Vysoká škola polytechnická Jihlava. Obor Finance a řízení. Matematika 1,2 - Miloš Kraus

Rozměr: px
Začít zobrazení ze stránky:

Download "Vysoká škola polytechnická Jihlava. Obor Finance a řízení. Matematika 1,2 - Miloš Kraus"

Transkript

1 Vysoká škola polytechnická Jihlava Obor Finance a řízení Matematika, - cvičení Miloš Kraus. vydání září 005

2

3 Obsah Matematická logika 5 Funkce a jejich vlastnosti 8 3 Inverzní a cyklometrické funkce 5 4 Limita posloupnosti 9 5 Limita funkce 6 Diferenciální počet funkce jedné proměnné 7 7 Primitivní funkce 44 8 Určitý a nevlastní integrál 5 9 Funkce dvou proměnných 60 0 Nekonečné řady 7 Diferenciální rovnice 8

4 Předmluva Tento učební tet je doplňkem k tetu Matematika a Matematika pro studenty I. a II. semestru kurzu matematiky na Vysoké škole polytechnické Jihlava, obor Finance a řízení. Obsahuje cvičení k přednáškám a měl by tedy posloužit k procvičení a lepšímu pochopení jednotlivých temat. V tetu je vždy uvedena řada ukázkových příkladů k jednotlivým tematům přednášek a následuje cvičení, které by měl student sám řešit. Jednotlivé kapitoly odpovídají časovému programu kurzu, tak jak je rozvržen do jednotlivých přednášek. Byl bych rád, kdyby tet co nejlépe pomohl studentům ve studiu a uvítám proto náměty a doporučení, které by napomohly k jeho dalšímu zlepšení. Současně se omlouvám za chyby, kterých jsem se snažil vyvarovat, ale jimž se přesto lze jen těžko vyhnout. V Jihlavě. září 005 Autor

5 5 Cvičení k přednášce Matematická logika Ukázkový příklad. (Tabulka pravdivostních hodnot logické formule). Ukažme, že logická formule (A B) (A B ) není logický zákon (tautologie). Sestavíme tabulku pravdivostních hodnot a podle definice jednotlivých formulí ji doplníme. A B A B (A B) (A B ) (A B) (A B ) Z posledního sloupce pravdivostních hodnot formule (A B) (A B ) je patrné, že daná formule není tautologie. Ukázkový příklad. (Negace kvantifikovaného výroku). Utvořme negace kvantifikovaných výroků:. A : a, b R, (a + b) = a + ab + b Podle pravidel pro negování kvantifikovaného výroku se eistenční kvantifikátor změní na obecný a výrok se neguje, tzn. A : a, b R, (a + b) a + ab + b. Zřejmě je výrok A pravdivý a výrok A nepravdivý.. A : a, b R, (a + b) = a + b. Obdobně jako v předchozím případu je A : a, b R, (a+b) a +b. Opět je výrok A pravdivý a výrok A nepravdivý. 3. A : R y R z R, ( + y + z) > 0 A : R y R z R, ( + y + z) 0 (stručněji A :, y, z R ( + y + z) 0 ) Výrok A je nepravdivý, výrok A je pravdivý. Ukázkový příklad.3. Negujme výrok A : V žádném českém městě nežije žádný člověk starší než 00 let. Výrok si můžeme - jazykově dosti neobratně - přepsat takto: O každém českém městě platí (Každý člověk je v něm mladší nebo právě 00 let starý). Pak bude negace: O aspoň jednom českém městě platí (Žije v něm aspoň jeden člověk starší 00 let ). Jazykově trochu kultivovaněji: V aspoň jednom českém městě žije aspoň jeden člověk starší než 00 let.

6 6 MATEMATICKÁ LOGIKA Cvičení.. Zjistěte, které z následujících formulí jsou logické zákony (tautologie): (a) (A B) [(A B) (B A)] (b) (A B) [(A B) (A B )] (c) (A B) (A B) (d) (A B) (A B ) (e) (A B) (A B ) (f) (A B) (A B) (g) (A A ) (A A ) (h) (A A ) (A A ) Výsledky: (a) ano, (b) ano, (c) ano, (d) ne, (e) ano, (f) ano, (g) ano, (h) ne Cvičení.. Dokažte platnost logických zákonů: (a) [(A B) C] [(A C) (B C)] (b) [(A B) C] [(A C) (B C)] (c) (A B C) (A B C ) (d) (A B C) (A B C ) Výsledky: (a), (b) - ano, distributivní zákony, (c), (d) - ano, de Morganovy zákony Cvičení.3. Negujte kvantifikované výroky (a) M, A() B() (b) M, A() B() (c) M, A() B() (d) M, A() B() (e) M, A () B() (f) M, A() B() Výsledky: (a) M, A () B (), (b) M, A () B (), (c) M, A () B (), (d) M, A () B (), (e) M, A() B (), (f) M, A() B () Cvičení.4. Negujte následující kvantifikované výroky: (a) M, f( ) = f() (b) < R, f( ) < f( ) (c) < R, f( ) f( )

7 7 (d) K R M, f() K (e) M, f( ) f( ) (f) ε > 0 n 0 N n > n 0, a n A < ε Výsledky: (a) M, f( ) f(), (b) < R, f( ) f( ), (c) < R, f( ) < f( ), (d) K R M, f() > K, (e) M, f( ) = f( ), (f) ε > 0 n 0 N n > n 0, a n A ε. Cvičení.5. Negujte následující kvantifikované výroky: (a) Všichni účastníci zájezdu se dostavili včas. (b) Nejméně dva účastníci zájezdu přišli pozdě. (c) Právě tři účastníci zájezdu se nedostavili. (d) Aspoň jeden účastník zájezdu nepřišel pozdě. (e) V každém čtverci jsou aspoň dvě různé kružnice opsané. (f) Všichni poslanci se zúčastnili všech schůzí. (g) Aspoň jeden poslanec se zúčastnil všech schůzí. (h) Každý poslanec se zúčastnil aspoň jedné schůze. (i) Aspoň tři poslanci se nezúčastnili žádné schůze. (j) Nejvýše dva poslanci strany X hlasovali pro všechny návrhy strany Y. Výsledky: (a) Aspoň jeden účastník zájezdu se nedostavil včas. (b) Nejvýše jeden účastník nepřišel pozdě. (c) Nejvýše dva nebo aspoň čtyři účastníci zájezdu se nedostavili. (d) Všichni přišli pozdě. (e) Eistuje aspoň jeden čtverec, v němž je nejvýše jedna kružnice čtverci opsaná. (f) Aspoň jeden poslanec se nezúčastnil aspoň jené schůze (tj. alespoň jednou chyběl.), (g) 0 každém poslanci lze říci, že se nezúčastnil aspoň jedné schůze (= Každý poslanec aspoň jednou chyběl.) (h) Aspoň jeden poslanec se nezúčastnil žádné schůze. (i) Nejvýše dva poslanci se nezúčastnili žádné schůze. (j) Aspoň tři poslanci strany X hlasovali pro všechny návrhy strany Y. Cvičení.6. (a) Řešení jisté nerovnice jsou všechna R taková, že platí výrok A : (0,. Utvořte negaci výroku A. (b) Každá kvadratická rovnice, jejíž dikriminant D > 0, má dva různé reálné kořeny. Negujte tento výrok a posuďte jeho pravdivost. Výsledky: (a) (, 0 (, ), tj. (, 0 (, ), (b) Aspoň jedna kvadratická rovnice, jejíž diskriminant je D > 0, nemá dva reálné různé kořeny. (Nepravdivý.)

8 8 FUNKCE A JEJICH VLASTNOSTI Cvičení k přednášce Funkce a jejich vlastnosti Ukázkový příklad. (Funkční závislost). Vyjádřete povrch koule S jako funkci jejího průměru d. Protože S = 4πr a r = d, je S = 4π( d ) = π.d. Ukázkový příklad.. Vyjádřete objem V rotačního kužele jako funkci délky strany s při konstantním poloměru r podstavy kužele. Pro objem kužele platí vzorec V = 3 πr v. Výšku v vyjádříme pomocí s, r z pravoúhlého trojúhelníka v = s r. Je tedy V = 3 r s r. Ukázkový příklad.3. Vyjádřete objem V ročního kužele jako funkci odchylky α strany kužele od podstavy při konstantním obsahu podstavy P. Objem kužele je V = 3P v. Výšku v vyjádříme opět z pravoúhlého trojúhelníka pomocí α, r. Je tg α = v r v = r tg α. Poloměr r dostaneme z obsahu podstavy P = πr P r = π. Je tedy v = P π tg α a nakonec V = 3 P P π tg α. Cvičení.. a) Vyjádřete povrch S rotačního válce jako funkci jeho tělesové výšky v při konstantním pbsahu podstavy P. b) Vyjádřete velikost U tělesové úhlopříčky krychle jako funkci obsahu P stěny krychle. c) Podél silnice jsou postaveny ve stejných vzdálenostech d sloupy. Vyjádřete vzdálenost mezi m-tým a n-tým sloupem jako funkci d. d) Vyádřete obsah S kruhové výseče jako funkci délky oblouku l při konstatntním poloměru r. e) Z výšky [km] ad Zemí je vidět část zemského povrchu (kulový vrchlík) o obsahu S[km ]. Vyjádřete S jako funkci při konstantním poloměru Země (R=6400 km). P Výsledky: (a) S = P + π π v, (b) U = 3 3P, (c) = (n m + )d, (d) S = rl πr, (e) S() = +R. Ukázkový příklad.4 (Definiční obor funkce). + Najděme definiční obor funkce f : y =. Podmínky omezující definiční obor: odmocněnec + nezáporný platí pro každé R, jmenovatel zlomku nenulový ±. Závěr: D(f) = R \ {, }.

9 9 Ukázkový příklad.5. Najděme definiční obor a obor hodnot funkce f : y = protože diskriminant kvadratického trojčlenu je D = 6 0 = 4, upravíme = ( ) +, zřejmě je ( ) + 0 (rovnost nenastane). Závěr: D(f) = R. Obor hodnot je zjevně H(f) =, ). Ukázkový příklad.6. Najděme definiční obor funkce f : y = +. Omezující podmínky: log( + ) 0 log( + ) > 0 > 0 ln log(+) ln + 0 (například pomocí nulových bodů =, = ) Konjunkcí všech podmínek dostaneme D(f) =, 9. Ukázkový příklad.7. Najděme definiční obor funkce f : y = +. Podmínky: 0 0 = 0 = = ±. Je tedy D(f) = {, } a H(f) = {0}. Ukázkový příklad.8 (Graf funkce). Zobrazíme graf funkce f : y =. Definiční obor D(f) = R. Rozbo rem výrazu dostaneme: a) Pro 0 je y =, b) pro < 0 je y =. Obě části téhož grafu funkce jsou části parabol - viz obrázek.0. Obor hodnot je zřejmě H(f) = R. 4 f Obrázek.0.: f : y = Obrázek.0.: f : y = sin sin

10 0 FUNKCE A JEJICH VLASTNOSTI sin sin. Ukázkový příklad.9. Zobrazíme graf funkce f : y = Pro definiční obor platí podmínka sin 0 kπ, k Z. Rozborem výrazu sin dostaneme: a) Pro sin > 0, tj. (0, π) (π, 3π) (4π, 5π)... je sin = sin a tedy y = sin sin =. Graf je část přímky y = rovnoběžné s osou. b) Pro sin < 0, tj. ( π, 0) (π, π)... je sin = sin a tedy y = sin sin =. Graf je část přímky y = rovnoběžné s osou. Obor funkčních hodnot je H(f) = {, }.Viz obrázek.0. Cvičení.. Najděte definiční obor, obor hodnot funkce a graf funkce: (a) f : y = (b) f : y = 3 (c) f : y = + 4 (d) f : y = + (e) f : y = 9 (f) f : y = + (g) f : y = + (h) f : y = +3 (i) f : y = + + Výsledky: (a) D(f) =, ), H(f) = 0, ), (b) D(f) =, 3), H(f) = (, 0, (c) D(f) =,, H(f) =, ), (d) D(f) = R, H(f) = (,, (e) D(f) = (, 3 3, ), H(f) = (, 0, (f) D(f) =, ), H(f) = 0, ), (g) D(f) = R \ { }, H(f) = R \ {}, (h) D(f) = R\{ 3}, H(f) = (, 0, ), (i) D(f) = R, H(f) = (,. Cvičení.3. Najděte definiční obor, obor hodnot funkce a graf funkce : (a) f : y = (b) f : y = 4 + (c) f : y = ( )( +) (d) f : y = + (e) f : y = 3 + (f) f : y = 6 + (g) f : y = + 4 Výsledky: (a) D(f) = R\{}, H(f) = {, }, (b) D(f) = R\{ }, H(f) = R\{4}, (c) D(f) = R\{0, }, H(f) = R\{, 3}, (d) D(f) = R\{0}, H(f) =, ), (e) D(f) = R \ {0}, H(f) = (, ) (, ), (f) D(f) = R, H(f) = 7, ), (g) D(f) = R, H(f) = (, Cvičení.4. Najděte definiční obor, obor hodnot funkce a graf funkce: (a) f : y = + (b) f : y = e (c) f : y = 3 ( ) (d) f : y = 3 (e) f : y = + log (f) f : y = ln( + ) (g) f : y = ln( + ) (h) f : y = log( ) + log( )

11 Výsledky: (a) D(f) = R, H(f) = (, ), (b) D(f) = R, H(f) = (, 0), (c) D(f) = R, H(f) = (, 3), (d) D(f) = R, H(f) = (0, ), (e) D(f) = (0, ), H(f) = R, (f) D(f) = (, ), H(f) = R, (g) D(f) = (, ), H(f) = R, (h) D(f) =, H(f) = Cvičení.5. Najděte definiční obor, obor hodnot funkce a graf funkce: (a) f : y = sin (b) f : y = sin( + π 4 ) (c) f : y = 3 cos (d) f : y = + tg (e) f : y = cotg (f) f : y = sin (g) f : y = cos sin (h) f : y = sin + sin + cos Výsledky: (a) D(f) = R, H(f) = 0,, (b) D(f) = R, H(f) =,, (c) D(f) = R, H(f) = 3, 3, (d) D(f) = R \ { π + kπ}, k Z, H(f) = R, (e) D(f) = R \ {kπ}, k Z, H(f) = R, (f) D(f) = R, H(f) = 0, 3, (g) D(f) = R, H(f) =,, (h) D(f) = R, H(f) = 0,. Ukázkový příklad.0 (Sudost a lichost funkce). Ukažme z definice, že funkce f : y = sin 3 je lichá. f() = sin 3, Definiční obor funkce je R. f( ) = ( ) sin 3 ( ) = ( sin ) 3 = sin 3 (neboť sin( ) = sin ). Je tedy f( ) = f() a funkce f je lichá. Viz obrázek Obrázek.0.3: f : y = sin 3 Obrázek.0.4: f : y = 3

12 FUNKCE A JEJICH VLASTNOSTI Ukázkový příklad.. Posuďme sudost resp. lichost funkce f : y = 3. Protože definiční obor funkce D(f) = 3, ) není symetrický podle počátku O, nemůže být daná funkce lichá ani sudá. Viz obrázek.0.4 Cvičení.6. (a) Dokažte, že funkce f : y = (sin + sin ) je lichá. (b) Dokažte, že funkce f : y = + je sudá. (c) Dokažte, že funkce f : y = ln + je lichá. (d) Dokažte, že funkce f : y = sin + cos není ani sudá ani lichá. (e) Dokažte, že funkce f : y = + je sudá. (f) Dokažte, že funkce f : y = (tg + cotg ) je lichá. (g) Dokažte, že funkce f : y = sin + cos je sudá. (h) Dokažte, že funkce f : y = + není ani sudá ani lichá Obrázek.0.5: f : y = sin cos 5 Obrázek.0.6: f : y = Ukázkový příklad. (Omezenost funkce).. Ukažme, že funkce f : y = sin cos 5 je omezená. Zřejmě je sin cos 5 0 cos 5 0 cos 5 cos 5 0 Sečtením posledních dvou (souhlasných!!) nerovností dostaneme sin cos 5 sin cos 5 sin cos 5. Funkce je tedy omezená. Viz obrázek.0.5.

13 3. Dokážeme, že funkce f : y = není shora omezená. Tvrzení dokážeme sporem. Předpokládejme, že f je shora omezená, tzn. že eistuje K R K > 0 takové. že pro všechna D(f) = R je K.Poslední podmínka je však splněna pro K, K a nikoliv pro všechna R, což je spor. Proto f není shora omezená. Tvrzení můžeme dokázat i jinak: Dokažme přímo, že funkce není omezená, tj. dokážme pravdivost negace definičního výroku o omezenosti shora, tedy výrok: K > 0 D(f), > K. Takové D(f) skutečně eistuje, například = K +. Je totiž zjevně (K + ) = K + K + > K ( pro každé K > 0). Cvičení.7. Dokažte (z definice), že následující funkce mají uvedené vlastnosti(shora omezené, zdola omezené, omezené nebo nejsou omezené) : (a) f : y = sin + cos - omezená (b) f : y = sin 3 cos - omezená (c) f : y = sin cos - omezená (d) f : y = 4 - shora omezená (e) f : y = + - zdola omezená (f) f : y = omezená (g) f : y = tg - zdola omezená (h) f : y = 3 - shora omezená (i) f : y = - omezená Ukázkový příklad.3 (Monotonie funkce).. Dokažme, že funkce f : y = je rostoucí ve svém D(f). Definiční obor je D(f) = (,. Zkonstruujeme funkční hodnoty dané funkce pro libovolné dvě hodnoty < D(f). Zřejmě platí < > > > < f( ) < f( ). Poslední nerovnost ovšem znamená, že funkce f je rostoucí. Viz obrázek Dokážeme, že funkce f : y = není ani rostoucí ani klesající v D(f) = R \ {0}. a) Dokážeme, že není rostoucí. Pokud by byla rostoucí, muselo by pro každá dvě < D(f) platit f( ) < f( ). To však zřejmě není například pro = 3, = - SPOR

14 4 FUNKCE A JEJICH VLASTNOSTI b) podobně ukážeme, že funkce není klesající. Pokud by byla klesající, muselo by pro každá dvě < D(f) platit f( ) > f( ). To však také není, neboť například f( ) =, f() = - SPOR c) Daná funkce je ovšem klesající v některé vhodné podmnožině D(f). Například v intervalu (0, ), rovněž v intervalu, je klesající apod. Cvičení.8. Dokažte, že následující funkce jsou v dané množině rostoucí nebo klesající nebo nemají žádnou z těchto vlastností: (a) f : y = klesající v D(f) (b) f : y = + rostoucí v D(f) (c) f : y = klesající v D(f) (d) f : y = + 3 log() rostoucí v D(f) (e) f : y = + klesající v intervalu 0, ) (f) f : y = ani rostoucí ani klesající v D(f) (g) f : y = klesající v intervalu (, 0 (h) f : y = sin + cos ani rostoucí ani klesající v R Obrázek.0.7: f : y = Obrázek.0.8: f : y = e Ukázkový příklad.4 (Prostá funkce).. Dokažme, že funkce f : y = je prostá. Definiční obor funkce je R. Zkonstruujeme f( ), f( ) pro dvě libovolné hodnoty R a prokážeme splnění definičního výroku prosté funkce. Velmi snadné: f( ) f( ) pro každé R. Funkce je tedy prostá. Obrázek.0.7.

15 5. Dokažme, že funkce f : y = e není prostá. Definiční obor je D(f) = R. Platnost tvrzení je okamžitě zřejmá. Zvolme například =, =, pak je f( ) = e, f( ) = e, takže je f( ) = f( ). Funkce tedy není prostá. Tvrzení bylo ihned patrné i ze skutečnosti, že funkce f je sudá (proč?) a z geometrické interpretace sudosti. Obrázek.0.8. Cvičení.9. (a) Dokažte, že funkce f : y = 3 + je prostá v D(f). (b) Dokažte, že funkce f : y = je prostá v D(f). (c) Dokažte, že funkce f : y = sin( ) není prostá v D(f). (d) Dokažte, že funkce f : y = + 4 není prostá v D(f). (e) Dokažte, že funkce f : y = je prostá v D(f). (f) Dokažte, že funkce f : y = není prostá v D(f). (g) Dokažte, že funkce f : y = sin + cos není prostá v D(f). 3 Cvičení k přednášce Inverzní a cyklometrické funkce 3 f y= 4 3 f y= g g Obrázek 3.0.9: f : y = 3 +, g = Obrázek 3.0.0: f : y = 3, g = f : y = 3 ( ) f : y = log ( + 3) Ukázkový příklad 3. (Konstrukce inverzní funkce). Najdeme inverzní funkce k daným funkcím:

16 6 3 INVERZNÍ A CYKLOMETRICKÉ FUNKCE. f : y = 3 + D(f) = R, funkce je v D(f) prostá a zobrazuje D(f) = R na H(f) = R. Inverzní funkci dostaneme výpočtem, tj. = y 3. Je tedy f (y) = y 3 (v souřadné soustavě yo ), resp. po záměně proměnných f () = 3 (v souřadné soustavě Oy ). Grafy f, f jsou souměrné podle přímky y =. Obrázek f : y = 3 D(f) = R, H(f) = ( 3, ), výpočtem postupně dostaneme: = y + 3 = log (y + 3). Inverzní funkce f (y) = log (y + 3), resp. po záměně proměnných f () = log (+3) zobrazuje D(f ) = ( 3, ) na interval H(f ) = R. Grafy f, f jsou souměrné podle přímky y =. Obrázek g y= 4 3 g y= f f Obrázek 3.0.: f : y = + cos, f = g : y = arccos( ) Obrázek 3.0.: f : y = arctg, f = g : y = tg Ukázkový příklad 3.. Určíme inverzní funkci k funkci f : y = + cos v intervalu 0, π. V D(f) = 0, π je f prostá a zobrazuje jej na interval H(f) =, 3. Inverzní funkci dostaneme výpočtem : cos = y = f (y) = arccos(y ). Tato funkce zobrazuje D(f ) =, 3 na interval H(f ) = 0, π. Po záměně proměnných dostaneme inverzní funkci ve tvaru y = f () = arccos( ). Oba grafy jsou v téže souřadné soustavě (Oy) na obrázku Ukázkový příklad 3.3. Najdeme inverzní funkce k daným funkcím: f : y = arctg v intervalu R. D(f) = R\{0}, H(f) = ( π, π )\{0}, D(f ) = ( π, π )\{0}, H(f ) = R \ {0}.

17 7 y = arctg = tg y = tg y = cotg y, po záměně proměnných y = cotg - viz obrázek 3.0. vytvořený programem MAPLE. Ukázkový příklad 3.4. Určíme definiční obor funkce f : y = arcsin + +. Podmínka pro definiční obor je +. Budeme proto řešit + soustavu nerovnic, čili konjunkci Protože + > 0 pro každé R, lze obě nerovnice soustavy násobit + beze změny znaménka nerovnice, tj První nerovnici postupně upravíme: R, neboť diskriminant kvadratického trojčlenu je D = 7 < 0. Druhou nerovnici upravíme: 0 a například pomocí nulových bodů dostaneme řešení (, 0, ). Průnik řešení obou nerovnic je R [(, 0, )] = (, 0, ). Definiční obor funkce f : y = arcsin + tedy je (, 0, ). Graf + funkce vytvořený pomocí programu MAPLE je na obrázku Cvičení 3.. Určete inverzní funkce k daným funkcím : (a) f : y = 3 + arcsin( + ) v intervalu, 0. (b) f : y = sin( π 3 ) v intervalu π 6, 5π 6 (c) f : y = + arccotg 3 v intervalu (, ). Výsledky: (a) f : y = + 3 sin, H(f) = 3 π, 3 + π. (b) f : y = π 3 + arcsin( ) = π 3 arcsin, H(f) =,, (c) f : y = 3 cotg( ), D(f) = (0, 3π ), H(f) = (, + π). 4 3 f y= g g f Obrázek 3.0.3: f : y = arcsin + + Obrázek 3.0.4: f : y = ln, g = f : y = e / Cvičení 3.. Najděte inverzní funkce k daným funkcí ve vhodně volených intervalech:

18 8 3 INVERZNÍ A CYKLOMETRICKÉ FUNKCE (a) f : y = arctg 3 (b) f : y = cos (c) f : y = sin cos Výsledky: (a) D(f) = R \ {3}, f : y = 3 + cotg, (b) D(f) = 0, π \ { π 4 } = H(f ), f : y = arccos, D(f ) =, ) (, = H(f) viz obrázek (graf byl vytvořen v programu MAPLE), (c) D(f) = 0, π = H(f ), f : y = arccos( ), D(f ) =,. 3 f y= g g f 4 y= f 4 g Obrázek 3.0.5: f : y = cos, f = g : y = arccos Obrázek 3.0.6: f : y = ln +, f : y = e + e Cvičení 3.3. Najděte inverzní funkce k daným funkcí ve vhodně volených intervalech splujících podmínky pro eistenci inverzní funkce: (a) f : y = + (b) f : y = v intervalu, 0 (c) f : y = ( + ) v intervalu, ) (d) f : y = ln (e) f : y = + (f) f : y = ln + Výsledky: (a) D(f) =,, f : y =, (b) f : y =, (c) v D(f) =, ) je f : y =, D(f ) =, 0, (d) D(f) = (0, ) \ {}, f : y = e / - viz obrázek 3.0.4, (e) D(f) = R \ {}, f : y = +, (f) D(f) = (, ) (, ), f : y = e + e - obrzek Cvičení 3.4. Dokažte platnost následujících vzorců:

19 9 (a) arcsin + arccos = π (b) arctg + arccotg = π (c) arcsin( ) = arcsin (d) arctg( ) = arctg 4 Cvičení k přednášce Limita posloupnosti Ukázkový příklad 4. (Monotonie posloupnosti). Dokažme následují vlastnosti posloupností:. a n = n n+ je rostoucí. Posoudíme výraz a m a n, m < n (definice rostoucí posloupnosti!): a m a n = m m+ n n+ = m n (m+)(n+) = (m n) (m+)(n+). Protože m + > 0, n + > 0, m n < 0 pro každé m, n N, je podle definice daná posloupnost rostoucí.. a n = (n ) je klesající. m < n a m a n = (m ) + (n ) = (m n) (m n ) = (m n)( m n). Protože m n > m+n > m n < 0, výraz m n < 0. Je tedy a m a n > 0 a m > a n. Posloupnost je tedy klesající. 3. Vyšetřeme, zda posloupnost a n = (n 50) 4 je rostoucí nebo klesající. a m a n = (m 50) 4 (n 50) 4 = [(m 50) + (n 50) ].[(m 50) (n 50) ] = [(m 50) + (n 50) ][4m 4n 00m + 00n] = [(m 50) + (n 50) ][4(m n ) 00(m n)] = [(m 50) + (n 50) ].4(m n)(m + n 50). Poslední výraz není pro každé m, n N ani kladný ani záporný. Je totiž pro každé m, n N m < n výraz (m 50) + (n 50) > 0, výraz m n < 0, avšak výraz (m + n 50) může nabývat hodnot kladných (např. m = 0, n = 40), záporných (např. m =, n = 0) nebo i nulových ( m = 0, n = 30). Posloupnost tedy není ani rostoucí ani klesající (pro každé n N). Ukázkový příklad 4. (Omezenost posloupnosti).. Dokažme, že posloupnost a n = n n+ je shora omezená hodnotou h =. n Řešme nerovnici n+ n (n + ) 0n. Poslední nerovnost je splněna pro každé n N. Posloupnost je tedy shora omezená. (Obdobně bychom ovšem dokázali, že je shora omezená hodnotou například h = 0 apod. ). Platí tedy a n. Omezenost zdola je okamžitě zřejmá z toho, pro n N je zlomek n n+ > 0 pro každé n N. Platí tedy a n > 0. S využitím výsledku příkladu 4. (rostoucí posloupnost) ovšem zřejmě platí a n > a =.

20 0 4 LIMITA POSLOUPNOSTI Je tedy je a n a n a n (pro každé n N ), což podle definice omezenosti znamená, že posloupnost a n = n n+ je omezená.. Dokažme, že posloupnost a n = (n ) je omezená shora, nikoliv zdola. Omezenost shora je okamžitě zřejmá: Výraz (n ) 0 pro každé n N, takže výraz a n = (n ) 0. Je tedy posloupnost omezená shora hodnotou h = 0 (nebo ovšem i jinou kladnou hodnotou ). Omezenost zdola dokážeme SPOREM. Předpokládejme, že posloupnost je zdola omezená, tj. že eistuje K R takové, že pro všechna n N je a n K, K < 0. Řešme proto nerovnici (n ) K (n ) K n K K n + K (Je zřejmě K > 0 ). Poslední řešení je však SPOR s předpokladem, že shora uvedená podmínka a n K platí pro všechna n N. Posloupnost proto není zdola omezená (což je dobře patrné i z grafického zobrazení posloupnosti a n = (n ) ). Ukázkový příklad 4.3 (Limita posloupnosti).. Dokažme, že posloupnost a n = n n+ má limitu. Podle definice dokážeme, že nerovnost a n 3 < ε platí pro všechna přirozená čísla n > n 0, n 0 N a pro každé ε > 0. Jinak řečeno, že eistuje takové n 0 N, že pro všechna n > n 0 je a n 3 < ε při libovolné volbě ε > 0. Řešme proto nerovnici n n+ < ε n+ < ε n+ < ε n + > ε n > ε. Tím byla prokázána eistence přirozeného čísla n 0 požadovaného definicí. Tímto číslem n 0 je celá část čísla ε. Například pro ε = 0, 0 je ε = 99 a tedy n 0 = 99. Pro ε = 0, 3 je ε = 0,3 =. 5, 67 a tedy je n 0 = 5. Znamená to, že pro každé n > 5 je rozdíl n n+ < 0, 3. Dosazením se snadno přesvědčíte o správnosti například pro n = 6 a 6 = 0, 93, 74, a 6 = 0, 86 < 0, 3.. Dokažme, že limita posloupnosti a n = e n je. Podle definice najdeme takové n 0 N (prokážeme jeho eistenci), že pro každé n > n 0 je a n > K pro libovolně zvolené K R, K > 0. Řešme proto nerovnici e n > K n log e > log K n > log K log e. Hledané n 0 N tedy je celá část reálného čísla log K log e. Tím je dokázáno, že lim n en =. [ Například pro K = 0 0 je log K n 0 = 3.] log e = 0 log e = 3, 06 a celá část je Cvičení 4.. Dokažte z definice, že následují posloupnosti mají limity:

21 a) lim 5n n = 5. b) lim 3 n n = c) lim n+ +n = d) lim( + n ) = e) lim( n ) = f) lim( 3 )n = 0 Cvičení 4.. Vypočtěte limity posloupností: (a) lim (n+) ( n) (b) lim n3 +n 5 ( n) 3 (c) lim n3 +n 3 (n+) 3 (d) lim n n+ (e) lim n +n (f) lim 3n3 +n 5n+ (n ) (g) lim n+ n n 3 (h) lim( n + n n) (i) lim( n n n) Výsledky: (a) 4, (b), (c) /8, (d), (e) 0, f) 0, (g), (h), (i), Cvičení 4.3. Vypočtěte limity posloupností: (a) lim 5n 3 n (b) lim n 3 n 3 n (c) lim 0n + n 5 n (d) lim 6n + 5 n (e) lim n +( ) n n (f) lim(( )n + n + n ) (g) lim( n + ( ) n ) (h) lim +( )n cos n 3 Výsledky: (a), (b), (c) 0, (d), (e), (f),(g) nee., (h) nee. Cvičení 4.4. Vypočtěte limity posloupností: (a) lim ( + n ) n (b) lim ( + ) n 3n ( ) n (c) lim + n+ ( ) 4n+3 (d) lim + n+ (e) lim ( ) n+ 4n+3 n (f) lim ( ) n+3 n+3 n (g) lim ( n n+ ) n ( ) n (h) lim n+4 n+ ( ) (i) lim + n+ ( ) (j) lim n+5 n+ (k) lim n[ln(n + ) ln n]

22 5 LIMITA FUNKCE Výsledky: (a) e, (b) e /3, (c) e, (d) e, (e) e 4, (f) e 3, (g) e, (h) e 6, (i), (j), (k) Cvičení 4.5. Vypočtěte limity posloupností: (a) lim 3 n n+ (b) lim log +n +0n ) (c) lim ( + n n+ (d) lim (n+)! (n+)! (e) lim ++ +n n (f) lim n n+ Výsledky: (a) 3, (b), (c) 3, (d), (e), (f) 0. Cvičení 4.6. Vypočtěte limity posloupností: (a) lim(n + sin n) (b) lim(cos n n ) (c) lim n + sin n (d) lim sin n cos n sin n+cos n (e) lim n cos 3n n +( ) n (f) lim n cos 3n n+( ) n (g) lim n sin n n 3 +( ) n (h) lim n +( ) n 5 n sin n Výsledky: (a), (b), (c), (d) nee, (e), (f), (g) 0, (h) 0 Cvičení 4.7. Vypočtěte limity posloupností: (a) lim(n n) (b) lim( n n n) (c) lim n+ n n (d) lim (e) lim n+ n n n++ n n (f) lim( n + n n n) Výsledky: (a), (b), (c) 0, (d) 0, (e), (f) 5 Cvičení k přednášce Limita funkce Ukázkový příklad 5. (Vlastní limita v nevlastním bodě). (Obrázek 5.0.8). Dokažme, že lim ( + e ) =. Lze postupovat dvěma způsoby.

23 3. Vyjdeme-li z definice ε > 0 0 R < 0, f() < ε, pak vyjdeme z posledního tvzení a postupně dostaneme: f() < ε + e < ε e < ε < ln ε. Tím jsme našli 0 požadované definicí a to 0 = ln ε a skutečně tedy platí tvrzení o dokazované limitě.. Vyjdeme-li z definice limity funkce pomocí okolí, tj. U ε (A) P δ ( ) P δ ( ), f() U ε (), pak dostáváme postupně f() U ε () e + U ε () ε < e + < + ε ε < e < ε < ln ε (, ln ε). Je tedy nalezeno δ = ln ε a příslušné prstencové okolí P δ ( ) = (, ln ε). y f() y f() K 0 0 Obrázek 5.0.7: lim ln( + ) = Obrázek 5.0.8: lim ( + e ) = Ukázkový příklad 5. (Nevlastní limita v nevlastním bodě). (Obrázek 5.0.7) Dokažme, že lim ln( + ) d =.. Podle definice má platit od jistého 0 (jehož eistenci je tedy nutno prokázat), že pro všechna > 0 je že ln( + ) > K pro libovolné K > 0. Vyjdeme-li z poslední nerovnosti, dostaneme postupně ln( + ) > K + > e K > + e K Je tedy nalezeno 0 = + e K takové, že podmínka daná definicí platí pro všechna > 0 a pro libovolné K > 0. Tím je dokázáno, že ln( + ) =. lim

24 4 5 LIMITA FUNKCE. Použijeme-li definici limity funkce pomocí okolí, pak je U ε ( ) = (ε, ), P δ ( ) = (δ, ). Podle definice pak postupně dostaneme: ln( + ) U ε ( ) ln( + ) > ε + > e ε > + e ε, ε > 0 Tím je prokázána eistence prstencového okolí P δ ( ) = ( + e ε, ), kde δ = + e ε pro libovolné ε > 0. Je tedy lim ln( + ) =. Ukázkový příklad 5.3 (Nevlastní limita ve vlastním bodě). (Obrázek Dokažme, že lim =.. Definice tohoto typu limity je K > 0 P δ (c) P δ (c), f() > K. Vyjdeme z tvrzení definice f() > K > K < K K < < K K < < + K ( K, + K ) \ {} P δ(), kde δ = K, K > 0. Tím jsme našli definicí požadované prstencové okolí bodu c = a příslušné δ = K.. Druhá možnost (definice limity pomocí okolí) má téměř shodný postup. Pouze podmínka f() > K je nahrazena ekvivalentní podmínkou f() U ε ( ). Pak postupně dostaneme: f() U ε ( ) > ε < ε ε < < ε ε < < + ε ( ε, ε ) \ {}. Je-li tedy P δ() = ( ε, + ε ) \ {}, kde δ = ε pro libovolné ε > 0, pak f() U ε( ). K y y f() 3 f() Obrázek 5.0.9: lim = Obrázek 5.0.0: lim ( ) = 3 Ukázkový příklad 5.4 (Vlastní limita ve vlastním bodě). (Obrázek 5.0.0) Dokážeme z definice, že lim ( ) = 3.

25 5. Definice říká: ε > 0 P δ (c) P δ (c), f() A < ε. Vyjdeme z posledního tvrzení definice a postupně dostaneme: ( ) 3 < ε 4 < ε ε < 4 < ε 4 ε < < 4 + ε ε < < + ε ( ε, + ε \ {} P δ(), kde δ = ε pro libovolné ε > 0. Je tedy patřičné prstencové okolí nalezeno (pro libovolné ε > 0).. Druhý způsob je téměř totožný. Podmínka f() U ε (3) se opět převede na nerovnost 3 ε < < 3+ε 4 ε < < 4+ε ε < < + ε P δ () \ {}, kde δ = ε. Tím je hledané prstencové δ-okolí nalezeno. Je P δ () = ( δ, + δ) \ {} (pro libovolné ε > 0). Cvičení 5.. Dokažte z definice, že následují funkce mají limity: (a) (b) (c) lim ( ) = lim = 0 lim arctg = π (d) lim( ) = (e) lim ( 3 + 5) = (f) lim 0 ( ) = (g) lim 0 ( + ) = Cvičení 5.. Vypočtěte limity funkcí: (a) (b) (c) (d) ( lim +) 3 ( )( +) lim 3 + (4 ) lim 00 (3+) 00 (6+5) 300 (+) lim 5 ( ) 0 (e) (f) (g) ( ) lim 3 (+3) 3 +3 lim +3 ( 4) lim 4 (+) ( ) 5 Výsledky: (a), (b), (c) 6 00, (d) 0, (e) 8, (f), (g) 5. Cvičení 5.3. Vypočtěte limity funkcí: (a) lim (b) lim (c) lim (d) lim ( ) 0 ( 3 +6) 0 (e) lim (f) lim 4 ( ) 3 Výsledky: (a) 7 6, (b) 0, (c) -8, (d) ( 3 )0, (e) 3, (f).

26 6 5 LIMITA FUNKCE Cvičení 5.4. Vypočtěte limitu funkce S() = πr +R.e). Interpretujte nalezený výsledek. Výsledky: πr. Cvičení 5.5. Vypočtěte limity funkcí: pro (viz cvičení (a) lim + 0 (b) lim 4 (c) 3 8 lim (d) lim (e) lim +0,5 4 6 (f) lim Výsledky: (a), (b), (c) 0, (d) 4, (e) 5 96, f) 4. Cvičení 5.6. Vypočtěte limity funkcí: sin 5 (a) lim 0 tg (b) lim 0 4 sin 5 (c) lim 0 sin tg (d) lim 0 tg 3 sin 4+sin 7 (e) lim 0 sin 3 sin (f) lim sin (g) lim 3 0 sin (h) lim (i) (j) sin lim sin lim +cos Výsledky: (a) 5, (b), (c) 5, (d) 3, (e) 3, (f), (g) 0, (h) 0 + f, 0 f, (i) 0, (j) 0. Cvičení 5.7. Vypočtěte limity funkcí: arcsin (a) lim 0 arcsin( 3) (b) lim 3 9 sin cos (c) lim π tg 4 (d) lim cos 0 sin (e) lim +sin cos 0 (f) lim log +cos π +sin 4 Výsledky: (a), (b) 6, (c), (d) 0 + f, (f) 0. Cvičení 5.8. Vypočtěte limity funkcí:, 0 f, (e)

27 7 (a) (b) (c) ( ) lim lim lim ( ) ( ) +4 + (d) lim 0 ( + 5) + ( (e) lim ln(+) (f) lim 0 3+ln(+) ) Výsledky: (a) e 3, (b) e 9, (c) e 3, (d) e 0, (e), (f) 4. 6 Cvičení k přednášce Diferenciální počet Ukázkový příklad 6. (Definice derivace). Z definice vypočtěte derivace následujících funkcí. Definici derivace lze vyjádřit v různé symbolice, jedná se však o ekvivalentní definice.. f() = 3. Vyjdeme z následující symboliky: Derivace funkce f bodě je f () =.(Pokud daná limita eistuje.) lim h 0 f(+h) f() h Pak je f () = ( 3) [(+h) = lim 3(+h)] [ 3] h 0 h = lim lim h 0 ( +h+h 3 3h) ( 3) h 0 h ( + h 3) = 3.. f() =. h+h = lim 3h h 0 h Vyjdeme z jiné, ale ekvivalentní symboliky: f ( 0 ) = lim daná limita eistuje.) Pak je f () = ( ) = lim 0 lim = f() =. f () = ( ) lim h 0 lim h 0 h h. h h( h+ ) = lim h (+h) = lim h 0 h h+ h+ = lim = lim h 0 h(+h 3) h = f() f( 0 ) 0 0.(Pokud = lim ( 0) = lim ( 0 +) = 0 0 = lim h 0 h ( ) h 0 h( h+ ) =. h+ = h h = Ukázkový příklad 6. (Tečna a normála grafu funkce). Určeme rovnici tečny a normály grafu funkce f : y = sin + cos v bodě T [ π 4, y], který leží na grafu funkce f. (obr )

28 8 6 DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ y-ovou souřadnici bodu T dostaneme dosazením: y = sin π 4 +cos π 4 =. Tečna grafu je tedy určena bodem T [ π 4, ] a svou směrnicí v tomto bodě, tj. derivací f () v bodě = π 4. Derivace f () = cos sin, takže f ( π 4 ) = cos π 4 sin π 4 = 0. Rovnici tečny i normály lze dostat z rovnice přímky ve tvaru y = k + q dosazením souřadnic = π 4, y = bodu T do rovnice přímky y = k + q. Pak je zřejmě: = 0. π 4 + q q =. Je tedy rovnice tečny y = (rovnoběžka s osou, což bylo patrné ihned z toho, že k = 0). Normála je přímka kolmá k tečně v dotykovém bodě T a její rovnice v tomto případě je = π 4. 3 n t 3 4 f 4 f t 3 n 3 4 Obrázek 6.0.: f : y = sin + cos Obrázek 6.0.: f : y = Ukázkový příklad 6.3. Řešme následující úlohy o tečně resp. normále grafu funkce f:. f : y = v bodě = 3. Směrnice tečny grafu funkce f v kterémkoliv bodě definičního oboru je y =, v bodě = 3 je to k t = = 4 4. Dotykový bod je T [ 3, ]. Rovnici tečny dostaneme například z rovnice přímky y = k + q. Dosazením k = 4, y =, = 3 je q = 5 4, tečna tedy má rovnici t... y = Směrnici normály dostaneme z podmínky kolmosti dvou přímek k k =, pokud obě směrnice eistují: k n = k t = 4 a normála pak má rovnici n... y = Najděme, ve kterém bodě je tečna grafu f : y = rovnoběžná s přímkou p... 3 y + = 0. (Obr. 6.0.) Přímka p má zřejmě směrnici k p = 3. Tečna grafu funkce v kterémkoliv bodě D(f) má směrnici, která je rovna derivaci f v bodě. Proto y = 4 4 = 3 =. (Neboť p t k p = k t, pokud obě směrnice eistují.) Hledaný bod T na grafu funkce f proto

29 9 je T [, f()], čili T [, ]. Rovnici tečny resp. normály můžeme napsat přímo jako rovnici přímky určené bodem T a směrnicí k t = k p. Je totiž y y = k( ), takže t... y = 3( ) n... y = ( ) 3 Cvičení 6.. Vypočtěte z definice derivace následujících funkcí: a) y = b) y = + 3 c) y = + d) y = e 3 Výsledky: (+h) h 0 4 (a) Podle definice je y = lim h = =, podobně další: (b) y =, (c) y =, (d) y = 3e 3. 3 ( +) Cvičení 6.. Vypočtěte derivace následujících funkcí v jejich definičních oborech: (a) y = ( )(3 + ) (b) y = 4 (c) y = 3+ 3 (d) y = ln (e) y = ln + 3 ln (f) y = ( + e )( e ) Výsledky: (a) y = , (b) y = 4 (4 ), (c) y = y = , (e) y = 5 (3 ln ), (f) y = e e (3 ), (d) Cvičení 6.3. Vypočtěte derivace následujících funkcí v daných bodech: (a) f : y = 4 v bodě = 0 (b) f : y = ln v bodě = 0 (c) f : y = ln + 3 ln v bodě = a (d) f : y = ( + e )( e ) v bodě = (e) f : y = + v bodech =, = 0, = Výsledky: (a) y (0) = 4, (b) nedef., (c) y 5 = pro a > 0, (d) a(3 ln a ) y = e e, (e) y () = 4, y (0) nedef., y () = 4+3 Cvičení 6.4. Najděte rovnici tečny a normály grafu funkce f v daném bodě T :

30 30 6 DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ (a) f : y = 4 + v bodě T [0,?] (b) f : y = +4 3 v bodě T [,?] (c) f : y = 3 ln v bodě T [,?] (d) f : y = v bodě T [4,?] Výsledky: (a) T [0, ], k t = 3, k n = 3, t... y+ = 3, (b) T [, 7], k t = 0, t... y = 7, n... =, (c) T [, 3], k t = 7, k n = 7, t... y 3 = 7( ), (d) T [4, ], k t = 4, k n = 4, t... y + = 4 ( 4). Ukázkový příklad 6.4 (Derivace složené funkce). Derivujme následující složené funkce (v jejich definičních oborech):. f : y = ( + ) 00, R Označme y = t 00, t = ( + ), pak podle věty o derivaci složené funkce je y = (t 00 ) ( + ) = 00t 99 = 00( + ) 99. ( ). f : y = ln, +ln > 0 e ( ) ( Označme y = t, t = ln +ln, pak je y = (t ) ln +ln ) = ( ) ( ) t (+ln ) ( ln ) = ln (+ln ) +ln = ln 4 (+ln ) +ln (+ln ) 3. f : y = sin + cos, ( π 4 + kπ, π + kπ), k Z Označme t = sin + cos, y = t. Pak je y = ( t) (sin + cos ) = (cos sin ) = t (cos sin ). sin +cos 4. y = ln +cos 3 +sin 3, ( π 6 + k π 3 ) ( π 3 + k π 3 ), k Z +cos 3 Označme y = ln t, t = +sin 3, t ovšem obsahuje složené funkce u = cos 3, u = 3, v = sin 3, v = 3. Je tedy y = 3 sin 3(+sin 3) (+cos 3)3 cos sin 3 3 cos 3 t. = (+sin 3) +cos 3 = (+sin 3) 3(+sin 3+cos 3) (+cos 3)(+sin 3) +sin 3 Ukázkový příklad 6.5. Derivujme funkci f : y = pro > 0. Danou funkci převeďme na eponenciální funkci podle vzorce a b = e b ln a, a > 0. Je tedy y = = e ( ) ln a derivejeme y jako složenou funkci : y = (e ( ) ln ) = e ( ) ln ( ln + ( ) ) = ( ln + ). Ukázkový příklad 6.6 (Derivace inverzní funkce). Dokažme pomocí věty o derivaci inverzní funkce ( ) = v definičním oboru (0, ). Označme y = f() =, pak inverzní funkce je = ϕ(y) = y. Podle zmíněné věty je f () = ϕ (y) = = (y ) y =. Cvičení 6.5. Pomocí věty o derivaci inverzní funkci derivujte (ověřte, zda jsou splněny podmínky pro použití uvedené věty):

31 3 (a) y = 3 (b) y = ln( ) (c) y = 3 arccos (d) y = + Výsledky: (a) 3 3, (b) y =, (c) Postup: y = 3 arccos = cos y 3 = cos y 3 y =. (cos y = 3 ) cos y 3 ( sin y 3 ) 3 = = 3, (d) Cvičení 6.6. Vypočtěte derivace funkcí v jejich definičních oborech: (a) f : y = ln +sin sin (b) f : y = arcsin arccos (c) f : y = tg( ) cotg( ) (d) f : y = e +sin e 3 sin (e) f : y = arcsin (f) f : y = ln + ln + ln 3 (g) f : y = ln + ln + + ln n, n N (h) f : y = e e e 3... e n, n N (i) f : y = ln + ln + ln ln n, n N (j) f : y = ( + ) 00 Výsledky: (a) y = cos, (b) y = π, (c) y = 0, (d) y = e 4, (e) y = arcsin, (f) y = 3, (g) y = n, (h) y = n(+n) e n(+n), (i) y = n, (j) y = 400( ) 99 ( +) 0 Cvičení 6.7. Vypočtěte derivace funkcí v jejich definičních oborech: (a) f : y = sin + sin( ) (e) f : y = (b) f : y = sin(cos(sin )) (f) f : y = sin +cos 3 tg(0+). cotg(0+) (c) f : y = ln(ln ) (d) f : y = + ln( ) (g) f : y = sin 3 (h) f : y = Výsledky: (a) y = sin + cos( ), (b) y = cos(cos(sin )). sin(sin ). cos, (c) y = ln, (d) nedef., (e) y = 0. ln 0.0, (f) y = 0, (g) y 3 cos 3 = sin 3, (h) y = ( )

32 3 6 DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ Cvičení 6.8. Vypočtěte n-tou derivaci funkce v jejím definičním oboru: (a) f : y = 5, n = 5 (b) f : y = n, n N (c) f : y = n, n N, najěte k- tou derivaci, k n (d) f : y = sin, n = 4 (e) f : y = e, n = 6 (f) f : y = e, n = 6 (g) f : y =, n N (h) f : y = cos, n = 0 (i) f : y = cos, n N Výsledky: (a) y (5) = 0, (b) y (n) = n!, (c) y (k) = n(n )(n )... (n k + ) (n k), (d) y (4) = sin, (e) y (6) = e, (f) y (6) = ( ) 6 e, (g) y (n) = n! n, (h) y (0) = 0 cos, (i) y (4n) = 4n cos, y (4n ) = (4n ) ( ) n+ cos, n. Cvičení 6.9. Dokažte, že daná funkce je řešením diferenciální rovnice: (a) funkce f : y = e 3 3 9, rovnice y 3y = (b) funkce f : y = 3 cos, rovnice yy = sin (c) funkce f : y = e + e, rovnice y 4y = 0 (d) funkce f : y = tg( + ), rovnice y = (y + )( + ) (e) funkce f : y = + cos sin, rovnice y + y = 0 Cvičení 6.0. (a) Najděte rovnici tečny a normály půlkružnice y = 4 v bodě T [,?]. (b) Určete velikost úhlu, ve kterém protíná sinusovka y = sin osu. (c) Určete velikost úhlu, ve kterém protíná graf eponenciální funkce y = e osu y. (d) Určete velikost směrového úhlu tečny grafu y = v jeho bodě + T [ 3,?]. (e) Určete velikost úhlu, pod kterým se protínají grafy y =, y =. (Úhlem, pod kterým se protínají dvě křivky, rozumíme úhel jejich tečen ve společném bodě.)

33 33 (f) Ukažte, že normála půlkružnice y = r v bodě T [ 0, r 0 ] procházé středem půkružnice S[0, 0]. (g) Určete velikost úhlu, pod kterým protíná graf funkce f : y = ln( ) osu. (h) Určete velikost úhlu, pod kterým protíná graf funkce f : y = ( )( )( 3) osu. Výsledky: (a) t... y + 3 = ( ), n... y = 3, (b) úhel α = π 4 v bodech = kπ, k Z, úhel α = π 4 v bodech = π + kπ, k Z, (c) α =. 7 o, (d) α =. 33 o, (e) Průsečík P [, ] resp. P [, ], ω = arctg 4 3, r (f) Rovnice normály je n... y = 0 0, (g) = ; k t = ; α = π. 4, (h) = ; = ; = 3; α = 63 o ; α = 35 o. ; α 3 = 63 o Cvičení 6.. Ověřte, zda pro následující funkce jsou splněny v daném intervalu podmínky Lagrangeovy věty. Pokud ano, najděte příslušné c z Lagrangeovy věty v daném intervalu: (a) f : y = ; 0, (b) f : y = + ;, (c) f : y = arcsin ;, (d) f : y = e ;, (e) f : y = + ;, 0 ; (f) f : y =,, (g) f : y =,, 3 (h) f : y = arctg,, Výsledky: (a) 5+ 97, (b) + 7, (c) ± π 4 π, (d) ne, (e) pro (, 0), (f) ne, (g) = 4 3, (h) = ± π. Ukázkový příklad 6.7. Vypočtěme přibližně hodnotu Daný výraz je hodnotou funkce f() = 3 + pro = 65. Vyjdeme ze vzorce f( + ) =. f() + df. Zvolíme-li = 64, pak = a f(64) = = 68. Diferenciál je df = f () = ( ) =, 008 a f(65) =. 68 +, 008 = 69, 008. Cvičení 6.. Pomocí diferenciálu vypočtěte hodnoty výrazů: (a),03,0 3 + (b) 4, ,99 (c), 05 0 (d) Výsledky: (a) 0, 7036, (b) 60, 0384, (c) 80, (d) 0, Cvičení 6.3. Pomocí diferenciálu odhadněte chybu, které se dopustíme při výpočtu objemu koule o poloměru r = 6400, 00 km, vypočteme-li objem koule pro poloměr 6400 km.

34 34 6 DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ Výsledky: V. = dv = 5478, 54 km 3. Cvičení 6.4. Pomocí diferenciálu odhadněte chybu, které se dopustíme při výpočtu obsahu čtverce o straně = 5 m, vypočteme-li obsah čtverce pro stranu délky 34 m. Výsledky: S. = ds = 00 m. Ukázkový příklad 6.8. Najděme lokální etrémy funkce f : y =. Definiční obor funkce je D(f) = 0, ). Etrémy hledejme pomocí I. postačující podmínky. Najdeme tedy intervaly, v nichž je funkce rostoucí resp. klesající, a to pomocí stacionárních bodů (nulových bodů. derivace). y = = 0 = 4. Funkce má tedy jediný stacionární bod = 4. Uspořádáme do tabulky a zjistíme znaménka y v okolí = 4. (Definiční obor. derivace je ovšem D(f ) = (0, )!! ): 0 4 y y nedef. kles. lok. min. rost. Z tabulky je patrno, že ve stacionárním bodě = 4 minimum y min = f( 4 ) = 4. má funkce lokální Cvičení 6.5. Najděte vrcholy parabol jako lokální etrémy funkcí: (a) y = 6 + (b) y = (c) y = 0, 00 0, (d) y = 5 4 (e) y = (f) y =, 5 + 7, 5 Výsledky: (a) V [ 3, 5 ], (b) V [ V [ 5, 99 ], (f) V [ 6, 5 4 ]. 4, 5 4 ], (c) V [00, 0], (d) V [0, 5], (e) Cvičení 6.6. Pomocí druhé postačující podmínky rozhodněte o lokálním etrému následujících funkcí ve stacionárním bodě c: (a) f : y = , c = 0, c = (b) f : y = , c = 0, c = 4 (c) f : y = 5 4 +, c = 5 (d) f : y = 3 e, c = 0, c = 3 Výsledky: (a) c = 0-lok. ma, c = - lok. min, (b) c = 0 - lok. maimum, c = 4 - lok. min, (c) c = 5 - lok. ma, (d) c = 0 - není etrém, c = 3 - lok.ma. Cvičení 6.7. U následujících funkcí najděte stacionární body a lokální etrémy (pokud eistují) a intervaly, v nichž je funkce rostoucí resp. klesající:

35 35 (a) f : y = (b) f : y = + (c) f : y = ( ) 3 ( + ) (d) f : y = e (e) f : y = ln (f) f : y = + (g) f : y = ln (h) f : y = e (i) f : y = + Výsledky: (a) stac. body = 3; 0; 3, lok. ma. v bodě = 3, lok. min. v bodě = 3, kles. pro 3 < < 3, rost. pro (3, ), rost. pro (, 3), (b) stac. body = ±, pro = lok. ma, pro = lok. min., rost. v int.(, ), kles. v int. (, ), kles. v int. (, ), (c) stac. body = ±, = 5, v bodě = lok. ma., v bodě = 5 lok. min., v bodě = není etrém, rost. pro (, ), rost. pro ( 5, ), kles. pro (, 5 ), (d) stac. body = 0;, lok.min. = 0, lok. ma. =, rost. (0, ), kles. (, 0), kles. (, ), (e) stac. bod =, lok. min. =, rost. (, ), kles. (0, ), (f) stac. body = 0, = ± 3, lok. min. = 3, lok. ma. = 3, = 0 - není etrém, rost. ( 3, ), (, 3), kles. ( 3, ), (, ), (, 3), (g) stac. body nejsou, lok. etrémy nejsou, kles. pro < 0, rost. pro > 0, (h) stac. body nejsou, lok. min. = 0, y min =, rost. pro > 0, kles. pro < 0, (i) stac. body = ±, lok.min. v bodě =, lok.ma. v bodě =, rost. pro (, ), rost. pro (, ), kles. pro < < 0, kles. pro 0 < <. Cvičení 6.8. U následujících funkcí najděte intervaly konvenosti resp. konkávnosti a inflení body: (a) f : y = arccos (b) f : y = ( ) ( + ) (c) f : y = + (d) f : y = a + b + c, a, b, c R (e) f : y = arctg (f) f : y = ln (g) f : y = ln (h) f : y = ( + )e (i) f : y = + (j) f : y = ln Výsledky: (a) konv. pro (, 0), konk. pro (0, ), = 0 infl., (b) konv. pro ( 3, ) (, 3 ), konk. pro ( 3, 3 ), = ± 3 infl., (c) konv. pro > 0, konk. pro < 0, infl. není, (d) je-li a > 0, pak konv. pro R a je-li a < 0, pak konk. pro R, je-li a = 0, pak není ani konv. ani konk., infl. není, (e) konv. pro (, 0), konk. pro (0, ), = 0 infl., (f) konv. pro každé D(f), (g) konv. pro > e 3, konk. pro (0, e 3 ), infl. = e 3, (h) konv. pro (, ), konk. pro (, ),

36 36 6 DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ = infl., (i) pro > konv., pro < konk., infl. není, (j) konv. pro 0 < < e, konk. pro > e, infl. = e. Cvičení 6.9. U následujících funkcí najděte všechny jejich asymptoty: (a) f : y = 3 + (b) f : y = ( ) (+) (c) f : y = + arctg (d) f : y = e (e) f : y = e (f) f : y = (g) f : y = (h) f : y = ln( 4) (i) f : y = ln( 4) (j) f := y = arctg Výsledky: (a) y = pro ±, (b) =, =, y = 0 pro ±, (c) y = + π pro, y = π pro, (d) y = 0 pro, (e) y = pro ±, y = 0 (pro 0 + je y ), (f) y = + pro ±, =, (g) y = 3 pro ±, = 0, =, =, (h) =, =, (i) y = 0 pro ±, = ± 5, (j) y = π pro, y = π pro. Cvičení 6.0. (a) Určete, pro které hodnoty parametrů a, b, c R je funkce f : y = a 4 + b + c konvení. (b) Pro které hodnoty parametrů p, q R je funkce f : y = (p ) + q rostoucí? (c) Zjistěte. pro které hodnoty parametrů a, b R je funkce f : y = a+b + v intervalu (, ) klesající. (d) Pro které hodnoty parametrů α, β R je funkce f : y = e (3α+β) ) konvení, ) konkávní? Výsledky: (a) a > 0, b, c R, (b) p >, q R, (c) a < b, (d) β+3α > 0 konvení, β + 3α < 0 klesající. Ukázkový příklad 6.9 (Průběh funkce). Vyšetřeme průběh funkce f : y = e.. Definiční obor je D(f) = R.. Limity: lim e =, lim e =.0... použijeme l Hospitalovo pravidlo... = lim = lim = lim e e e = 0. (Poznámka: Pro je = ( ) =.)

37 37 3. Průsečíky se souřadnými osami: s osou : e = 0 = 0 O[0, 0], s osou y : f(0) = 0.e 0 = 0 y = 0 O[0, 0]. 4. Pro každé R je f() 0, graf funkce tedy leží v I. a II. kvadrantu. 5. Vyšetříme f (). Rozlišme dva případy: a) 0 = f () = e + e = e ( + ) f () = 0 pro + = 0, bod = však nevyhovuje podmínce 0, je ovšem pro každé > 0 derivace f () > 0 a tedy v intervalu (0, ) je funkce rostoucí. b) < 0 = f () = e e = e ( ) f () = 0 pro = 0 =. Nalezený bod = vyhovuje podmínce < 0 a je to stacioní bod dané funkce. Sestavme tabulku pro vyšetření monotonnosti funkce f() v okolí stacionárního bodu: (, ) - (, 0) y y rost. lok.ma. kles. V bodě = má funkce lokální maimum y ma = f( ) = e = e. c) Bod = 0 je třeba vyšetřit zvlášť. Derivace f (0) (oboustranná) neeistuje (je totiž f +(0) =, f (0) = ), ale pomocí tabulky zjistíme, že v pravém okolí bodu = 0 funkce roste a v levém okolí bodu = 0 klesá, takže v bodě = 0 je lokální minimum y min = f(0) = Vyšetříme f (). Opět rozlišme dva případy: a) 0 = f () = e ( + ) f () = 0 pro + = 0 =, nalezený bod nevyhovuje podmínce 0, ovšem pro každé > 0 je f () > 0 a funkce je tedy v intervalu (0, ) konvení. b) < 0 = f () = e ( + ) = 0 pro =, nalezený bod vyhovuje podmínce < 0 a je to možný inflení bod. Opět sestavíme tabulku pro vyšetření konvenosti a konkávnosti funkce v okolí bodu = : (, ) - (, 0) y y konve. inflee konkáv. V bodě = má funkce inflei, y i = f( ) = e = e.

38 38 6 DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ c) Bod = 0 vyšetříme zvlášť. Je f +(0) =, f (0) =, takže (oboustranná). derivace f (0) neeistuje. Funkce tedy nemůže mít v bodě = 0 inflei. (Pročtěte si pozorně větu o nutné podmínce inflee - v tetu Matematika, kap. Diferenciální počet.) 7. Asymptoty grafu f(). a) 0. Vypočteme potřebné limity: lim e = asymptota rovnoběžná s osou neeistuje pro, k = lim = šikmá asymptota neeistuje, e v definičním oboru nejsou body nespojitosti - asymptoty rovnoběžné s osou y nejsou. b) < 0. Potřebné limity: lim e = 0 pro je asymptotou přímka y = 0, k = e lim = 0, q = lim ( e 0) = 0 asymptota šikmá je y = = 0, asymptota rovnoběná s osou y opět nemůže být. 8. Graf funkce je na obrázku y f infl. lok. ma Obrázek 6.0.3: Graf funkce f : y = e Cvičení 6.. Vyšetřete průběh následujících funkcí a zobrazte jejich grafy: (a) f : y = arctg (b) f : y = 4 (c) f : y = ln (d) f : y = e (e) f : y = (f) f : y = ( + )e (g) f : y = 3 +3

39 39 (h) f : y = e (i) f : y = ln( 4) Výsledky: (a) D(f) = R, rost. v D(f), lok. etrém není, stac. bod = 0, inflee = 0, konv. resp. konk. pro > 0 resp. < 0, asymp. y = π pro, y = + π pro, limity ± v bodech ±, lichá funkce, (b) D(f) = R \ {, }, limity: ±... f 0, ±... f ±, ±... f, lok. ma = 0, y ma =, rost. pro (, ), (, 0), kles. pro (, ), (0, ), inflee není, konv. pro (, ), (, ), konk. pro (, ), asymptoty =, =, y = 0, sudá funkce, (c) D(f) = (0, ), 0 + f 0, f, pro (0, e ) kles., pro > e rost., = e lok. min, y min = e, pro D(f) konv., asymptoty nejsou, (d) limity f 0, f, lok.ma y ma = y(0) = 0, lok. min. y min = y() = 4e, rost. pro (0, ), kles. pro (, 0), kles. pro (, ), infl. = ±, konv. pro (, ), konv. pro +,, konk. pro (, + ), asymptota y = 0 pro, (e) D(f) = R\{ 6}, limity: pro ± f ±, pro 6 ± f ±, lok. etrémy =, = 0, y ma = y( ) = 47, y min = y(0) =, rost. pro (, ), rost. pro (0, ), kles. pro (, 6), kles. pro ( 6, 0), asymptoty: = 6, y = pro ±, inflee není, konv. ( 6, ), konk. (, 6), (f) D(f) = R, limity f() =, lim f() = 0, stac. bod =, lok. etrémy nejsou, rost. lim D(f), inflee = 3, =, konv. (, 3), konv. (, ), konk. ( 3, ), asymptota y = 0 pro, (g) D(f) = R, limity: lim f() = ±, asymptoty nejsou, lok. etrémy nejsou, stac. bod = 0, ± rost. pro R, inflee = 0, = ±3, konv. < 3, konv. 0 < < 3, konk. 3 < < 0, konk. > 3,lichá, (h) D(f) = R, sudá, limity: pro ±, je f 0, lok. ma. v bodě = 0, y ma = y(0) =, inflee = ±, konk. pro (, ), konv. pro (, ), konv. pro (, ), asymptota y = 0 pro ±, (i) D(f) = (, ) (, ), limity ± f, ± ± f, sudá, stac. bod ani lok. etrémy nejsou, kles. pro (, ), rost. pro (, ), inflee není, konk. pro (, ), pro (, ), asymptoty: =, =. Ukázkový příklad 6.0 (Taylorův polynom). Najdeme Taylorův polynom řádu n = 4 funkce f : y = cos v bodě c = 0. (Obr ) Funkce f : y = cos splňuje v bodě c = 0 podmínky pro eistenci Taylorova polynomu. Je proto f() = cos f(0) = f () = sin f (0) = 0

40 40 6 DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ.5 3 T3 0.5 f 0 T4 0.5 y=cos Obrázek 6.0.4: y = cos, T 4 () = Obrázek 6.0.5: y =, T 3 () = + ( ) 8 ( ) + 6 ( )3 f () = cos f (0) = f () = sin f (0) = 0 f IV () = cos f IV (0) = Je tedy Taylorův polynom řádu 4-tého řádu T 4 () =! + 4 4! = Určíme ještě, pro které lze pomocí T 4 () najít hodnotu cos s chybou nejvýše 0,0. Použijeme vzorec pro zbytek v Taylorově polynomu R n+ () = f (n+) (ξ)( c) n+ (n+)!. V našem případě je n = 4, c = 0, R n+ () = 0, 0. Pro odhad f (n+) (ξ) zřejmě platí f (n+) (ξ) (všechny derivace sin, cos jsou v absolutní hodnotě nejvýše rovny ). Platí tedy pro odhad chyby nerovnost.5 5! < 0, 0. Odtud 5 < 0, 0.5!, 095 < <, 095. Ukázkový příklad 6.. Najdeme Taylorův polynom řádu 3. řádu funkce f : y = v bodě c =. (Obr ) Uvedená funkce vyhovuje v daném bodě c = podmínkám věty o Taylorově polynomu. Je proto f() = f() = f () = f () = f () = 4 3 f () = 4 f () = f () = 3 8 f IV () = f IV () = 5 6

41 4 Hledaný Taylorův polynom tedy je (po krátké úpravě) T 3 () = + ( ) 8 ( ) + 6 ( )3. Výpočtem T () dostaneme přibližnou hodnotu f() =. Zřejmě je T () = = 6 =, 375. Výpočet je přirozeně zatížen chybou, jejíž velikost odhadneme podle výše uvedeného vzorce R n+ () = f (n+) (ξ)( c) n+ (n+)!. V tomto případě je n = 3, c =, =, ξ, pro odhad f (4) (ξ) užijeme vypočtené 4. derivace funkce y =. Je f IV (ξ) = 5 6 ξ 7 a maimum je zřejmě pro ξ = (funkce f IV () = je klesající), takže maimum f IV (ξ) je f IV () = = 5 6. Nakonec tedy pro horní odhad chyby platí R 4 () = 5 6 4! = 0, 038. Ukázkový příklad 6.. Najděme Taylorův polynom n tého řádu funkce f : y = e v bodě c = 0. Funkce f : y = e splňuje podmínky věty o Taylorově polynomu. Je proto f() = e f(0) = f () = e f (0) = f () = e f (0) = f () = e f (0) =... f (n) () = e f (n) (0) = Taylorův polynom proto je T n () = +! +! + + n n! = n Pro = vypočteme T n () =. e = e. Zjistěme, jak je třeba volit řád n Taylorova polynomu, aby chyba výpočtu e byla nejvýše 0,00. Pro odhad chyby opět užijeme vzorce pro R n+ (). Je tedy c = 0, =, n =?, R n+ je nejvýše 0,00. Pro odhad f (n+) (ξ) zřejmě platí f (n+) (ξ) = e ξ < e, e. neboť 0 < ξ < =. Nakonec tedy dostaneme (n+)! < 0, 00 (n + )! > 000e = 78 n + > 6 n > 5. Pro n = 6 pak je T () = +! +! + 3! + 4! + 5! + 6! =, Cvičení 6.. Utvořte Taylorovy polynomy řádu n v bodě c následujících funkcí: k=0 k k!. (a) f : y = 3, n = 3, c = (b) f : y = sin, n = 5, c = 0 (c) f : y = cos, n = 4, c = 0 (d) f : y = e, n = 6, c = 0 (e) f : y = sin( ), n = 5, c = 0 (f) f : y = e, n = 6, c = 0 (g) f : y = ln( + ), n = 5, c = 0 (h) f : y = ln( ), n = 5, c = 0

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

MATEMATIKA I - vybrané úlohy ze zkoušek v letech

MATEMATIKA I - vybrané úlohy ze zkoušek v letech MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x). 9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(

Více

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017 Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................

Více

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.) Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Funkce. Vlastnosti funkcí

Funkce. Vlastnosti funkcí FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

Limita a spojitost funkce

Limita a spojitost funkce Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Aplikace derivace ( )

Aplikace derivace ( ) Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické

Více

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R + Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

Funkce pro studijní obory

Funkce pro studijní obory Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Katedra aplikované matematiky, VŠB TU Ostrava.

Katedra aplikované matematiky, VŠB TU Ostrava. SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) MA I (M0) / 46 Obsah Základní vlastnosti derivace Geometrický význam derivace Věty o střední hodnotě L Hospitalovo pravidlo 2 Etrémy Konvenost,

Více

Pavlína Matysová. 5. listopadu 2018

Pavlína Matysová. 5. listopadu 2018 Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0. Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného

Více

Diferenciální počet funkce jedné proměnné 1

Diferenciální počet funkce jedné proměnné 1 Diferenciální počet funkce jedné proměnné Limita funkce Pojem limita můžeme česk vjádřit jako mez, případně hranice Zavedení pojmu limita si objasníme na příkladu Příklad : Funkce f ( ) Obr 6: Graf funkce

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Úvod, základní pojmy, funkce

Úvod, základní pojmy, funkce Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET

13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET . DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET Dovednosti: Chápat pojem limita funkce v bodě a ovládat výpočet jednoduchých limit.. Na základě daného grafu funkce umět odhadnout limity v nevlastních bodech a nevlastní

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M06, GA0 M05 DIFERENCIÁLNÍ POČET I DERIVACE FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset by L

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

FUNKCE A JEJICH VLASTNOSTI

FUNKCE A JEJICH VLASTNOSTI PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic

Více

Maturitní okruhy z matematiky - školní rok 2007/2008

Maturitní okruhy z matematiky - školní rok 2007/2008 Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,

Více

NMAF 051, ZS Zkoušková písemná práce 4. února 2009

NMAF 051, ZS Zkoušková písemná práce 4. února 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 4 4

Více

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu, Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4

Více

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16 Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.

Více

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu 22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Maturitní nácvik 2008/09

Maturitní nácvik 2008/09 Maturitní nácvik 008/09 1. Parabola a) Načrtněte graf funkce y + 4 - ² a z grafu vypište všechny její vlastnosti. b) Určete čísla a,b,c tak, aby parabola s rovnicí y a + b + c procházela body K[1,-], L[0,-1],

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Funkce. Obsah. Stránka 799

Funkce. Obsah. Stránka 799 Obsah 4. Funkce... 800 4.. Základní vlastnosti funkcí... 800 4.. Grafy funkcí... 8 4.. Eponenciální a logaritmické funkce... 8 4.4. Eponenciální a logaritmické rovnice... 8 4.5. Eponenciální a logaritmické

Více

Soubor příkladů z Matematické analýzy 1 (M1100) 1

Soubor příkladů z Matematické analýzy 1 (M1100) 1 Soubor příkladů z Matematické analýzy (M00). Opakování. Upravte následující výrazy: 3 3 +3 3 3 6+ (+) 3 [ a+b a b ] ( b ) (a a b a+b b a b a b ) (a b) 3 [(a b) 4 (a+b) 5 ] 6 3 a 4 a 3 a 3 aa 3 (f) 3 +

Více

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka

Více

Základy matematické analýzy (BI-ZMA)

Základy matematické analýzy (BI-ZMA) Příklady ke cvičení z předmětu Základy matematické analýzy (BI-ZMA) Matěj Tušek Katedra matematiky České vysoké učení technické v Praze BI-ZMA ZS 009/00 Evropský sociální fond Praha & EU: Investujeme do

Více

f konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce

f konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce 1. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Abelovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce spojitá na [a, b) a funkce g : [a, b) R je na [a, b) spojitá

Více

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů 3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy , základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:

Více

1.1 Příklad z ekonomického prostředí 1

1.1 Příklad z ekonomického prostředí 1 1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více