FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2

Rozměr: px
Začít zobrazení ze stránky:

Download "FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2"

Transkript

1 . Do dou sejných nádob nalijeme odu a ruť o sejných objemech a eploách. Jaký bude poměr přírůsků eplo kapalin, jesliže obě kapaliny přijmou při zahříání sejné eplo? V = V 2 =V, T = T 2, Q =Q 2 c = 9 J kg K -, ρ = 600 kg m - c 2 = 480 J kg K, ρ 2 = 000 kg m T / T 2 =? m c T = m c T V ρ c T = V ρ c T T T ρ c = ρ c ,2 Přírůsek eploy rui po zahřáí bude přibližně dakrá ěší než u ody. 2. Oloěné ěleso o hmonosi kg přijalo eplo 54,5 kj a důsledku oho čás oloa o hmonosi 0,5 kg rozála. Jaká byla počáeční eploa ělesa? Teploa ání oloa je 27 C, měrná epelná kapacia oloa 29 J kg K a měrné skupenské eplo ání oloa je 22,6 kj kg. m = kg Q = 54,5 0 J m = 0,5 kg T = 27 C c = 29 J kg K l = 22,6 0 J kg =? Q = m c + m l = m c m c + m l T T m c T + m l Q = = 7,9 C mc Počáeční eploa ělesa byla -7,9 C.. Jaké eplo je řeba k omu, aby rozál led o hmonosi 5,4 kg a počáeční eploě 5 C? Měrná epelná kapacia ledu je 2, kj kg K, měrné skupenské eplo ání ledu je 4 kj kg m = 5,4 kg = 5 C c = 2, 0 J kg K l = 4 0 J kg

2 Q =?. Q = m c + ml = 97700J =,97 MJ K ohřáí a rozáí ledu je pořeba eplo,97 MJ. 4. Vypočěe eplo pořebné k rozaení mosazného předměu o hmonosi 0,5 kg a počáeční eploě 20 C. Teploa ání mosazi je 970 C, měrná epelná kapacia mosazi je 94 J kg K a měrné skupenské eplo ání mosazi je 59 kj kg m = 0,5 kg = 20 C 2 = 970 C c = 94 J kg K l = 59 0 J kg Q =?.Q QQ Q = m c ( 2 ) + ml = J 267 kj K rozaení mosazného předměu je pořeba eplo 267 kj. 5. Vypočěe eplo, kerého je pořeba k omu, aby se led o hmonosi 0 kg a eploě 0 C přeměnil na odu o eploě 20 C. Měrná epelná kapacia ledu je 2, kj kg K, měrná epelná kapacia ody je 4,8 kj kg K, měrné skupenské eplo ání ledu je 4 kj kg. m = 0 kg = 0 C 2 = 20 C c = 2, 0 J kg K c 2 = 4,8 0 J kg K l = 4 0 J kg Q =? Q = m c 0 + ml + m c 0 = ( ) 2 ( 2 ) ( 2 2 ) = m c + l + c = J 4,4MJ K přeměně ledu na odu je pořeba eplo přibližně 4,4 MJ.

3 6. Vypočěe hmonos ledu při eploě -5 C, kerý rozaje e odě o hmonosi kg a eploě 60 C. Výsledná eploa sousay je 0 C Měrná epelná kapacia led u je 2, kj kg K a měrné skupenské eplo ání ledu je 4 kj kg a měrná epelná kapacia ody je 4,8 kj kg K. m 2 = kg 2 = 60 C = 5 C = 0 C c = 2, 0 J kg K c 2 = 4,8 0 J kg K l = 4 0 J kg. m =? m c ( ) + m l = m c m c m c l = = ( ) + 2,8 kg Hmonos rozáého ledu je 2,8 kg. 7. Do ody o hmonosi 4 kg a eploě 80 C dáme led, kerý má hmonos kg a eplou 0 C. Jaká bude ýsledná eploa sousay po dosažení ronoážného sau? Měrná epelná kapacia ody je 4,8 kj kg K, měrné skupenské eplo ání ledu je 4 kj kg. m = 4 kg m 2 = kg = 80 C 2 = 0 C c = 4,8 0 J kg K l = 4 0 J kg =?. ( ) ( ) m c = m l + m c m c m l = m c + m c 2 2 m c m l 2 = = m2 c + m c 48 C Výsledná eploa po dosažení ronoážného sau je 48 C.

4 8. Na elekrickém ařiči o příkonu 600 W a účinnosi 60 % jsme ohříali odu o hmonosi 2 kg a počáeční eploě 0 C až na eplou aru. Při éo eploě se odpařilo 5% ody. Jak dlouho ralo ohříání ody? Měrná epelná kapacia ody je 4,8 kj kg K, měrné skupenské eplo ypařoání ody při eploě 00 C je 2,26 MJ kg. P = 600 W η = 60 % m = 2 kg = 0 C = 00 C m = 5 % c = 4,8 0 J kg K l = 2, J kg =?. K eplu, keré je pořeba doda odě, aby se uařila, musíme přičís skupenské eplo ypařoání ypařené čási ody: 5 η m c ( ) + ml = P ( m c ( ) + ml ) = 00 P η 278s 45min Ohříání ody ralo asi 45 minu. 9. Určee eplo pořebné na přeměnu ledu o hmonosi kg a eploě -5 C na páru o eploě 00 C. Měrná epelná kapacia ledu je 2, kj kg K, měrné skupenské eplo ání ledu je 4 kj kg, měrná epelná kapacia ody je 4,8 kj kg K.Měrné skupenské eplo ypařoání ody při eploě 00 C je 2, J kg. m = kg = 5 C 2 = 00 C c = 2, 0 J kg K l = 4 0 J kg c 2 = 4,8 0 J kg K l = 2, J kg Q =?.

5 ( 0 ) ( 0) Q = m c + m l + m c + m l = 2 2 = J MJ Teplo pořebné na přeměnu ledu je asi MJ. 0. Ve odě o hmonosi 2 kg a eploě 8 C kondenzoala odní pára o eploě 00 C a hmonosi 00 g. Jaká bude ýsledná eploa ody? Měrné skupenské eplo kondenzace ody při eploě 00 C je 2,26 MJ kg. m = 2 kg = 8 C c = 4,8 0 J kg K m 2 = 0, kg 2 = 00 C l = 2, J kg =? -. ( ) = ( 2 ) m c m l m c m c + m c = m l + m c + m c m l + m c + m c = m c + m c = 47,7 C 2 Výsledná eploa ody je 47,7 C.. Určee hmonos uhlí o ýhřenosi 0 MJ kg, keré musíme spáli koli, aby se oda o hmonosi 6 0 kg a eploě 0 C ohřála na eplou 00 C a při éo eploě se ješě ypařilo 0 kg ody. Měrná epelná kapacia ody je 4,8 měrné skupenské eplo ypařoání ody při eploě 00 C je 2,26 účinnos kole je 70 %. kj kg K, MJ kg a 6 H = 0 0 J kg, η = 70 % m 2 = kg, 2 = 0 C, = 00 C m = 000 kg c 2 = 4,8 0 J kg K, l = 2, J kg m =?

6 7 m2 c2 ( 2 ) + m l = m H 0 0 ( m2 c2 ( 2 ) + m l ) m = 7H m = 25kg Hmonos uhlí, keré je pořeba spáli, je 25 kg. B. Tepelná ýměna. Led o hmonosi 000 g a eploě 0 C hodíme do kalorimeru němž je oda o hmonosi 500 g a eploě 50 C. Popiše sa sousay po dosažení ronoážného sau. Řeše nejpre pro případ, kdy neuažujeme epelnou kapaciu C kalorimeru. Pak proeďe úahu, jak se změní ýsledek řešení úlohy, je-li C = 00 J K. m = kg = 0 C l = 4 0 J kg m 2 = 0,5 kg 2 = 50 C c = 4,8 0 J kg K C = 00 J K. Teplo pořebné k rozáí ledu: L = m l = 4 0 J eplo pořebné k ochlazení ody na eplou 0 C: Q = m2 c ( 2 ) = 0,5 4, J = 05 0 J L > Q rozaje jen čás ledu a ýsledná eploa bude 0 C: Q m l = Q m = = 0,4kg l V kalorimeru se nachází ronoážném sau oda o hmonosi 0,84 kg a led o hmonosi 0,686 kg. Teploa sousay je 0 C. s kalorimerem: ml = Q + C Q + C m = = 0,29 kg l

7 Uažujeme-li epelnou kapaciu kalorimeru, rozaje o 5 g ledu íce než případě, kdy epelnou kapaciu neuažujeme. 2. Do kalorimeru s odou o hmonosi 5,0 kg a eploě 00 C nasypeme kousky ledu o celkoé hmonosi 6,0 kg a eploě 0 C. Popiše sa sousay po dosažení ronoážného sau. Tepelnou kapaciu kalorimeru a zráy energie do okolí zanedbeje. m = 5 kg = 00 C, c = 4,8 0 J kg K m 2 = 6 kg, l l = 4 0 J kg 2 = 0 C =?. L = 2, J Q = 2, J L < Q šechen led rozaje a ýsledná eploa bude ěší než 0 C L + m c = m c 2 m c + m c = m c L 2 m c L = = m2c + mc,87 C Výsledná eploa ody bude,87 C.. Oloěná sřela hmonosi 0 g dopadla na pancéřoou sěnu rychlosí 400 m s. Na sěně se zarazila. Předpokládejme, že při nárazu neodezdala sřela žádnou energii do okolí. Určee, zda se sřela při nárazu rozaí celá, zčási, nebo zda zůsane e skupensí peném. Počáeční eploa sřely byla 0 C, eploa ání oloa je 27 C, měrná epelná kapacia oloa je 29 J kg K, měrné skupenské eplo ání oloa je 22,6 kj kg. m = 0,0 kg = 0 C = 400 m s c = 29 J kg K l l = 22,6 0 J kg = 27 C Q =?, Q =?.

8 2 Ek = Q = m = 800J (uolněné eplo při zaražení sřely) 2 Q = m c ( ) + m l = 0, J + 0, J = 647 J (eplo, keré je pořeba doda, aby se sřela rozaila) Q > Q Sřela se zcela rozaí. 4. V kalorimeru o epelné kapaciě 20 J kg se nachází ronoážném sau oda o hmonosi 500 g a led o hmonosi 0 g. Do kalorimeru ponoříme měděný áleček o hmonosi 00 g a eploě 00 C. Jaká bude ýsledná eploa ody po opěoném yoření ronoážného sau? Tepelné zráy do okolí zanedbeje. m = 0,5 kg m 2 = 0,0 kg = 2 = 0 C m = 0, kg = 00 C c = 0,8 0 J kg K l = 4 0 J kg c = 4,8 0 J kg K C = 20 J K =? = + ( + ) + ( + ) + + = m c = m l + m + m c + C ( ) 2 2 m c m c m l m m c C 2 2 m m c C m c m c m l mc m2l = ( m + m2 ) c + Ck + mc =,56 C 2 2 Výsledná eploa ody je přibližně,6 C.

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

Malé písemné práce II. 8. třída Tři malé opakovací písemné práce

Malé písemné práce II. 8. třída Tři malé opakovací písemné práce Malé písené práce II. 8. řída Tři alé opakovací písené práce Oblas: Člověk a příroda Předě: Fyzika Teaický okruh: Práce, energie, eplo Ročník: 8. Klíčová slova: přehled fyzikálních veličin a jednoek, vyjádření

Více

Laboratorní práce č. 1: Pozorování tepelné výměny

Laboratorní práce č. 1: Pozorování tepelné výměny Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Laboraorní práce č. 1: Pozorování epelné výměny Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Tes k laboraorní

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

2.6.4 Kapalnění, sublimace, desublimace

2.6.4 Kapalnění, sublimace, desublimace 264 Kapalnění, sublimace, desublimace Předpoklady: 2603 Kapalnění (kondenzace) Snižování eploy páry pára se mění v kapalinu Kde dochází ke kondenzaci? na povrchu kapaliny, na povrchu pevné láky (orosení

Více

Výroba a užití elektrické energie

Výroba a užití elektrické energie Výroba a užií elekrické energie Tepelné elekrárny Příklad 1 Vypočíeje epelnou bilanci a dílčí účinnosi epelné elekrárny s kondenzační urbínou dle schémau naznačeného na obr. 1. Sesave Sankeyův diagram

Více

Úloha IV.E... už to bublá!

Úloha IV.E... už to bublá! Úloha IV.E... už o bublá! 8 bodů; průměr 5,55; řešilo 42 udenů Změře účinno rychlovarné konvice. Údaj o příkonu naleznee obvykle na amolepce zepodu konvice. Výkon určíe ak, že zjiíe, o kolik upňů Celia

Více

= 0 C. Led nejdříve roztaje při spotřebě skupenského tepla Lt

= 0 C. Led nejdříve roztaje při spotřebě skupenského tepla Lt Měření ěrného skupenského epla ání ledu a varu vody Měření ěrného skupenského epla ání ledu a varu vody Úkol č : Zěře ěrné skupenské eplo ání ledu Poůcky Sěšovací kalorier s íchačkou, laboraorní váhy,

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu Přírodní vědy moderně a interaktivně FYZIKA 1. ročník šestiletého studia Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu ymnázium Přírodní vědy moderně a interaktivně FYZIKA 1. ročník

Více

1/77 Navrhování tepelných čerpadel

1/77 Navrhování tepelných čerpadel 1/77 Navrhování epelných čerpadel paramery epelného čerpadla provozní režimy, navrhování akumulace epla bilancování inervalová meoda sezónní opný fakor 2/77 Paramery epelného čerpadla opný výkon Q k [kw]

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_374 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

Úloha II.E... je mi to šumák

Úloha II.E... je mi to šumák Úloha II.E... je mi o šumák 8 bodů; (chybí saisiky) Kupe si v lékárně šumivý celaskon nebo cokoliv, co se podává v ableách určených k rozpušění ve vodě. Změře, jak dlouho rvá rozpušění jedné abley v závislosi

Více

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut. 21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K 1. KAPITOLA TEPELNÉ VLASTNOSTI Tepelné vlasnosi maeriálů jsou charakerizovány pomocí epelných konsan jako měrné eplo, eploní a epelná vodivos, lineární a objemová rozažnos. U polymerních maeriálů má eploa

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

Název DUM: Změny skupenství v příkladech

Název DUM: Změny skupenství v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Změny skupenství

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Teplo v příkladech I

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Teplo v příkladech I Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Teplo v příkladech

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o 3 - Termomechanika 1. Hustota vzduchu při tlaku p l = 0,2 MPa a teplotě t 1 = 27 C je ρ l = 2,354 kg/m 3. Jaká je jeho hustota ρ 0 při tlaku p 0 = 0,1MPa a teplotě t 0 = 0 C [1,29 kg/m 3 ] 2. Určete objem

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje rojek realizoaný na SŠ Noé Měo nad Meují finanční podporou Operační prorau Vzděláání pro konkurencecopno Králoéradeckéo kraje Modul 03 - Tecnické předěy In. Jan Jeelík . Mecanická práce oybuje-li e oný

Více

SBÍRKA PŘEDPISŮ ČESKÉ REPUBLIKY

SBÍRKA PŘEDPISŮ ČESKÉ REPUBLIKY Ročník 2004 SBÍRKA PŘEDPISŮ ČESKÉ REPUBLIKY PROFIL PŘEDPISU: Tiul předpisu: Nařízení vlády o sanovení podmínek pro zařazení skupin výrobců, zajišťujících společný odby vybraných zemědělských komodi, do

Více

REV23.03RF REV-R.03/1

REV23.03RF REV-R.03/1 G2265 REV23.03RF Návod k monáži a uvedení do provozu A D E B C F G2265C_REV23.03RF 15.02.2006 1/8 G K H L LED_1 LED_2 I M 2/8 15.02.2006 G2265C_REV23.03RF Pokyny k monáži a volbě umísění vysílače REV23.03RF

Více

Kalorimetrická rovnice

Kalorimetrická rovnice Kalorimetrická rovnice Kalorimetr je zařízení umožňující pokusně provádět tepelnou výměnu mezi tělesy a měřit potřebné tepelné veličiny skládá se ze dvou nádobek do sebe vložených mezi stěnami nádobek

Více

PROCESY V TECHNICE BUDOV cvičení 9, 10

PROCESY V TECHNICE BUDOV cvičení 9, 10 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV cvičení 9, 10 Hana Charváová, Dagmar Janáčová Zlín 2013 Teno sudijní maeriál vznikl za finanční podpory Evropského

Více

Doprovodné otázky pro studenty, kvízy, úkoly aj.

Doprovodné otázky pro studenty, kvízy, úkoly aj. Doprovodné otázky pro studenty, kvízy, úkoly aj. Otázky: 1. Jak se projeví menší hustota ledu v porovnání s vodou při zamrzání vodních nádrží a toků? 2. Jaký jev se nazývá anomálie vody? 3. Vysvětlete

Více

Kalorimetrická rovnice, skupenské přeměny

Kalorimetrická rovnice, skupenské přeměny Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

MECHANIKA PRÁCE A ENERGIE

MECHANIKA PRÁCE A ENERGIE Projek Efekivní Učení Reformou oblasí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a sáním rozpočem České republiky. MECHANIKA PRÁCE A ENERGIE Implemenace ŠVP Učivo - Mechanická

Více

Energie. Název sady DUM. Člověk a příroda. Vzdělávací oblast. Fyzika. Autor, datum vytvoření Mgr. Zbyněk Šostý, 2012. interaktivní tabule

Energie. Název sady DUM. Člověk a příroda. Vzdělávací oblast. Fyzika. Autor, datum vytvoření Mgr. Zbyněk Šostý, 2012. interaktivní tabule Název DUM: Skupenství látek Název sady DUM Číslo DUM Vzdělávací oblast Vzdělávací obor Energie VY_32_INOVACE_14_S1 12 Člověk a příroda Fyzika Ročník 8. Autor, datum vytvoření Mgr. Zbyněk Šostý, 2012 Doporučená

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Základní pojmy termodynamiky

Základní pojmy termodynamiky Základní pojmy ermodynamiky eploa - charakerizuje sav ermodynamické rovnováhy sousavy epelná rovnováha máme-li dvě ělesa A a B v konaku, poom po určié době nasane sav epelné rovnováhy ve savu epelné rovnováhy

Více

Řešení: Fázový diagram vody

Řešení: Fázový diagram vody Řešení: 1) Menší hustota ledu v souladu s Archimédovým zákonem zapříčiňuje plování jedu ve vodě. Vodní nádrže a toky tudíž zamrzají shora (od hladiny). Kdyby hustota ledu byla větší než hustota vody, docházelo

Více

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001,

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001, 213/2001 ve znění 425/2004 VYHLÁŠKA Minisersva průmyslu a obchodu ze dne 14. června 2001, kerou se vydávají podrobnosi náležiosí energeického audiu Minisersvo průmyslu a obchodu sanoví podle 14 ods. 5

Více

( ) = [m 3 /s] (3) S pr. Ing. Roman Vavřička, Ph.D. Postup:

( ) = [m 3 /s] (3) S pr. Ing. Roman Vavřička, Ph.D. Postup: ČVUT v Praze, Fakula srojní Úsav echniky prosředí Posup: ) Výpoče pořebného hmonosního a objemového průoku eplonosné láky vody z kalorimerické rovnice A) HMOTNOSTNÍ PRŮTOK Q m c [W] () ( ) m kde: Q c [kg/s]

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

2.2.4 Kalorimetrická rovnice

2.2.4 Kalorimetrická rovnice ..4 Kalorieriká rovnie Předpoklady: 0 Poůky: dvě kádinky, vaříí voda, eploěr Vernier, Síháe eplou a udenou vodu při íhání i vody vyěňují eplo, uí dojí k rovnováze zíkáe vodu o jedné eploě. Pokud žádné

Více

NA POMOC FO KATEGORIE E,F

NA POMOC FO KATEGORIE E,F NA POMOC FO KATEGOIE EF Výledky řešení úlo 45. ročníku FO ka. E F Ivo Volf * ÚV FO Univerzia Hradec Králové Mirolav anda ** ÚV FO Pedagogická fakula ZČU Plzeň Jak je již v naší ouěži obvyklé uvádíme pouze

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Číslo materiálu Mgr. Vladimír Hradecký 8_F_1_13 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 Vniřní jednoka pro sysém epelných čerpadel vzduch-voda EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1 EKHBRD014ACY1

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

Protipožární obklad ocelových konstrukcí

Protipožární obklad ocelových konstrukcí Technický průvoce Proipožární obkla ocelových konsrukcí Úvo Ocel je anorganický maeriál a lze jí ey bez zvlášních zkoušek zařai mezi nehořlavé maeriály. Při přímém působení ohně vlivem vysokých eplo (nárůs

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8. Idenifiáor aeriálu: ICT 9 Reisrační číslo rojeu Název rojeu Název říjece odory název aeriálu (DUM) Anoace Auor Jazy Očeávaný výsu Klíčová slova Dru učebnío aeriálu Dru ineraiviy Cílová suina ueň a y dělávání

Více

Řasový test toxicity

Řasový test toxicity Laboraorní návod č. Úsav hemie ohrany prosředí, VŠCHT v Praze Řasový es oxiiy. Účel Řasové esy oxiiy slouží k esování možnýh oxikýh účinků láek a vzorků na vodní produeny. Zelené řasy paří do skupiny neévnaýh

Více

Energetický audit. Energetický audit

Energetický audit. Energetický audit ČVUT v Praze Fakula savební Kaedra echnických zařízení budov Energeický audi VYHLÁŠ ÁŠKA č.. 213/2001 Sb. Minisersva průmyslu a obchodu ze dne 14. června 2001, kerou se vydávaj vají podrobnosi náležiosí

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

Sbírka B - Př. 1.1.5.3

Sbírka B - Př. 1.1.5.3 ..5 Ronoměrný pohyb Příklady sřední obížnosi Sbírka B - Př...5. Křižoakou projel rakor rychlosí 3 km/h. Za dese minu po něm projela ouo křižoakou sejným směrem moorka rychlosí 54 km/h. Za jak dlouho a

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost

EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, 779 00 OLOMOUC tel.: 585 427 142, 775 116 442; fax: 585 422 713 e-mail: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOLA RADOSTI, ŠKOLA

Více

Požárně ochranná manžeta PROMASTOP -U (PROMASTOP -UniCollar ) pro plast. potrubí

Požárně ochranná manžeta PROMASTOP -U (PROMASTOP -UniCollar ) pro plast. potrubí Požárně ochranná manžea PROMASTOP -U (PROMASTOP -UniCollar ) pro plas. porubí EI až EI 90 00.0 PROMASTOP -U - požárně ochranná manžea monážní úchyky ocelová kova nebo urbošroub ocelový šroub s podložkou

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou

Více

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií

Více

Úloha VI.3... pracovní pohovor

Úloha VI.3... pracovní pohovor Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

Věstník ČNB částka 25/2007 ze dne 16. listopadu 2007

Věstník ČNB částka 25/2007 ze dne 16. listopadu 2007 Třídící znak 1 0 7 0 7 6 1 0 ŘEDITEL SEKCE BANKOVNÍCH OBCHODŮ ČESKÉ NÁRODNÍ BANKY VYHLAŠUJE ÚPLNÉ ZNĚNÍ OPATŘENÍ ČESKÉ NÁRODNÍ BANKY Č. 2/2003 VĚST. ČNB, KTERÝM SE STANOVÍ PODMÍNKY TVORBY POVINNÝCH MINIMÁLNÍCH

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

Termodynamika - určení měrné tepelné kapacity pevné látky

Termodynamika - určení měrné tepelné kapacity pevné látky I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 3 Termodynamika - určení měrné

Více

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

kolmo dolů (její velikost se prakticky nemění) odpor vzduchu F

kolmo dolů (její velikost se prakticky nemění) odpor vzduchu F .6.4 Sislý r Předpoklady: 6, 6 Pedagogická poznámka: Obsa odpoídá spíše děma yučoacím odinác. Z lediska dalšíc odin je důležié dopočía se k příkladu číslo 7. Hodina paří mezi y, keré záisí na znalosec

Více

R o č n í k 2004. V ě s t n í k MINISTERSTVA ZDRAVOTNICTVÍ ČESKÉ REPUBLIKY. Částka 11 Vydáno: LISTOPAD 2004 Kč OBSAH

R o č n í k 2004. V ě s t n í k MINISTERSTVA ZDRAVOTNICTVÍ ČESKÉ REPUBLIKY. Částka 11 Vydáno: LISTOPAD 2004 Kč OBSAH R o č n í k 2004 V ě s n í k MINISTERSTVA ZDRAVOTNICTVÍ ČESKÉ REPUBLIKY Čáska 11 Vydáno: LISTOPAD 2004 Kč OBSAH METODICKÁ OPATŘENÍ 11. Zajišění jednoného posupu při ověřování podmínek vzniku onemocnění

Více

Cvičení 5 Bilancování provozu tepelných čerpadel

Cvičení 5 Bilancování provozu tepelných čerpadel Cvičení 5 Bilancování provozu epelných čerpadel Příklad 1 Poměrná úspora elekrické energie Dům o pořebě epla 10 MWh/rok e vyápěn elekrickými přímoopy. Sanove úsporu elekrické energie při nasazení epelného

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v

Více

Projekt Odyssea, www.odyssea.cz

Projekt Odyssea, www.odyssea.cz Pojek Odyssea, www.odyssea.cz Přípaa na yučoání s cíli osobnosní a sociální ýchoy (yp B) Téma obooé Vzděláací obo Ročník Časoý ozsah Hlaní obooé cíle (j. cíle ázané na očekáaný ýsup zděláacího obou a na

Více

! " # $ % # & ' ( ) * + ), -

!  # $ % # & ' ( ) * + ), - ! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA FYZIKA METODIKA Mechanické kmiání a vlnní RNDr. Ludmila Ciglerová duben 010 Obížnos éo kapioly fyziky je dána ím, že se pi výkladu i ešení úloh využívají

Více

Tématický celek - téma. Magnetické vlastnosti látek Laboratorní úloha: Určení hmotnosti tělesa podle rovnoramenných vah

Tématický celek - téma. Magnetické vlastnosti látek Laboratorní úloha: Určení hmotnosti tělesa podle rovnoramenných vah 6. ročník květen Stavba látek Stavba látek Elektrické vlastnosti látek Magnetické vlastnosti látek Laboratorní úloha: Určení hmotnosti tělesa podle rovnoramenných vah Magnetické vlastnosti látek Měření

Více

1/66 Základy tepelných čerpadel

1/66 Základy tepelných čerpadel 1/66 Základy epelných čerpadel princip přečerpávání epla základní oběhy hlavní součási epelných čerpadel 2/66 Tepelná čerpadla zařízení, kerá umožňují: cíleně čerpa epelnou energii z prosředí A o nízké

Více

Název: Ověření kalorimetrické rovnice, tepelná výměna

Název: Ověření kalorimetrické rovnice, tepelná výměna Název: Ověření kalorimetrické rovnice, tepelná výměna Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:

Více

REGULACE. Akční členy. Měřicí a řídicí technika přednášky LS 2006/07. Blokové schéma regulačního obvodu MRT-07-P4 1 / 13.

REGULACE. Akční členy. Měřicí a řídicí technika přednášky LS 2006/07. Blokové schéma regulačního obvodu MRT-07-P4 1 / 13. Měřicí a řídicí chnika přdnášky LS 26/7 REGULACE (pokračoání) přnosoé csy akční člny rguláory rgulační pochod Blokoé schéma rgulačního obodu z u rguloaná sousaa y akční čln měřicí čln úsřdní čln rguláoru

Více

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb 1.1.20 Sbírk n procvičení vzhů mezi veličinmi popisujícími pohyb Máme ři veličiny popisující pohyb dv vzhy, keré je spojují nvzájem. s v = Rychlos je změn dráhy z změnu čsu (rychlos říká, jk se v čse mění

Více

1.5.4 Kinetická energie

1.5.4 Kinetická energie .5.4 Kineicá energie Předolady: 50 Energie je jeden z nejoužívanějších, ale aé nejhůře definovaelných ojmů ve sředošolsé fyzice. V běžném živoě: energie = něco, co ořebujeme vyonávání ráce. Vysyuje se

Více

Strana 1 / 80. 361/2007 Sb. NAŘÍZENÍ VLÁDY ČÁST PRVNÍ PŘEDMĚT ÚPRAVY ČÁST DRUHÁ

Strana 1 / 80. 361/2007 Sb. NAŘÍZENÍ VLÁDY ČÁST PRVNÍ PŘEDMĚT ÚPRAVY ČÁST DRUHÁ 361/2007 Sb. NAŘÍZENÍ VLÁDY ze dne 12. prosince 2007, kerým se sanoví podmínky ochrany zdraví při práci Změna: 68/2010 Sb. Změna: 93/2012 Sb. (čás) Změna: 93/2012 Sb. Změna: 9/2013 Sb. Vláda nařizuje podle

Více

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10 Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP Termodynamika Příklad 1 Stláčením ideálního plynu na 2/3 původního objemu vzrostl při stálé teplotě jeho tlak na 15 kpa.

Více

MCS 3500 Modulární stropní reproduktorový systém

MCS 3500 Modulární stropní reproduktorový systém Konferenční sysémy MCS 3 Modlární sropní reprodkorový sysém MCS 3 Modlární sropní reprodkorový sysém www.boschsecriy.cz Inovační řícívkový reprodkor Vynikající reprodkce řeči a hdby Žádné kompromisy mezi

Více

Výkonová nabíječka olověných akumulátorů

Výkonová nabíječka olověných akumulátorů Rok / Year: Svazek / Volume: Číslo / Number: 211 13 2 Výkonová nabíječka olověných akumuláorů Power charger of lead-acid accumulaors Josef Kadlec, Miroslav Paočka, Dalibor Červinka, Pavel Vorel xkadle22@feec.vubr.cz,

Více

Pracovní list č. 3 Mgr. Veronika Pluhařová duben 2012 CHEMIE 8. ročník Základní škola, Chrudim, Dr. Peška 768

Pracovní list č. 3 Mgr. Veronika Pluhařová duben 2012 CHEMIE 8. ročník Základní škola, Chrudim, Dr. Peška 768 Pracovní list č. 3 Mgr. Veronika Pluhařová duben 2012 CHEMIE 8. ročník Základní škola, Chrudim, Dr. Peška 768 Proveďte ve skupinách následující pokusy. Nad výsledky diskutujte. Odpovězte na otázky. 1.

Více

VNITŘNÍ ENERGIE, PRÁCE A TEPLO

VNITŘNÍ ENERGIE, PRÁCE A TEPLO VNITŘNÍ ENERGIE, PRÁCE A TEPLO Zákon zachování mechanické energie E celk. = = konst. Míček, který se odráží od země putuje do stále menší výšky, kam se část energie ztrácí? VNITŘNÍ ENERGIE TĚLESA Vnitřní

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Dodavatel. Hlavní sídlo v Mnichově, Spolková republika Německo Společnost založena v roce 1981 www.pulspower.com. www.oem-automatic.

Dodavatel. Hlavní sídlo v Mnichově, Spolková republika Německo Společnost založena v roce 1981 www.pulspower.com. www.oem-automatic. Dodavael Hlavní sídlo v Mnichově, Spolková republika Německo Společnos založena v roce 1981 www.pulspower.com www.oem-auomaic.cz Pulzní zdroje MiniLine, 1-fázové, 5 / 12 / 24 V ss Pulzní zdroje MiniLine,

Více

Slovní úlohy na pohyb

Slovní úlohy na pohyb VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy

Více

MĚŘENÍ S TERMISTORY Václav Piskač, Brno 2011

MĚŘENÍ S TERMISTORY Václav Piskač, Brno 2011 Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 MĚŘENÍ S TERMISTORY Václav Piskač, Brno 2011 NTC termistor je polovodičová součástka,

Více

Rekonstrukce větrání bytových domů CTB ECOWATT inteligentní DCV systém

Rekonstrukce větrání bytových domů CTB ECOWATT inteligentní DCV systém Rekonsrukce věrání byových domů CTB ineligenní DCV sysém Cenrální podlakové Skříň je z ocelového pozinkového plechu. Je opařena černým epoxidovým náěrem. Všechny modely jsou vybaveny ochrannou síí proi

Více

EFEKTIVNÍ ENERGETICKÝ REGION DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY DOLNÍ BAVORSKO Vyápěnía využiíobnovielných zdrojůenergie se zaměřením na nízkoenergeickou a pasivní výsavbu Zdroje epelné energie Invesice do Vaší budoucnosi Projek

Více

1.1.11 Rovnoměrný pohyb VI

1.1.11 Rovnoměrný pohyb VI 1.1.11 onoměrný pohyb VI ředpokldy: 11 edgogická poznámk: Náledující příkld je dokončení z minulé hodiny. Sudeni by měli mí grf polohy nkrelený z minulé hodiny nebo z domo. ř. 1: er yjede edm hodin ráno

Více

1.3.5 Dynamika pohybu po kružnici I

1.3.5 Dynamika pohybu po kružnici I 1.3.5 Dynamika pohybu po kružnici I Předpoklady: 1304 Při pohybu po kružnici je výhodnější popisova pohyb pomocí úhlových veličin, keré korespondují s normálními veličinami, keré jsme používali dříve.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS

Více

STEJNOSMĚRNÝ PROUD Práce a výkon TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

STEJNOSMĚRNÝ PROUD Práce a výkon TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. STEJNOSMĚRNÝ ROUD ráce a výkon TENTO ROJEKT JE SOLUFINANCOVÁN EVROSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZOČTEM ČESKÉ REUBLIKY. ráce a výkon elekrického proudu rochází-li elekrický proud jakýmkoli spořebičem,

Více