4.4 Exploratorní analýza struktury objektů (EDA)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "4.4 Exploratorní analýza struktury objektů (EDA)"

Transkript

1 4.4 Exploratorní analýza struktury objektů (EDA) Průzkumová analýza vícerozměrných dat je stejně jako u jednorozměrných dat založena na vyšetření grafckých dagnostk. K tomuto účelu se využívá různých technk zobrazování vícerozměrných dat. Pro případ, kdy jsou jednotlvé sloupce matce X málo korelované postačují rozptylové dagramy pro jednotlvé kombnace složek vektoru x a pro nekorelované pak sloupce matce X. Obr. 4.1 Rozptylový dagram pro 0 objektů a 4 proměnné B40X1, B40X, B40X3, B40X4 nestandardzovaných dat B40, SCAN. Je patrná podobnost objektů a vysoká korelovanost zejména prvních dvo proměnných. Jso patrné odlehlé objekty, představované body vzdáleným od ostatních. Rychlé posouzení podobnost mez jednotlvým objekty čl řádky datové matce usnadňují především symbolové grafy. Jednotlvé proměnné jsou v nch "kódovány" s ohledem na jejch konkrétní hodnoty do určtých geometrckých tvarů, symbolů. Každému objektu x (např. autu) tak odpovídá jstý obrazec zvaný symbol. Vlastnost dat se posuzují s ohledem na vzuální rozdíly mez symboly. ím lze v jednom grafu rozlšt více proměnných x j, j = 1,..., m. Prvním krokem před vlastním zobrazením do symbolů je obvykle standardzace. Mez základní typy zobrazovaných symbolů patří profly, polygony, tváře, křvky a stromy. Profly představují dvourozměrné zobrazení m-rozměrných objektů. Každý objekt x je charakterzován m proměnným, zobrazeným zde vertkálním úsečkam. Jejch velkost je úměrná hodnotě odpovídající proměnné x, j = 1,..., m. Profl pak vznká spojením koncových bodů těchto úseček. Je vhodné použít standardzované j proměnné dle vzorce x ( j ' x j (max *x j *) kde max*x j* je maxmální hodnota absolutní velkost proměnné x j vektoru x přes všechny body, = 1,..., n. Profly jsou jednoduché a umožňují snadné určení rozdílů mez jednotlvým objekty x a x k. Snadno lze takto dentfkovat vybočující objekt.,

2 Obr. 4. Korelační dagram (Casement Plot) pro 0 objektů a 4 proměnné B40X1, B40X, B40X3, B40X4 nestandardzovaných dat B40, SAGRAPHICS. Je patrná vysoká korelovanost čtyř sledovaných proměnných. V pravém horním roh jso patrné odlehlé objekty. Polygony jsou vlastně profly v polárních souřadncích, kdy každá proměnná objektu x, = 1,..., n, odpovídá délce paprsku vycházejícího ze společného středu. Paprsky dělí kružnc ekvdstantně, proměnné jsou standardzovány do ntervalu [0, 1]. Mez polygony patří graf slunečních paprsků a hvězdcový graf. (a) Graf slunečních paprsků má tvar sluníčka, které se skládá z paprsků, začínajících ve společném bodě, a úseček spojujících paprsky, které tak tvoří polygon. Zde každá proměnná x j objektu x odpovídá délce paprsku vycházejícího ze středu sluníčka. Paprsky jsou rozmístěny ekvdstantně, ve stejných vzdálenostech na kružnc, a proto se provádí lneární transformace do ntervalu [a, 1], kde a je zvolená spodní mez, obyčejně a = 0. Pro tuto transformac platí, že x ( j ' (1 & a)(x j & mn max x j & mn kde mn x j je mnmální a max x j maxmální hodnota j-té proměnné objektu x přes všechny objekty x, = 1,..., n. K určení směrů jednotlvých paprsků se defnuje jejch úhel α j, pro který platí π (j & 1) α j ', j ' 1,..., m. m Za společný střed paprsků se obyčejně volí počátek souřadnc. Pokud má být maxmální délka paprsků rovna R, je polygon pro objekt x p j ' (x ( j R cos" j, x ( spojncí m bodů p j o souřadncích j R sn" j ). Aby vznkl uzavřený obrazec, spojují se ještě první a poslední bod p 1 a p m. Vzájemné porovnání polygonů slouží k vzuálnímu posouzení podobnost objektů. V případě velkého počtu proměnných, např. m > 6, bývá však výsledný obrázek polygonů nepřehledný. (b) Hvězdcový graf vypadá na první pohled jako předchozí graf sluníčka. Sestává z paprsků, reprezentujících relatvní hodnoty proměnných u jednotlvých objektů, které se pro každý objekt spojují v jednom centrálním bodě. Stejně směřující paprsky u různých objektů se lší svojí délkou. Nejkratší paprsek ndkuje, že u objektu nabývá příslušná proměnná nejmenší hodnoty z celého výběru. Podobně nejdelší paprsek nformuje o nejvyšší hodnotě příslušné proměnné. Délky ostatních paprsků se pohybují podle relatvní velkost hodnot proměnné u příslušného objektu mez těmto dvěma krajním mezem. x j x j ) % a,

3 Obr. 4.3a Hvězdčkový graf (Stars Plot) pro 0 objektů a 4 proměnné B40X1, B40X, B40X3, B40X4 standardzovaných dat B40, SAGRAPHICS. Obr. 4.3b Klíč ke hvězdčkovém graf pro 4 proměnné B40X1, B40X, B40X3, B40X4 standardzo-vaných dat B40, SAGRAPHICS.

4 váře charakterzují každou proměnnou x j objektu x nějakým znakem. Mez znaky patří tvar tváře, délka nosu, velkost očí, tvar úst atp. var tváře závsí na použtém pořadí proměnných, které ovlvňuje snadnost nterpretace dat. Obr. 4.4 váře nestandardzovaných dat B40 pro 0 objektů a 4 proměnné B40X1, B40X, B40X3, B40X4, S-Plus. Lze nalézt řad vzájemně podobných tváří, kaz jících na podobnost objektů. vář Pfl thxol se jeví slně odlšná od ostatních. Obr. 4.5 váře zlogartmovaných dat B40 pro 0 objektů a 4 proměnné B40X1, B40X, B40X3, B40X4, S-Plus. Logartmováním dat se rozdíly mez objekty poněk d setřo a odlehlé objekty nejso př porovnání podobnost tak výrazné odlšné. vář Pfl thxol se však stále jeví odlšná od ostatních.

5 Křvky využívají transformace každého objektu x do spojté křvky, která je lneární kombnací všech jeho 1 proměnných. Andrews volí pro vyjádření křvky f odpovídajícího objektu x konečnou Fourerovu řadu f x f x (t) ' f ' x 1 % x sn(t) % x 3 cos(t) % x 4 sn( t) % x 5 cos( t) %... Křvky f, = 1,..., n, se vynášejí jako funkce proměnné t v ntervalu -π # t # π. Funkce f mají řadu výhodných vlastností: a) Funkce f zachovávají průměr. o znamená, že pokud je x průměrem z celkového počtu n vícerozměrných dat x, je funkce rovna f x (t) ' 1 n n j f x (t), kde funkce (t) je "průměrná" křvka. '1 Obr. 4.6 Andrewsův graf křvek dat pro 0 objektů a 4 proměnné B40X1, B40X, B40X3, B40X4 nestandardzovaných dat B40, S-Plus, Graf kaz je na značno podobnost celé řady objektů. Jeden objekt je však výrazně odlšný od ostatních, jde o odlehlý objekt. b) Funkce f zachovávají vzdálenost. o znamená, že celková vzdálenost mez křvkam f a f j, defnovaná jako ntegrální kvadratcká odchylka, odpovídá vzdálenost mez objekty x a x j. Blízké křvky ukazují na nepřílš vzdálené objekty. 0 f x 0 0 c) Pro zvolenou hodnotu t je funkce (t ) projekcí objektu x na vektor p o složkách p 0 ' ( 1,sn(t 0 ), cos(t 0 ), sn(t 0 ), cos(t 0 ),...). ato projekce do jednoho bodu umožňuje odhalení vybočujících objektů č skupn objektů, které mohou být ve více dmenzích špatně dentfkovatelné. Křvka (t) je složena ze všech projekcí na daném ntervalu hodnot t. f x d) Funkce f zachovávají rozptyl. o znamená, že pokud jsou proměnné x j objektu x nekorelované náhodné velčny se stejným rozptylem σ, je D(f ) ' σ (0.5 % sn (t) % cos (t) % sn (t) % cos (t) %...). Pro lché m je D(f ) = 0.5 σ m a pro sudé m je 0.5 σ (m - 1) < D(f ) < 0.5 σ (m + 1). Rozptyl funkce f je téměř konstantní v celém rozmezí velčny t. V praktckých úlohách je běžné, že jednotlvé proměnné jsou slně korelované a mají nestejné rozptyly. Pak je výhodné převést objekty původních dat x na objekty y, kde y odpovídá transformac do j-té hlavní komponenty. j Velčny y jsou jž nekorelované. Snadno lze provést jejch standardzac tak, aby měly konstantní rozptyly. j Nevýhodou křvek je to, že jejch tvar závsí na pořadí složek. Na druhé straně lze pomocí křvek snadno ndkovat vybočující objekty nebo skupny objektů a konstruovat konfdenční křvky. Pro větší počty objektů (n > 10) dochází ke splývání křvek, což ztěžuje jejch nterpretac. Pak je možné vynášet pouze zvolené podskupny objektů. Stromy čl dendrogramy jsou vhodné pro případy, kdy je počet proměnných m objektu x velký. Jednotlvé složky x j představují délku větví schematckého stromu. Jeho struktura větví vznká na základě předběžného herarchckého shlukování proměnných (vz shluková analýza). Předběžná shluková analýza se dá použít také př výběru pořadí složek objektu x př konstrukc ostatních symbolových grafů

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i. Odborná skupna Mechanka kompoztních materálů a konstrukcí České společnost pro mechanku s podporou frmy Letov letecká výroba, s. r. o. a Ústavu teoretcké a aplkované mechanky AV ČR v. v.. Semnář KOMPOZITY

Více

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT J. Tuma Summary: The paper deals wth dfferentaton and ntegraton of sampled tme sgnals n the frequency doman usng the FFT and

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

FYZIKA 3. ROČNÍK. Obvod střídavého proudu s odporem. ϕ = 0. i, u. U m I m T 2

FYZIKA 3. ROČNÍK. Obvod střídavého proudu s odporem. ϕ = 0. i, u. U m I m T 2 FYZIKA 3. OČNÍK Ncené elg. ktání střídavý prod Zdroje stříd. prod generátory střídavého prod Zapojení různých prvků v obvod střídavého prod zkoáe, jaký způsobe paraetr prvk v obvod ovlvňje velkost napětí

Více

REDUKCE DIMENSIONALITY PRAVDĚPODOBNOSTNÍCH MODELŮ PRO FDI

REDUKCE DIMENSIONALITY PRAVDĚPODOBNOSTNÍCH MODELŮ PRO FDI REDUKCE DIMENSIONALITY PRAVDĚPODOBNOSTNÍCH MODELŮ PRO FDI J. Jkovský 1, M. Hofete 2 1 Humusoft s..o., Paha 2 Ústav Přístojové a řídcí technky, Fakulta stojní, ČVUT v Paze Abstakt Příspěvek se věnuje poblematce

Více

MĚŘENÍ INDUKČNOSTI A KAPACITY

MĚŘENÍ INDUKČNOSTI A KAPACITY Úloha č. MĚŘENÍ NDKČNOST A KAPATY ÚKO MĚŘENÍ:. Změřte ndkčnost cívky bez jádra z její mpedance a stanovte nejstot měření.. Změřte na Maxwellově můstk ndkčnost cívky a rčete nejstot měření. Porovnejte výsledky

Více

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá 1) Lineární i nelineární regrese prostá, korelace Naeditujeme data viz obr. 1. Obr. 1 V menu Statistika zvolíme submenu Pokročilé lineární/nelineární

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy

Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy Zadání: Deponie nadložních jílových sedimentů SHP byla testována za účelem využití v cihlářské výrobě. Z deponie bylo odebráno

Více

Numerické metody optimalizace

Numerické metody optimalizace Numercké metody optmalzace Numercal optmzaton methods Bc. Mloš Jurek Dplomová práce 2007 Abstrakt Abstrakt česky Optmalzační metody představují vyhledávání etrémů reálných funkcí jedné nebo více reálných

Více

S E M E S T R Á L N Í

S E M E S T R Á L N Í Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět Určení vnitřní

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211 10..15 Úlohy na hledání etrémů Předpoklady: 1011 Pedagogcká poznámka: Kromě příkladů a není pro studenty problém vypočítat dervace funkcí. Problémem je hlavně nalezení těchto funkčních závslostí, tam postupujeme

Více

Klasifikace a predikce. Roman LUKÁŠ

Klasifikace a predikce. Roman LUKÁŠ 1/28 Klasfkace a predkce Roman LUKÁŠ 2/28 Základní pomy Klasfkace = zařazení daného obektu do sté skupny na základě eho vlastností Dvě fáze klasfkace: I. Na základě trénovacích vzorů (u nchž víme, do aké

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

LINEÁRNÍ PROGRAMOVÁNÍ

LINEÁRNÍ PROGRAMOVÁNÍ LINEÁRNÍ PROGRAMOVÁNÍ Lneární programování e druh matematckého programování. Matematcký model se skládá z:. účelové funkce. omezuících podmínek (vlastní omezení a podmínk nezápornost) Účelová funkce omezuící

Více

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

Teorie elektrických ochran

Teorie elektrických ochran Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více

ESR, spinový hamiltonián a spektra

ESR, spinový hamiltonián a spektra ER, spnový hamltonán a spektra NMR k k získávání důležtých nformací o struktuře látky využívá gyromagnetckých vlastností atomových jader. Podobně ER (EPR) využívá k obdobným účelům gyromagnetckých vlastností

Více

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy Posuzování dynamky pohybu drážních vozdel ze záznamu jejch jízdy Ing. Jaromír Šroký, Ph.D. ŠB-Techncká unverzta Ostrava, Fakulta strojní, Insttut dopravy, tel: +40 597 34 375, jaromr.sroky@vsb.cz Úvod

Více

Tématické celky { kontrolní otázky.

Tématické celky { kontrolní otázky. Tématické celky kontrolní otázky. Základy teorie pravdìpodobnosti..pravdìpodobnostní míra základní pojmy... Vysvìtlete pojem náhody, náhodného pokusu, náhodného jevu a jeho mno- ¾inovou interpretaci. Popi¹te

Více

Tento dokument je obsahově identický s oficiální tištěnou verzí. Byl vytvořen v systému TP online a v žádné případě nenahrazuje tištěnou verzi

Tento dokument je obsahově identický s oficiální tištěnou verzí. Byl vytvořen v systému TP online a v žádné případě nenahrazuje tištěnou verzi TP130 Ministerstvo dopravy a spojů České republiky odbor pozemních komunikací ODRAZKY PROTI ZVĚŘI Optické zařízení bránící zvěři ke vstupu na komunikaci TECHNICKÉ PODMÍNKY Schváleno MDS OPK č.j. 17647/00-120

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Í š Ť š ň ň Í Ř Ť Ť ň Ť Ť š Ť š Ď š š š ň š š š š š Í Ť Ť š ň š Ť š š É š ť Í Ť š Ž Š Ť Ť Ť Ť š š š š š Ť š Ť Í š Ť š Ť š Í š Ě Í š ň Ť š Ť Ť Ó š š š š š Ť Ž Ť Í Ř Ř Ť š š ť Ť š Ť š Ó š Ť Ť ň Ť š š š Ť

Více

Návody na cvičení. Prof. Ing. Jiří Militký CSc. EUR ING Ing. Miroslava Maršálková

Návody na cvičení. Prof. Ing. Jiří Militký CSc. EUR ING Ing. Miroslava Maršálková VLASTNOSTI VLÁKEN Návody na cvčení Pro. Ing. Jří Mltký CSc. EUR ING Ing. Mroslava Maršálková TU Lberec 3 Náplň cvčení z předětu VLASTNOSTI VLÁKEN NÁPLŇ CVIČENÍ:. týden Úvod, bezpečnostní předpsy, poůcky.

Více

INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT

INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT METAL 4. 6. 5., Hradec nad Moravcí INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT Jaromír Drápala a, Monka Losertová a, Jtka Malcharczková a, Karla Barabaszová a, Petr Kubíček b a VŠB - TU Ostrava,7.lstopadu,

Více

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI SEMESTRÁ LNÍ PRÁ CE Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI Předmě t STATISTICKÁ ANALÝ ZA JEDNOROZMĚ RNÝ CH DAT (ADSTAT) Ú stav experimentá lní biofarmacie, Hradec

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Elektronický obvod. skládá se z obvodových součástek navzájem pospojovaných vodiči působí v něm obvodové veličiny Příklad:

Elektronický obvod. skládá se z obvodových součástek navzájem pospojovaných vodiči působí v něm obvodové veličiny Příklad: Elektroncký obvod skládá se obvodových součástek navájem pospojovaných vodč působí v něm obvodové velčny Příklad: část reálného obvodu schéma část obvodu Obvodové velčny elektrcké napětí [V] elektrcký

Více

Bořka Leitla Bolometrie na tokamaku GOLEM

Bořka Leitla Bolometrie na tokamaku GOLEM Posudek vedoucího bakalářské práce Bořka Letla Bolometre na tokamaku GOLEM Vedoucí práce: Ing. Vojtěch Svoboda, CSc Bořek Letl vpracoval svoj bakalářskou prác na tokamaku GOLEM, jehož rozvoj je závslý

Více

ENÍ TEXTILIÍ PŘEDNÁŠKA 2

ENÍ TEXTILIÍ PŘEDNÁŠKA 2 ZKOUŠEN ENÍ TEXTILIÍ PŘEDNÁŠKA 2 10 12 tera T 10-3 ml m 10 9 gga G 10-6 mkro µ 10 6 mega M 10 9 nano n Zobrazovací modul Převádí délkové jednotky obrazu na skutečné jednotky měřené velčny (např. z grafů

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení Přednáška 5/1 Některé zákony rozdělení pravděpodobnosti 1. Binomické rozdělení Předpoklady: (a) pst výskytu jevu A v jediném pokuse P (A) = π, (b) je uskutečněno n pokusů, (c) pokusy jsou nezávislé, tj.

Více

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Po(λ) je možné použít jako model náhodné veličiny, která nabývá hodnot 0, 1, 2,... a udává buď počet událostí,

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ BAKALÁŘSKÁ PRÁCE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ BAKALÁŘSKÁ PRÁCE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ VENTILATION

Více

Osvětlování a stínování

Osvětlování a stínování Osvětlování a stínování Pavel Strachota FJFI ČVUT v Praze 21. dubna 2010 Obsah 1 Vlastnosti osvětlovacích modelů 2 Světelné zdroje a stíny 3 Phongův osvětlovací model 4 Stínování 5 Mlha Obsah 1 Vlastnosti

Více

APLIKACE METOD VÍCEKRITERIÁLNÍHO ROZHODOVÁNÍ PŘI HODNOCENÍ KVALITY VEŘEJNÉ DOPRAVY

APLIKACE METOD VÍCEKRITERIÁLNÍHO ROZHODOVÁNÍ PŘI HODNOCENÍ KVALITY VEŘEJNÉ DOPRAVY APLIKACE METOD VÍCEKRITERIÁLNÍHO ROZHODOVÁNÍ PŘI HODNOCENÍ KVALITY VEŘEJNÉ DOPRAVY APPLICATION OF METHODS MULTI-CRITERIA DECISION FOR EVALUATION THE QUALITY OF PUBLIC TRANSPORT Ivana Olvková 1 Anotace:

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

Podmínky přijetí uprchlíků a důvěra v kompetence politiků

Podmínky přijetí uprchlíků a důvěra v kompetence politiků Podmínky přjetí uprchlíků a důvěra v kompetence poltků Březen / Duben 2016 VÝZKUM TRHU, MÉDIÍ A VEŘEJNÉHO MÍNĚNÍ, VÝVOJ SOFTWARE Národních hrdnů 73, 190 12 Praha 9, tel.: 5 301 111, fax: 5 301 101 e-mal:

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování

Více

Zápočtová písemka z Matematiky III (BA04) skupina A

Zápočtová písemka z Matematiky III (BA04) skupina A skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost

Více

radiační ochrana Státní úřad pro jadernou bezpečnost

radiační ochrana Státní úřad pro jadernou bezpečnost Státní úřad pro jadernou bezpečnost radační ochrana DOPORUČENÍ Měření a hodnocení obsahu přírodních radonukldů ve vodě dodávané k veřejnému zásobování ptnou vodou Rev. 1 SÚJB únor 2012 Předmluva Zákon

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2008 2009

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2008 2009 FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2008 2009 OBOR: POZEMNÍ STAVBY (S) A. MATEMATIKA TEST. Hladina významnosti testu α při testování nulové hypotézy

Více

Poznámky k předmětu Aplikovaná statistika, 9.téma

Poznámky k předmětu Aplikovaná statistika, 9.téma Poznámky k předmětu Aplikovaná statistika, 9téma Princip testování hypotéz, jednovýběrové testy V minulé hodině jsme si ukázali, jak sestavit intervalové odhady pro některé číselné charakteristiky normálního

Více

I Mechanika a molekulová fyzika

I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12

Více

Zpracování a vyhodnocování analytických dat

Zpracování a vyhodnocování analytických dat Zpracování a vyhodnocování analytických dat naměřená data Zpracování a statistická analýza dat analytické výsledky Naměř ěřená data jedna hodnota 5,00 mg (bod 1D) navážka, odměřený objem řada dat 15,8;

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami Aplikovaná optika Optika Geometrická optika Vlnová optika Kvantová optika - pracuje s čistě geometrickými představami - zanedbává vlnovou a kvantovou povahu světla - elektromagnetická teorie světla -světlo

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

6 LINEÁRNÍ REGRESNÍ MODELY

6 LINEÁRNÍ REGRESNÍ MODELY 1 6 LINEÁRNÍ REGRESNÍ MODELY Př budování regresních modelů se běžně užívá metody nejmenších čtverců. Metoda nejmenších čtverců poskytuje postačující odhady parametrů jenom př současném splnění všech předpokladů

Více

Kapka kapaliny na hladině kapaliny

Kapka kapaliny na hladině kapaliny JEVY NA ROZHRANÍ TŘÍ PROSTŘEDÍ Kapka kapaliny na hladině kapaliny Na hladinu (viz obr. 11) kapaliny (1), nad níž je plynné prostředí (3), kápneme kapku jiné kapaliny (2). Vzniklé tři povrchové vrstvy (kapalina

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 8 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 7 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,

Více

:6pt;font-style:normal;color:grey;font-family:Verdana,Geneva,Kalimati,sans-serif;text-decoration:none;text-align:center;font-variant:no = = < p s t y l e = " p a d d i n g : 0 ; b o r d e r : 0 ; t e

Více

Matematika I Reálná funkce jedné promìnné

Matematika I Reálná funkce jedné promìnné Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme

Více

TECHNICKÉ ZNALECTVÍ. Metody soudně znalecké analýzy. Prof. Ing. Jan Mareček, DrSc. ÚZPET

TECHNICKÉ ZNALECTVÍ. Metody soudně znalecké analýzy. Prof. Ing. Jan Mareček, DrSc. ÚZPET TECHNICKÉ ZNALECTVÍ Metody soudně znalecké analýzy ÚZPET Prof. Ing. Jan Mareček, DrSc. Osnova tématu 1.Výpočty ve znaleckém posudku 2. Vybrané metody soudně znalecké analýzy 1.Výpočty ve znaleckém posudku

Více

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer ANOVA Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

Přednáška 5. Výběrová šetření, Exploratorní analýza

Přednáška 5. Výběrová šetření, Exploratorní analýza Přednáška 5 Výběrová šetření, Exploratorní analýza Pravděpodobnost vs. statistika Výběrová šetření aneb jak získat výběrový soubor Exploratorní statistika aneb jak popsat výběrový soubor Typy proměnných

Více

Pasivní Koherentní Lokace. Duben 2008

Pasivní Koherentní Lokace. Duben 2008 Pasivní Koherentní Lokace Duben 2008 Obsah Koncepce systému PCL Princip Bistatický radar Problémy Základy zpracování PCL signálů Eliminace clutter Vzájemná funkce neurčitosti Detekce cílů Asociace měření

Více

Maticová exponenciála a jiné maticové funkce

Maticová exponenciála a jiné maticové funkce Matcová exponencála a jné matcové funkce Motvace: Jž víte, že řešením rovnce y = ay, jsou funkce y(t = c e at, tj exponencály Pro tuto funkc platí, že y(0 = c, tj konstanta c je počáteční podmínka v bodě

Více

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM 7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM Průvodce studem Předchozí kaptoly byly věnovány pravděpodobnost a tomu, co s tímto pojmem souvsí. Nyní znalost z počtu pravděpodobnost aplkujeme ve statstce. Předpokládané

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 9 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 8 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,

Více

SEMESTRÁLNÍ PRÁCE 3.5 Klasifikace analýzou vícerozměrných dat

SEMESTRÁLNÍ PRÁCE 3.5 Klasifikace analýzou vícerozměrných dat UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE LICENČNÍ STUDIUM - STATISTICKÉ ZPRACOVÁNÍ DAT SEMESTRÁLNÍ PRÁCE Ing. Věra Fialová BIOPHARM VÝZKUMNÝ ÚSTAV BIOFARMACIE A VETERINÁRNÍCH

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen

Více

Projekty do předmětu MF

Projekty do předmětu MF Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra optiky ZÁVĚREČNÁ PRÁCE Projekty do předmětu MF Vypracoval: Miroslav Mlynář E-mail: mlynarm@centrum.cz Studijní program: B1701 Fyzika Studijní

Více

CVIČENÍ 1 PRVKY KOVOVÝCH KONSTRUKCÍ

CVIČENÍ 1 PRVKY KOVOVÝCH KONSTRUKCÍ CVIČENÍ 1 PRVKY KOVOVÝCH KONSTRUKCÍ Spoje ocelových konstrukcí Ověřování spolehlivé únosnosti spojů náleží do skupiny mezních stavů únosnosti. Posouzení je tedy nutno provádět na rozhodující kombinace

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 2006 MA1ACZMZ06DT MATEMATIKA 1 didaktický test Testový sešit obsahuje 18 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

Hodnocení efektivity sociálních služeb pro duševně nemocné

Hodnocení efektivity sociálních služeb pro duševně nemocné Hodnocení efektivity sociálních služeb pro duševně nemocné Konference AKTUÁLNÍ OTÁZKY SOCIÁLNÍ POLITIKY 2011 TEORIE A PRAXE Pardubice 5. 5. 2011 Petr Hejzlar¹², Martin Halíř¹, Hana Herelová¹ ¹občanské

Více

ŠROUBOVÉ SPOJE VÝKLAD

ŠROUBOVÉ SPOJE VÝKLAD ŠROUBOVÉ SPOJE VÝKLAD Šroubové spoje patří mezi rozebíratelné spoje s tvarovým stykem (lícovaný šroub), popřípadě silovým stykem (šroub prochází součástí volně, je zatížený pouze silou působící kolmo k

Více

1. Pravděpodobnost a statistika (MP leden 2010)

1. Pravděpodobnost a statistika (MP leden 2010) 1. Pravděpodobnost a statistika (MP leden 2010) Pravděpodobnost pojmy 1. Diskrétní pravděpodobnostní prostor(definice, vlastnosti, příklad). Diskrétní pravděpodobnostní prostor je trojice(ω, A, P), kde

Více

Pro bodový odhad při základním krigování by soustava rovnic v maticovém tvaru vypadala následovně:

Pro bodový odhad při základním krigování by soustava rovnic v maticovém tvaru vypadala následovně: KRIGING Krigování (kriging) označujeme interpolační metody, které využívají geostacionární metody odhadu. Těchto metod je celá řada, zde jsou některé příklady. Pro krigování se používá tzv. Lokální odhad.

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola

Téma je podrobně zpracováno ve skriptech [1], kapitola Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n

Více

8. Měření kinetiky dohasínání fluorescence v časové doméně

8. Měření kinetiky dohasínání fluorescence v časové doméně 8. Měření kneky dohasínání fluorescence v časové doméně Kneka dohasínání fluorescence Po excac vzorku δ-pulsem se hladna S 1 depopuluje podle dn( ) = ( k k ) n( ) d F + N Pronegrováním a uvážením, že měřená

Více

Jan Perný 05.09.2006. využíváme při orientaci pomocí kompasu. Drobná odchylka mezi severním

Jan Perný 05.09.2006. využíváme při orientaci pomocí kompasu. Drobná odchylka mezi severním Měření magnetického pole Země Jan Perný 05.09.2006 www.pernik.borec.cz 1 Úvod Že planeta Země má magnetické pole, je známá věc. Běžně této skutečnosti využíváme při orientaci pomocí kompasu. Drobná odchylka

Více

Test hypotézy o parametru π alternativního rozdělení příklad

Test hypotézy o parametru π alternativního rozdělení příklad Test hypotézy o parametru π alterativího rozděleí příklad Podik předpokládá, že o jeho ový výrobek bude mít zájem 7 % osloveých domácostí. Proběhl předběžý průzkum, v ěmž bylo osloveo 4 áhodě vybraých

Více

Pastorek Kolo ii? 1.0. i Výpočet bez chyb.

Pastorek Kolo ii? 1.0. i Výpočet bez chyb. Čelní ozubení Čelní ozubení s přímými s přímými a šikmými a šikmými zuby [mm/iso] zuby [mm/iso] i Výpočet bez chyb. Pastorek Kolo ii? 1. Informace o projektu Kapitola vstupních parametrů Volba základních

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

Počítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd

Počítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd Počítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd Prof. RNDr. Milan Meloun, DrSc. (Univerzita Pardubice, Pardubice) 20.-24. června 2011 Tato prezentace je spolufinancována

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

I. STEJNOSMĚ RNÉ OBVODY

I. STEJNOSMĚ RNÉ OBVODY Řešené příklady s komentářem Ing. Vítězslav Stýskala, leden 000 Katedra obecné elektrotechniky FEI, VŠB-Technická univerzita Ostrava stýskala, 000 Určeno pro posluchače bakalářských studijních programů

Více