž vektorový prostor alespoň jede eulový vektor, pak musí s ím obsahovat všechy jeho reálé ásobky a těch je ekoečě moho. 22

23 1.1.9 Defiice (lieárí kombiace) Nechť je dá vektorový prostor V. Vektor u V je lieárí kombiací vektorů u,, 1 K um V, právě tehdy, když existují skaláry s,, 1 K sm R takové, že m = s sm m = si i i= 1 u u K u u. Čísla s,, 1 K s se azývají koeficiety lieárí kombiace. Lieárí kombiace vektorů, ve m které jsou všechy koeficiety rovy ule, se azývá triviálí lieárí kombiace Pozámka a) Nulový vektor o je triviálí lieárí kombiací libovolé skupiy vektorů, eboť ( V ) a, K, a o = 0 a + K + 0 a. 1 m 1 m b) Lieárí kombiace lieárích kombiací vektorů je opět lieárí kombiace vektorů Příklad Zjistěme, je-li vektor u = ( 1,2,3) lieárí kombiací vektorů a = ( 1,0, 1) a = ( 2,0, 1) Řešeí Podle defiice lieárí kombiace vektorů hledáme s1, s2 R tak, aby platilo b. u = s a + s b. 1 2 Do této rovice dosadíme souřadice daých vektorů a obdržíme ( 1,2,3) ( s 2 s,0s 0 s, s s ) = Z defiice rovosti aritmetických vektorů získáme ásledující soustavu rovic 1 = 1s + 2 s, = 0s + 0 s, = 1s 1 s

24 Druhá rovice jasě ukazuje, že eexistuje žádé řešeí této soustavy rovic, a proto vektor u eí lieárí kombiací vektorů a a b Defiice (lieárí závislosti a ezávislosti) Vektory u,, 1 K um V, kde V je vektorový prostor, se azývají lieárě závislé, právě když existuje jejich etriviálí lieárí kombiace, která je rova ulovému vektoru, tj. existují reálá čísla s,, 1 K s z ichž alespoň jedo je růzé od uly taková, že m s1u1 + K + smum = o. V opačém případě se vektory u,, 1 K um V azývají lieárě ezávislé. Mluvíme ve stejém slova smyslu o lieárí závislosti, resp. ezávislosti možiy vektorů { u u },, 1 K m Pozámka V celé této pozámce předpokládáme, že V je vektorový prostor. a) Vektory u,, 1 K um V jsou podle defiice lieárě závislé, jestliže existuje jejich etriviálí lieárí kombiace, která je rova ulovému vektoru. Naopak u,, 1 K um V jsou lieárě ezávislé, jestliže každá jejich etriviálí lieárí kombiace je růzá od ulového vektoru, tj. když ulovému vektoru je rova pouze jejich triviálí lieárí kombiace. b) Vektory u,, 1 K um V jsou lieárě závislé, pokud je ěkterý z ich lieárí kombiací ostatích vektorů, eboť z u = s1u1 + K + s 1u 1 + s + 1u K + s u i i i i i m m plye, že o = s1u1 + K + si 1ui 1 1ui + si+ 1ui+ 1 + K + smu a tedy existuje jejich m etriviálí lieárí kombiace, která je rova ulovému vektoru. c) Speciálě pro jede vektor ( 1) lieárě závislý právě tehdy, když je ulový. d) Speciálě pro dva vektory ( 2) m = dostáváme s 1u1 = o, takže jede vektor je m = dostáváme s1u1 + s2u2 = o, takže dva vektory jsou lieárě závislé právě tehdy, když jede z ich je reálým ásobkem druhého. 24

25 e) Vektory u,, 1 K um V jsou lieárě ezávislé, když platí ( { }) 1 u 1 u o 1 s R; i 1, K, m s + K+ s = s = K = s = 0. i m m m f) Jedotkové vektory (jejich velikost je jeda) z V jsou lieárě ezávislé. e e M e 1 2 = = = ( K ) ( K ) 1,0,0,,0,0, 0,1,0,,0,0, ( K ) 0,0,0,,0,1, g) Každá skupia vektorů obsahující ulový vektor je lieárě závislá. h) Dva geometrické vektory z rovoběžé. R (resp. R ) jsou lieárě závislé, právě když jsou 2 3 i) Tři geometrické vektory z j) Každé tři vektory z 3 R jsou lieárě závislé, právě když leží ve stejé roviě. 2 R jsou lieárě závislé Příklad Zjistěme, zda vektory z aritmetického vektorového prostoru dvoučleých vektorů jsou lieárě závislé ebo ezávislé. u = 1,2, u = 2,4 V, a) ( ) ( ) u = 1,2, u = 2,4 V. b) ( ) ( )

26 Řešeí Ve shodě s defiicí hledáme s1, s2 R, pro která platí s1u1 + s2u2 = o. Do rovice dosadíme souřadice zadaých vektorů a řešíme soustavu lieárích rovic. a) s + 2s = 0, 1 2 2s + 4s = Tato soustava má jedié řešeí s1 = s2 = 0 a tedy ulovému vektoru o je rova pouze triviálí lieárí kombiace vektorů u1, u. Vektory 2 u1, u jsou tudíž lieárě ezávislé. 2 b) s 2s = 0, 1 2 2s + 4s = Tato soustava má ekoečě moho řešeí tvaru s1 = 2 s2, s2 R a tedy ulovému vektoru o je rovo dokoce ekoečě moho etriviálích lieárích kombiací vektorů u1, u. 2 Pro ilustraci uveďme apříklad volbu s1 = 2, s2 = 1. Vektory u1, u jsou tudíž lieárě 2 závislé. O tomto výsledku je možé lehce rozhodout podle pozámky b), resp. d), eboť u2 = 2u1 2u1 u2 = o Věta (lieárí ezávislost podmožiy lieárě ezávislých vektorů) Nechť { u u },, 1 K je možia lieárě ezávislých vektorů z vektorového prostoru V a 2. Pak také { u K u } 1,, k, kde 1 k je možia lieárě ezávislých vektorů z vektorového prostoru V. Jiak řečeo, každá podmožia lieárě ezávislých vektorů je též lieárě ezávislá možia vektorů. 26

27 Defiice (lieárího obalu možiy) Lieárí obal [ M ] eprázdé možiy vektorů možia všech lieárích kombiací vektorů z M tj. M V, kde V je vektorový prostor, je [ M] = { u V; u = su + + s u, u,, u M, s,, s R} K K K. 1 1 m m 1 m 1 m Místo { u u K u } budeme psát krátce [ u u u ],,, m 1 2,, K, m Pozámka a) (, ) [ ] M V M M V, kde V je vektorový prostor.,, K, m je ejmeší (ve smyslu uspořádáí relací ) vektorový prostor b) [ u u u ] 1 2 obsahující vektory u1, u2, K, um M. c) Vektorový prostor [ ] = { s ; s R} = { } d) Je-li u o eulový vektor v o o o se azývá triviálí vektorový prostor. 2 R (resp. 3 R ), je [ ] = { s ; } přímka procházející počátkem, se směrovým vektorem u. e) Jsou-li u, v dva růzoběžé vektory v u u s R, tj. geometricky je [ u ] 3 R, je [, ] = { s + t ; st, R} uv u v, tudíž [, ] rovia procházející počátkem určeá vektory u, v, tj. jiak řečeo vektor z uv je 3 R je lieárí kombiací vektorů u a v právě když leží v roviě procházející počátkem, která je určea těmito dvěma vektory. f) Jsou-li u, v dva rovoběžé vektory v, což je přímka procházející počátkem. g) Jsou-li u, v dva růzoběžé vektory v kombiací a tudíž [ ] 2 h) Lieárím obalem přímky v i) Lieárím obalem přímky v u, v = R je celá rovia. tuto přímku a prochází počátkem. 3 R, pak v je ásobkem u, a proto [ uv, ] = [ u] 2 R, je každý vektor v 2 R, která eprochází počátkem, je celá rovia 2 R jejich lieárí 2 R. 3 R, která eprochází počátkem je rovia, která obsahuje 27

28 Lemma (vlastosti vektorového podprostoru) Následující vlastosti eprázdé podmožiy ekvivaletí. a) W V. b) W je uzavřeá a libovolé lieárí kombiace svých prvků. c) [ W ] = W. W V, kde V je vektorový prostor, jsou Příklad a) Triviálí vektorový prostor [ o] = { o } je podprostorem každého vektorového prostoru. N R R. b) ( ) c) Nechť 5 V R. 5 V R je možia těch vektorů, jejichž 2. a 4. souřadice jsou ulové, pak d) Možia ( ) prostoru {,2,,3, 5 ;,, } V = a b a c b R a bc R je vektorový podprostor vektorového 5 R. e) Podprostory 2 R. Nechť 2 M R, pak pokud M obsahuje pouze počátek (tj. ulový vektor), pak [ M ] = { o }, pokud M obsahuje jede eulový vektor, pak [ M ] = [ u ], což je geometricky přímka procházející počátkem, pokud M obsahuje dva růzoběžé vektory, V je tedy podprostorem procházející počátkem souřadic a ebo f) Podprostory uv, pak [ ] [ ] 2 M = u, v = R, 2 R právě tehdy, když je to buď { o } ebo přímka 2 R. 3 R. Aalogicky jako v předešlém bodě e) je V podprostorem 3 R tehdy a je tehdy, když je to buď { o } ebo přímka procházející počátkem souřadic ebo rovia procházející počátkem souřadic a ebo 3 R. 28

29 Defiice (možiy geerátorů) Říkáme, že koečá podmožia M vektorů z vektorového prostoru V, (tj. M V ) geeruje podprostor W vektorového prostoru V (resp. je možiou geerátorů W, kde W V ) právě tehdy, když je W jejím lieárím obalem, tj. [ ] M = W Pozámka a) Možia vektorů { u u } tehdy, když platí V = [ u u ],, 1 K k je možiou geerátorů vektorového prostoru V právě,, 1 K k. b) Triviálí vektorový prostor { o } je geerová ulovým vektorem o, tj. [ ] = { } o o Lemma (elemetárí úpravy a možiě geerátorů) Nechť { u,, 1 K uk} je možia vektorů z vektorového prostoru V a { v,, 1 v j} vektorů, která vzikla z možiy vektorů { u u },, 1 K k ásledujícími postupy a) záměou pořadí vektorů, b) vyásobeím libovolého vektoru eulovým reálým číslem, c) přičteím k libovolému vektoru lieárí kombiace ostatích vektorů, d) vyecháím vektoru, který je lieárí kombiací ostatích vektorů, e) přidáím vektoru, který je lieárí kombiací ostatích vektorů, u1, K, uk = v1, K, v j. pak platí [ ] Jestliže avíc je možia vektorů { u u } pak je možia vektorů { v,, 1 vj} K je možia,, 1 K k možiou geerátorů vektorového prostoru V, K rověž možiou geerátorů vektorového prostoru V. 29

30 Pozámka a) Lemma přiáší sezam tzv. elemetárích úprav, pomocí ichž můžeme z jedé možiy geerátorů získat jiou možiu geerátorů daého vektorového prostoru. b) Zároveň z tohoto lemmatu plye, že etriviálí vektorový prostor má ekoečě moho moži geerátorů. Bezprostředím důsledkem předešlého lemmatu je ásledující tvrzeí Tvrzeí Každá koečá možia vektorů M má lieárě ezávislou podmožiu M se stejým lieárím obalem, tj. M = [ M] Příklad Určeme, jsou-li vektory = ( 1,2 ), = ( 1,1) prostoru V 2. Řešeí Vektory a, b geerují vektorový prostor V 2, pokud a b geerátory aritmetického vektorového ( ( u, u ) V )( x, x R) u = u = x a + x b Dosadíme do předchozího vztahu souřadice a získáme vztah ( u, u ) = x ( 1,2) + x ( 1,1) a dostaeme soustavu dvou lieárích rovic o dvou ezámých x1, x 2 u = x x u = 2 x + x , 30

31 Sečteme-li obě rovice, obdržíme Dosazeím za x 1 do prví rovice získáme Takže každý vektor (, ) x x1 = u1 + u2. = 2u u u = u u V lze zapsat ve tvaru ( ) ( 2 ) u = x a + x b = u + u a + u u b, a proto je vektorový prostor V 2 geerová vektory a, b a ebo též řekeme, že možia vektorů { ab, } je možiou geerátorů vektorového prostoru V 2 a ebo také píšeme [, ] = V2 ab Příklad Ukažme, že vektory = ( 1,0,0 ), = ( 0,1,0 ), = ( 0,0,1) e e e jsou možiou geerátorů aritmetického vektorového prostoru V 3. Řešeí Je zřejmé, že každý vektor (,, ) e1, e2, e 3 ve tvaru u = u1e1 + u2e2 + u3e 3. u = u u u V lze zapsat jako lieárí kombiaci vektorů Příklad Dokažme, že vektory = ( 1,2 ), = ( 1,1 ), = ( 0,1) vektorového prostoru V 2. Řešeí a b c jsou možiou geerátorů Po dosazeí souřadic vektorů do defiičího vztahu má získaá soustava rovic ekoečě moho řešeí a apříklad pro volbu 3 0 x = platí ( u u ) ( u u ) u = + a + 2 b + 0c Pozameejme, že to ovšem eí lieárě ezávislá možia geerátorů prostoru V 2. 31

32 Pozámka a) Z předešlých příkladů vidíme, že možia geerátorů vektorového prostoru V 2 eí jediá, ai jedozačě určeá počtem svých čleů. A právě o těchto výsledcích hovoří obecě lemma b) Jsou-li vektory v koečé možiě všech geerátorů vektorového prostoru V lieárě závislé, pak utě alespoň jede z těchto vektorů je lieárí kombiací ostatích vektorů a takový vektor můžeme podle lemmatu z možiy geerátorů vyjmout, protože ostatí zbývající vektory geerují tetýž vektorový prostor V. Tuto úvahu můžeme opakovat a provádět ji tak dlouho, až po koečém počtu kroků dostaeme koečou možiu geerátorů, které již budou lieárě ezávislé (viz tvrzeí ) Defiice (báze vektorového prostoru) Podmožia B etriviálího vektorového prostoru V se azývá báze vektorového prostoru V právě tehdy, když je B možia lieárě ezávislých vektorů, které geerují vektorový prostor V Příklad e = 1,0,0, e = 0,1,0, e = 0,0,1 V tvoří bázi aritmetického Dokažme, že vektory ( ) ( ) ( ) vektorového prostoru V 3. Řešeí V příkladu jsme ukázali, že vektory e1, e2, e 3 V3 jsou možiou geerátorů vektorového prostoru V 3. 32

33 Rovice s1e1 + s2e2 + s3e3 = o vede a soustavu rovic která má jedié řešeí ( s s s ) s s s = 0, = 0, = 0, = = = a vektory e1, e2, e 3 V3 jsou tudíž lieárě ezávislé. Podle defiice tvoří bázi vektorového prostoru V Pozámka Příklad lze aalogicky zobecit a vektory e1, e2, K, e V z pozámky f) a tedy tyto vektory tvoří bázi V. Tato báze se azývá kaoická báze Věta (Steiitzova věta o výměě) Nechť V je vektorový prostor, echť vektory v,, 1 K vs geerují podprostor W V a dále w,, 1 K wr jsou libovolé lieárě ezávislé vektory z W. Pak platí a) r s, tj. počet lieárě ezávislých vektorů z W je ejvýše rove počtu jeho geerátorů, b) při vhodém přečíslováí vektorů v,, 1 K vs [ v,, v ] [ w,, w, v,, v ] W = 1 s = 1 r r+ 1 s K K K, tj. v systému geerátorů v,, 1 K vs prostoru W lze r vhodých vektorů vyměit za vektory w,, 1 K wr. Tato věta má pro praktické výpočty velmi důležité důsledky. je 33

34 Důsledek Steiitzovy věty (věta o dimezi) Každé dvě báze libovolého podprostoru vektorového prostoru V mají stejý počet vektorů. Číslo udávající počet vektorů v libovolé bázi je podle důsledku Steiitzovy věty určeo jedozačě a charakterizuje daý vektorový prostor. Tato skutečost ás opravňuje k ásledující defiici Defiice (dimeze vektorového prostoru) Počet vektorů v libovolé bázi vektorového prostoru V se azývá dimeze vektorového prostoru V a začí se dim V Důsledky (Steiitzovy věty) Nechť V je podprostor libovolého koečě geerovaého vektorového prostoru, speciálě =, pak platí V R a) Každá lieárě ezávislá podmožia možiy V se dá rozšířit a bázi V. b) Každá možia, která geeruje V, obsahuje bázi V. c) Položme dim V = m. Pak m. d) Každá podmožia možiy V, která má více ež m prvků, je lieárě závislá. e) Každá lieárě ezávislá podmožia možiy V, která má m prvků, je bází V. f) dim R =. 34

35 Věta (o jedozačém vyjádřeí souřadic vektoru) Nechť { u u },, 1 K k je možia geerátorů vektorového prostoru V (tj. každý vektor v V se dá vyjádřit ve tvaru v = s1u1 + K + skuk ). Pak vektory u,, 1 K uk tvoří bázi vektorového prostoru V právě tehdy, když koeficiety s,, 1 K sk R jsou určey jedozačě. Tato věta ás opravňuje k ásledující defiici Defiice (souřadic vektoru) Nechť B = { u u },, 1 K k je báze vektorového prostoru V a v = s1u1 + K + skuk V. Jedozačě určeé koeficiety s,, 1 K sk R této lieárí kombiace se azývají souřadice vektoru { } = ( s s ) v V vzhledem k bázi B = { u,, 1 K uk}. Tuto skutečost ozačujeme v,, 1 K k. Pokud je B kaoická báze (viz pozámka ), pak píšeme krátce B ( s s ) v =,, 1 K k Příklad Určeme souřadice vektoru u = ( 0,1,4) V3 vzhledem k bázi {( 1,2,3 ), ( 2,1,2 ), ( 3,2,1) } Řešeí Vektory ( 1,2,3 ), ( 2,1,2 ), ( 3,2,1 ) skutečě tvoří bázi prostoru B =. 3 3 = (ověřte samostatě). V R Nyí vyjádříme vektor u = ( 0,1,4) jako lieárí kombiaci vektorů ( ) ( ) ( ) tj. ( 0,1,4) x ( 1,2,3) x ( 2,1,2) x ( 3,2,1) ,2,3, 2,1,2, 3,2,1, = + +. Tato vektorová rovice vede a řešeí soustavy lieárích rovic x + 2x + 3x = 0, x + x + 2x = 1, x + 2x + x =

36 Tato soustava má právě jedo řešeí x1 = 1, x2 = 1, x3 = 1. Toto jsou zároveň souřadice vektoru { u } ( 1,1, 1) vzhledem k bázi {( 1,2,3 ), ( 2,1,2 ), ( 3,2,1) } B = Připomeňme, že zápis = ( 0,1,4) bázi = ( 1,0,0 ), = ( 0,1,0 ), = ( 0,0,1) 3 B = prostoru V = R. u vyjadřuje souřadice vektoru u vzhledem ke kaoické { } e e e Příklad a) Každá přímka v směrový vektor. b) Každá rovia v 2 R ebo v 3 R, která prochází počátkem, má dimezi 1. Bází je její 3 R, která prochází počátkem, má dimezi 2. Bází je dvojice vektorů, které figurují v její parametrické rovici. 1.2 Skalárí souči a ortogoalita vektorů Zatím jsme si řekli jak ve vektorových prostorech sčítat ebo odčítat vektory, jak je ásobit skalárem (tj. prodlužovat, zkracovat ebo měit jejich orietaci). Díky lieárím kombiacím umíme zjišťovat jejich vzájemou vazbu, resp. vzájemou polohu. Abychom však mohli určovat velikosti vektorů a úhly mezi imi, potřebujeme zavést tzv. skalárí souči. V ásledující defiici uvedeme základí vlastosti skalárího součiu defiovaého a vektorovém prostoru. 36

37 1.2.1 Defiice (vektorového prostoru se skalárím součiem) Vektorový prostor V R se azývá vektorový prostor se skalárím součiem právě tehdy, když je dáo zobrazeí V V R reálé číslo u v tak, že platí ( ) a) ( V ) 0 ( = 0 = ) u u u u u u o, b) (, V ) u v u v = v u, c) (,, V ) ( ) u v w u v + w = u v + u w, d) (, V )( a R)( a ) = a( ) u v u v v u. 2, které každé dvojici vektorů (, ) V u v přiřazuje Při daých u, v V azýváme reálé číslo součiem vektorů ua v. u v R (též krátce píšeme uv R) skalárím Defiice (skalárího součiu aritmetických vektorů) Skalárí souči vektorů x (,, ), y (,, ) = x x = y y R 1 K 1 K je reálé číslo = = i= 1 x y x y K x y x y. i i Defiice (velikosti vektoru) Nechť V je vektorový prostor se skalárím součiem a u je libovolý vektor z V, pak číslo u u azýváme velikostí vektoru u (ebo též ormou vektoru u) a začíme jí symbolem,, u = u1 K u R je u. Speciálě pro ( ) u = u + K + u

38 1.2.4 Věta (vlastosti ulového vektoru, velikost ásobku vektoru) Nechť V je vektorový prostor se skalárím součiem, pak platí a) ( V ) = 0 v v o, b) ( V ) 0 v v = v = o, v V a R av = a v. c) ( )( ) Defiice (kolmosti vektorů) Nechť V je vektorový prostor se skalárím součiem. Vektory u, v V se azývají kolmé (též ortogoálí) právě tehdy, když jejich skalárí souči je rove ule, tj. u v = 0. Speciálě pro V = R říkáme, že vektory x, y R jsou a sebe kolmé (ortogoálí) a píšeme x y, pokud platí x y = Defiice (ortogoálího doplňku) Nechť W je vektorový prostor se skalárím součiem a V jeho podprostor. Možiu všech těch vektorů z W, které jsou ortogoálí (kolmé) ke všem vektorům z V, azveme ortogoálí doplěk podprostoru V v prostoru W a začíme ho V. Speciálě ortogoálí doplěk V vektorového podprostoru V vektorového prostorur je možia všech vektorů z R, které jsou kolmé ke všem vektorům z V, tj. { ;( ) } V = v R u V v u. 38

39 1.2.7 Příklad 3 a) Je-li = ( abc,, ) R eulový vektor, pak { } ( ) to tedy rovia o rovici ax + by + cz = 0. Je-li X = s, kde s R, tj. V = [ ], je V { } si, že vektor ( ) 3 { x, y, z R 3 ; ax by cz 0 } = + + =. Je 3 V R přímka s parametrickou rovicí =, tedy rovia ax + by + cz = 0. Všiměme = abc,, R je tzv. ormálový vektor roviy zadaé rovicí ax + by + cz = 0. Normálový vektor je vektor, který je kolmý ke všem přímkám ležícím v daé roviě. b) Naopak, je-li 3 W R rovia ax by cz =, pak W ( a, bc, ) směrovým vektorem ( abc,, ) procházející počátkem. c) Nechť 3 W R je rovia z = 0. Její ortogoálí doplěk W je osa z. =, což je přímka se 3 Libovolý vektor u = ( x, y, z) R se dá rozložit a dva vektory = ( x, y,0) + ( 0,0, z) u, přitom prví z ich patří do W a druhý do W. Takový ortogoálí rozklad existuje pro každý podprostor a jeho ortogoálí doplěk Tvrzeí (základí vlastosti ortogoálích doplňků) Nechť V R, pak platí a) ( R )( V )( V ) u x y u = x + y, b) V V = { o }, c) ( ) S R S R, ( ) d) [ ] S R S = V S = V, ( ) e) ( V, W R ) ( V W ) ( W V ) f) ( V ) = =, = V, g) dimv = dimv. 39

40 1.2.9 Příklad Řešeí soustavy homogeích lieárích rovic Přepišme daou soustavu ve tvaru 2x + x 4x = 0, x 2x + 3x = 0, x x + 3x = Ozačme 0x + 2x + x 4x + 0x = 0, x + 0x 2x + 3x + 0x = 0, x + 0x x x + 3x = ( ) ( 0,2,1, 4,0 ), ( 1,0, 2,3,0 ), ( 0,0, 1, 1,3 ), x = x x x x x R r r r 5,,,,, = = = pak lze soustavu zapsat ásledujícím způsobem r x = 0, 1 r x = 0, 2 r x = 0. 3 Podle defiice je vektor řešeí x ortogoálí k tzv. řádkovým vektorům r x, r x, r x. 5 r1, r2, r 3 V R, tj Protože vektory tedy dimv = 3. 5 r1, r2, r 3 V R jsou lieárě ezávislé (ověřte), tvoří bázi [ 1, 2, 3] V = r r r a 40

41 Závěr 5 a) Vektor x = x, x, x, x, x R je řešeím zadaé soustavy rovic, právě když x V , tj. vektor x R je řešeím soustavy, právě když je kolmý k vektorům 5 r, r, r V R. 5 ( ) b) Možia všech řešeí homogeí soustavy lieárích rovic tvoří podprostor V prostoru 5 R, jehož dimeze je podle, jehož dimeze je podle tvrzeí g) dim V = dim V = 5 3 = 2. [ ] 1 BUBENÍK, F. a O. ZINDULKA, Matematika vyd. Praha: ČVUT, 159 stra. ISBN [ ] 2 CHARVÁT, J., V. KELAR a Z. ŠIBRAVA, MATEMATIKA 1: Sbírka příkladů.. 1. vyd. Praha: ČVUT, 163 stra. ISBN [ ] 3 KAŇKA, M., Sbírka řešeých příkladů z matematiky: pro studety vysokých škol. 1. vyd. Praha: Ekopress, 298 stra. ISBN [ ] 4 KAŇKA, M., J. COUFAL a J. KLŮFA, Učebice matematiky pro ekoomy.. 1. vyd. Praha: Ekopress, 198 stra. ISBN [ ] STUDIJNÍ MATERIÁLY 5 MOUČKA, J. a P. RÁDL, Matematika pro studety ekoomie.. 1. vyd. Praha: Grada, 272 stra. ISBN OTÁZKY A ÚKOLY Příklady v textu kapitoly. 41

42 KLÍČ K ŘEŠENÍ OTÁZEK viz. text 42

43 Kapitola 2 - Matice KLÍČOVÉ POJMY Matice, rovost matic, speciálí typy matic, řádkový a sloupcový prostor matice, hodost matice, ekvivaletí matice, Gaussova elimiačí metoda, regulárí a sigulárí matice, součet a souči matic, vlastosti operací s maticemi, iverzí matice, maticové rovice CÍLE KAPITOLY Pochopeí pojmu matice a algebraických operací s maticemi, maticových rovic ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodi VÝKLAD Teorie matic a determiatů představuje úvod do lieárí algebry. Nejrozsáhlejší aplikace mají matice a determiaty při řešeí systémů lieárích rovic. Pojem determiatu zavedl již v roce 1693 ěmecký matematik W. G. Leibiz ( ), 1716), ale jeho objev upadl v zapomeutí. V roce 1750 dospěl zovu k pojmu determiatu švýcarský matematik G. Cramer ( ). 1752). Všeobecě se začalo v matematice používat determiatů až kocem 18. století. Zasloužili se o to zejméa matematici A. T. Vadermode ( ) 1796) a A. L. Cauchy ( ). 1857). Současě s teorií determiatů se rozvíjela teorie matic, 43

44 jejímž zakladatelem je aglický matematik A. Cayley ( ). Na dalším rozvoji teorie matic se podíleli zejméa G. Frobeius ( ), J. J. Sylvester ( ) a K. Weierstrass ( ). 2.1 Pojem matice Defiice (matice) Matice typu m je uspořádaé obdélíkové schéma sestaveé z reálých čísel zapsaých do m řádků a sloupců, (1.1) Am ( aij ) i 1, K, m ; j 1, K, ; m, N. pro { } { } a11 a12 K a1 a a K a, K K K K am1 am2 K am = = m Čtvercová matice má stejý počet řádků jako sloupců, tj. m = a místo matice typu říkáme též čtvercová matice -tého řádu (resp. čtvercová matice řádu ). Matice, která eí čtvercová, se azývá obdélíková matice, tj. m. Matice obvykle začíme velkými písmey A, B, K, E ebo stručě A, B, K, E, resp. m k l ( aij ),( bij ), K,( eij ) ebo krátce ( aij ),( bij ),,( eij ) m k l K. Matici ( 1.1 ) lze též chápat jako m pod sebe vodorově zapsaých -rozměrých aritmetických vektorů z vektorového prostoru V, (,, ),, r (,, ) r = a Ka K = a K a V, které se azývají řádkové vektory (řádky) m m1 m tj. matice A. Matici ( 1.1 ) lze též považovat za vedle sebe svisle zapsaých m-rozměrých aritmetických vektorů z vektorového prostoru m V, tj. s (,, ),, s (,, ) = a Ka K = a K a V, které se 1 11 m1 1 m m azývají sloupcové vektory (sloupce) matice A. 44

45 Reálým číslům aij R říkáme prvky matice A. Idex i se azývá řádkový idex prvku a ij a idex j se azývá sloupcový idex prvku a ij, takže a ij ozačuje prvek, který leží v matici A v i-tém řádku a j-tém sloupci. Prvky a,,, 11 a m ( ) K matice ( ) mm 1.1, jsou diagoálí prvky a tvoří hlaví diagoálu matice 1.1. Je-li m, pak hlaví diagoálu tvoří diagoálí prvky a,, 11 K a. Podobě se defiuje pojem vedlejší diagoály. Vedlejší diagoálu pro m tvoří prvky a1,, a2, 1, K, a, m+ 1 a při m jsou to prvky a1,, a2, 1, K, a, Příklad Matice A = je matice typu 3 4 ( ) a vektor = ( ) r 3 3,0,6,1 je třetím řádkem matice A, vektor s 2 = 2,0,0 je druhým sloupcem matice A. Prvek a 23 = 1, ale prvek a 32 = 0. Hlaví diagoálu matice A tvoří prvky a11 = 1, a22 = 0, a33 = 6 a vedlejší diagoálu matice A tvoří a = 4, a = 1, a = 0. prvky Defiice (rovosti matic) Matice A, B stejého typu m jsou si rovy a píšeme A = B právě tehdy, když pro všecha i { 1, K, m} a j { 1,, } K platí aij = bij, tj. A = B zameá, že matice A, B jsou stejého typu a jejich prvky a odpovídajících si místech jsou si rovy. 45

46 2.1.4 Defiice (speciálích typů matic) a) Matice O typu m, pro jejíž všechy prvky platí ( { }) { } ( ) a = 0 i 1, K, m j 1, K,, se azývá ulová matice typu m a ij ozačujeme ji O m ebo je-li typ matice z kotextu zřejmý, stručě ji ozačíme O. b) Jedotková matice E (též se v literatuře začí jako I ebo J ) řádu je čtvercová matice řádu, jejíž prvky mimo hlaví diagoálu jsou uly a prvky a hlaví diagoále jsou rovy jedé, tj. { } ( i 1, K, )( j { 1, K, } ) 1) a = 1, ii ( i j aij = ) 2) 0. Zřejmě řádky jedotkové matice tvoří jedotkové vektory z V. c) Diagoálí matice je čtvercová matice, pro jejíž prvky platí i j a ij = 0. Zřejmě každá jedotková matice je diagoálí matice. d) Matice A typu m se azývá trojúhelíková matice, jestliže platí ( i { K m} ) j { K} ( i > j aij = ) ( ) 1,, 1,,, 1) m (tj. emá více řádků ež sloupců), 2) a 0 (tj. a hlaví diagoále emá žádou ulu), ii 3) 0 (tj. pod hlaví diagoálou má samé uly). e) Matice A typu m se azývá schodovitá matice, má-li každý eulový řádek, s výjimkou prvího, a začátku více ul ež řádek předchozí a všechy ulové řádky jsou a koci. 46

47 Jiak řečeo, azveme-li prví eulový prvek daého řádku vedoucím prvkem řádku, pak matice A typu m je ve schodovitém tvaru, jestliže pro každé dva její vedoucí prvky aij, a kl platí pro jejich idexy i < k j < l a ad eulovým řádkem v matici A eí žádý ulový řádek. Je jasé, že každá trojúhelíková matice je schodovitá. Schodovité a trojúhelíkovité matice mají výzam při určováí tzv. hodosti matice. f) Matice T A, která vzike z matice A tak, že zaměíme řádky za sloupce (resp. sloupce za řádky), přičemž zachováme jejich pořadí, se azývá matice traspoovaá k matici A. Je-li A matice typu m, pak T A je matice typu m a a = a, takže T ij ji traspoovaou matici hlaví diagoály. T A k matici A získáme překlopeím matice A podle Protože podle defiice je ( A traspoovaé. T ) T = A, říkáme, že matice A a T A jsou avzájem Dále je-li A diagoálí matice, pak platí A T = A a speciálě E T = E. O T = O O je čtvercová matice. g) Matice A se azývá symetrická, jestliže A T = A. h) Matice, která vzike z matice A typu m vyecháím ěkterých řádků ebo sloupců, se azývá submatice matice A. 47

48 2.1.5 Příklad a) Matice je ulová matice typu 2 3. O O = 2 3 = b) Matice je jedotková matice 3. řádu. E = c) Matice , 0 1 0, 0 0 0, jsou diagoálí matice. d) Matice , 0 5 1, jsou trojúhelíkové matice, matice , ejsou trojúhelíkové matice. 48

49 e) Matice jsou schodovité π e, 0 0 3, π f) K matici je traspoovaá matice A = T A = g) Matice je symetrická, protože platí A = A T = A. h) Matice 1 5 B = 3 0 je submaticí matice A z předešlého příkladu g), eboť vzikla z matice A vyecháím prvího a třetího řádku a druhého a třetího sloupce. 49

50 2.1.6 Řádkový a sloupcový prostor matice Řádky matice A typu m tvoří možiu vektorů v azývá řádkový prostor matice A a ozačíme ho R( A ). ( A) [ r K r ] a tedy R( ) R R = 1,, m Sloupce matice A typu m tvoří možiu vektorů v azývá sloupcový prostor matice A a ozačíme ho S ( A ). R. Lieárí obal této možiy se A. m ( A) [ s K s ] a tedy S ( ) R S = 1,, m R. Lieárí obal této možiy se A Věta (o dimezi řádkového a sloupcového prostoru matice) Nechť A je matice typu m, pak platí ( ) = dims ( ) dimr A A Defiice (hodosti matice) Dimeze řádkového prostoru matice A se azývá hodost matice A a ozačuje se h( A ) a tedy ( ) = dimr( ) h A A. 50

51 2.1.9 Pozámka a) Hodost ulové h ( O ) = 0. Jestliže h( ) A O A N. b) Podle Steiitzovy věty a jejích důsledků je hodost matice rova maximálímu počtu lieárě ezávislých řádků matice a podle předešlé věty též maximálímu počtu lieárě ezávislých sloupců matice, tj. Je-li A matice typu m, h ( ) mi ( m, ) A, c) Podle věty 2.1.7, je-li A libovolá matice typu m je hodost matice A rova hodosti matice traspoovaé T A, tj. T ( ) h( ) = h( ) A A A. Hodost matice budeme počítat s použitím trojúhelíkové matice (defiice d) ebo obecě schodovité matice (defiice e) Tvrzeí (vlastosti trojúhelíkové a schodovité matice) Je-li A trojúhelíková ebo schodovitá matice, pak a) její eulové řádky jsou lieárě ezávislé, b) její eulové řádky tvoří bázi řádkového prostoru R( A ), c) hodost h( A ) je rova počtu jejích eulových řádků. 51

52 Defiice (elemetárích řádkových úprav matice) Nechť A, B jsou matice typu m. Řekeme, že matice B vzikla elemetárími řádkovými úpravami z matice A, jestliže vzikla opakováím koečého počtu ásledujících úprav a) záměou pořadí dvou řádků, b) vyásobeím libovolého řádku matice eulovým reálým číslem, c) přičteím reálého ásobku libovolého řádku k libovolému řádku matice Defiice (ekvivaletích matic) Řekeme, že matice A, B jsou ekvivaletí právě tehdy, když matice B vzike z matice A koečým počtem elemetárích řádkových úprav. Začíme A~ B Příklad Jsou dáy matice A =, = B Protože matice B vzikla z matice A tak, že jsme k druhému řádku matice A přičetli ( 2) - ásobek prvího řádku, platí A~ B Věta (o hodosti ekvivaletích matic) Nechť matice B vzike provedeím koečé poslouposti elemetárích řádkových úprav a matici A, tj. ~ A B, pak R( B) = R( A ) a h( ) = h( ) B A. 52

53 Pozámka a) Budeme-li provádět elemetárí řádkové úpravy a matici T A, pak je to totéž jako bychom prováděli tyto úpravy a sloupce matice A, tj. tyto úpravy jsou vlastě elemetárí řádkové úpravy aplikovaé a sloupce matice A, a proto je azýváme elemetárí sloupcové úpravy matice A. b) Podle pozámky c) víme, že avzájem traspoovaé matice mají stejou hodost, proto můžeme při převodu matice a trojúhelíkovou ebo schodovitou matici používat též elemetárí sloupcové úpravy ebo kombiaci obou úprav. c) POZOR!!! Elemetárí řádkové úpravy aplikovaé a sloupce místo a řádky (tj. elemetárí sloupcové úpravy) matice A zachovávají hodost matice, ale emusí zachovávat řádkový prostor matice A. d) V této souvislosti též mluvíme o elemetárích úpravách eměících hodost matice, což je souhrý ázev pro elemetárí řádkové a sloupcové úpravy Gaussova elimiačí metoda Gaussova elimiačí metoda je obecý postup, jak pomocí elemetárích úprav eměících hodost matice získat z libovolé eulové matice A ekvivaletí schodovitou (speciálě trojúhelíkovou) matici B, která má stejou hodost jako matice A (hodost matice A je pak rova počtu eulových řádků ekvivaletí matice B). Celý postup Gaussovy elimiačí metody je ejpřehledější a kokrétích příkladech. 53

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na.

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na. Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Lieárí algebra II láta z II semestru iformatiy MFF UK dle předáše Jiřího

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

POZN AMKA K V YPO CTU BAYESOVSKEHO RIZIKA Ales LINKA TU Liberec, KPDM Abstrakt. V teto praci porovame dva bayesovske odhady fukce spolehlivosti v expoecialm rozdele z pohledu bayesovskeho rizika vypo-

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Á Í Ě č ě š č č ž ě ě š č ě ě ě š ů ě ě š ů č ě ě ě ě š ů ě š ě ě ě š ů ě Ž Í ě ž ň ů úč ě Č č ž š ě ě ž ň ů ů č ě ď č č č č ú š ě č č Í Š ě č ť ě ě ů š č ů č ů ů ů ů ě ů ů ě ě š ů úč č š ě č ě ě ň š ě

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

ď ž Č č č ě Ů š ž Ů Ů Ů ě Ů Ů ě ů Úč ě ě š Š ů Ů ú Ů ěž Ů ě ě Ů č ě Ů ÚČ Č ě č Úč č č š ě Ů ě ě úč č š č Č č Ů č č ÚČ ž š č ů č č Ž ň ž č ě ž ÚČ Č č č č š č ě Ú úč Ů ž ě š Ů ě Ů č š Ů č Í Ů č Ů ě č č ů

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Í ž ě ě Á Á É Š ó Á ĚŘ Í Ý Í Á ě Č ú ě Ž Í ě Í ě š ú ě ě ú ě ě Ž ů Č ž ě ě Ž Ž ě Ž Ž ě Í ú ě š Š Ú ě ě Ž ě ě ě š ě Č š š ú Á ĚŘ Í Á Ý ě ě ú ů ě Í ě Č Ť š ú ě ě ě Í ě ů Č ž ě Ž Ú ě ě š ů ě ů ě ě ú ů ě Žš

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

ů Č Č Ú ě ě ě Ž ě ě š Č ě Č Č ě ě ť ě ú ě Ž ú ú ě ě ž ú ě ě ě ž ó ú ě š ě ě Ž ě ě ú ú ě ě ú ě ú ě ž ú ě ů ň ú ě ě ú ú š ú ě ě ě ě ú ě Ž ů Č ě Ž Ž ě ž ú ů ú ě ú ě ů ú ú ů ú ů ě ú ě ú ě ě ú ů ú Ž ú ě Ž Č

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

ú ú ú ú úč Š ú Š ú š Č š ú Š š Ř Ý Č ž Š ú Č ó ú ž š šť ž Š ž ž ž Š ž ú ó ž ú Š š š ú š Š Š Š ú ť ú š Š ú ú ú Ř Ý Á Š É š Č Ó Ó Ť Ě Ť š Ý Ů Č Š Ř Š Ě Ý š Č ó ó ú ď Á ó ž ú ž ú Ó Á Ý Á Á š Ť ť ť ť Ť š

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Á Í á á á š ú ě š Č á á ř á á é ě é úř é á á ř á é ř ý á á č ú á á š á ř ě á č č ě á ř š č ěř á č š ě š ě Č á č á č ř ě ř é á ř ě ř é á á š ú ě Š ů ě ý é á é é č á ě č ě ů ý ě á é č á ř é á é áš ú č é

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Měření na D/A a A/D převodnících

Měření na D/A a A/D převodnících Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Carl Friedrich Gauss

Carl Friedrich Gauss Carl Friedrich Gauss F. KOUTNÝ, Zlí (. 4. 777.. 855) Každé vyprávěí o ěkom, kdo žil dávo, je utě je kompilací prameů a odkazů, které v ejlepším případě pocházejí od jeho pamětíků. Rámec tohoto textu tvoří

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Č Č Č Č ř ř ď ěř ř ú ě ě ů ú ě ů ů ř ň ř ř ř ř ř ú š ě Č ň Č ě Č ěř ě Č É Ě Ř Ě Ý ě ú ě ěř ř ú ě ť Č Č Í ř ÚČ ř ě ř ěž Í ě ÚČ Í Č ť ě ř ú ě ě ú ú ě ú ě ú ř ť ť ě Š ť ě ú ě Ó ů ň ÚČ ě ř ěř ú ě šú ě ÚČ ě

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

š ě ě ý ř ř ě ě ě ý ů ě ě š ř ů é ě š ř ů ý ů é Í ě ě š ř ů ř ř ú ý ů ý ů ě ě š ř ů ž ě š Í ú ř ž é ú é š ě ě é ě ř Í ř ú š ě š ě ř ř é ř ř é é ř ř š Ř Ě Ř Á Í Ř Í ř ě ř ú ř ř ě ě é ú ě ý ú ů ě ě š ř ů

Více

É č É Í Ř Á Ě ž š č č š š šť Ť Ý č č Ť Ť Ť č Ť č šť Í č č č š š ď ž Ť Á č Í Ó š Ž š Č Ť č Ť č Ť ď č š Č Ď ž ž š č č č Ú Š š Ť Č š ž š š č Ú š č š É Š š šš š Ť č č č č š č š Ť č č ž š č Ť č š Ť š č š č

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

č ě Š ř ě č ě Š ě č ř Š ě šč é č ř ě ž š ěž š é č ěž é ě š š ř ů ů č ě ž ě č ě ř ů ě é č é č ě ř š ř č ř é ř ě ř č ř ř é š č é č ř ě š ř š ě č š é é ž š ž ť č ř ž č é č šš ěž ů č č ěž č é é ž ěž ů č ů

Více

ř č Á ú Ě Í š é é ř Ž Č č ř ě é Š ž č é ž č č é Č š ě ůš š Č š ě ůš š Ť é Č ř ň ř ě ž úč ě Ů úč ž ř ž ř é š é ů ž č ů ř ě ř ě ů č ů ě Š é ř ě é Š š Č ř č ě š č ř ů š ě é ř Á úč ř ě é Š ž é ž č é Š ž č

Více

Ý ÚŘ Č Ý Ý Ě Ř Ř Ř Ý ě ú ý ů ý ů ě ú ě ý š ú ú ě Č é ě Ř É ý ú Í ý ý Í ú Í ý Í ě Í Í Í Ú Í ý ý Í ý ýš ý ý ěň ů é ě ů š ý ž ú Ú ý ú Č Ú Í ú ú Í ě ý ú ě é ú ě Ú ů žň Í ý ý ý ů Í Í Ů ú ú ú Í Í ý Í ě ů ě ú

Více

ů č ý ř á ř ě á ý č š áš é á Žá é š ě ě č ý ě ě é č č č č ř á ý á áš ě ů ě ý ř č ř é č ě ř Ú Ř Á Í Ů č Ý Á č Í Á Ř Ě Ě Ý Í ť Í Á É Ě Í Ě ŠÍ Ř Ů Á Á Ů Ř Ě Á Ý Č É ý ůž ě ě é á ů á ě ý á á ů á č ú ě ý ů

Více

ě š Ř é žď ě ř ř ě ž ň ě é ě ě š ř ů ě ě ě ě š ů ě š š é Žď ě ř ř ě Ž ň é ú Ř ě é š š é ú é š ě š é ú ú Ž ž ě é ú ř š ě é ů ř ž ř Ž ě ř ě ě é ě ů ú ú ř š ú ř ů ě é Ž ř ě ř ě ř Ž ň Ž ů é ř ď ů ž ř ů ě é

Více