Organická chemie II (Přednášky pro posluchače kombinovaného studia studijního oboru Klinická biologie a chemie)

Rozměr: px
Začít zobrazení ze stránky:

Download "Organická chemie II (Přednášky pro posluchače kombinovaného studia studijního oboru Klinická biologie a chemie)"

Transkript

1 UIVEZITA PADUBIE FAKULTA EMIK-TELGIKÁ Katedra organické chemie Jiří anusek 2003 rganická chemie II (Přednášky pro posluchače kombinovaného studia studijního oboru Klinická biologie a chemie) Ing. Jiří anusek, Ph.D. PADUBIE 2003

2 předmět rganická chemie Jiří anusek 2003 eakce jednotlivých tříd sloučenin = reakce funkčních skupin ( I) Přípravy monofunkčních resp. polyfunkčních sloučenin = ( II) etrosyntetická analýza - metoda diskonekcí myšlenkový postup isolace polyfunkční sloučeniny z jednoduchých sloučenin pomocí známých reakcí v logické návaznosti a opačném pořadí kroků než při syntéze: např. při návrhu syntézy 3-nitrobrombenzenu existují formálně dvě možnosti zavedení substituentů na benzenové jádro avšak pouze jeden je reálně proveditelný!!! 2 2 etrosyntetická analýza 2 2 eálná syntéza: S 4 Fe 3

3 I. Přehled příprav alkanů a cykloalkanů: Jiří anusek ) Z alkenů: 2 =, alkyl, aryl, =, alkyl, aryl, B kat. 2 kat. = Pt 2, Pt, Pd, i 3 B Katalytická hydrogenace za normálního resp. zvýšeného tlaku. Probíhá stereoselektivně jako syn-adice. (A ) ydroborace za normálního tlaku a teploty. Probíhá stereospecificky jako syn-adice. (A E ) 2 Pt 2-methylbut-2-en 2-methylbutan dicyklopentadien 2 Pt All 3 isomerace adamantan Pd / ( 2 ) 7 =( 2 ) 7 2 ( 2 ) 16 kyselina olejová (kyselina cis-oktadec-9-enová) kyselina stearová (kyselina oktadekanová) karboxylová skupina za daných podmínek nereaguje Simmons- Smithova reakce cyklopropylbenzen Zn 2 I 2 styren (vinylbenzen) 2 B B tris(2-fenylethyl)boran 3 2 ethylbenzen

4 2) Z alkynů: =, alkyl, aryl, 2 kat. 2 2 Katalytická hydrogenace za normálního resp. zvýšeného tlaku. (A ). Mezistupněm je alken který se však nedá zachytit. kat. = Pt 2, Pt, Pd, i Jiří anusek ) Z aromátů: benzen naftalen 2 i/si ; 1 MPa 2 cyklohexan Pt 2 / 25 0,1 MPa MoS MPa cis-dekalin Katalytická hydrogenace vyžaduje drastičtější podmínky - vysoký tlak a teplotu. (A ). (Vysoká delokalizační energie aromátů.) Volbou podmínek a katalyzátoru lze připravit i tetralin trans-dekalin 4) Z cykloalkanů: 2 / i 2 / i Katalytická hydrogenace cykloalkanů s napjatým kruhem vede k jeho otevření.

5 Jiří anusek ) Z halogenderivátů: X Mg ether MgX činidla: LiAl 4 / ether Zn / l 2 / Pd X = l,, I edukce a X ether X = l,, I Wurtzova reakce (zdvojení) l LiAl 4 ether 1-chlor-2-methylbutan 2-methylbutan Mg ether l / 2 Zn Mgl 1,5-dibrompentan 1-jodbutan I cyklopentan a ether oktan 2 Pd/a 3 25, 0,1 MPa 1,3-dibromadamantan adamantan 6) Z alkoholů: jen ve výjimečných případech za uvedených podmínek je pravděpodobná předřazená eliminace vody ( 2 ) 14 2 hexadekan-1-ol WS ; 30 MPa ( 2 ) 14 hexadekan 2 2 Pd

6 7) Z aldehydů a ketonů: () redukce = alkyl, aryl 2 () Jako činidla lze použít např. 2 /Pd- resp. LiAl 4 / All 3 Jiří anusek 2003 lemmensen: Zng x / konc. l (var) - pro substráty stálé v kyselém prostředí Wolff-Kižněr: 1) 2 4 ; 2) K/glykol (var) - pro substráty stálé v bazickém prostředí Mozingo: 1) S2 2 S; 2) aney-i - pro substráty citlivé na kyselé i bazické prostředí 2 Zng x / konc. l K TEG 1-fenylethanon (acetofenon) = ethylbenzen S S cykloheptanon cykloheptanon-hydrazon cykloheptan S S aney-i is 3 3-(2-methoxyfenyl)propanal 2-[(2 -methoxyfenyl)ethyl]-1,3-dithiolan methyl(2-propylfenyl)eth S S S S aney-i is metoda je velice šetrná - dvojná vazba za daných podmínek nereaguje

7 8) Ze solí karboxylových kyselin: Jiří anusek 2003 M edukce - jako činidlo nějčastěji tzv. natronové vápno (směs a a a) Zdvojení - elektrolýzou vzniklé radikály se rekombinují (Kolbe-Schmittova elektrosyntéza). a octan sodný a / a methan ( 2 ) 12 a kyselina myristová (kyselina tetradekanová) 2e - ( 2 ) 12 ( 2 ) 24 tridecylový radikál hexakosan (tridecyl) Výroba alkanů (motorový benzin, nafta, palivo, vosk, maziva ) zdrojem alkanů je hlavně ropa (složitá směs uhlovodíků - hlavně cyklopentan, cyklohexan jejich deriváty; aromatické a heteroaromatické sloučeniny; plynné alkany aj.). a zemní plyn (60% methan 5%ethan, propan, butan; zbytek sulfan, oxid uhličitý, helium). Synteticky např. Bergiův (vysokotlaká hydrogenace uhelného prachu) resp. Fischerův- Tropschův způsob (hydrogenace oxidu uhelnatého). 2 FeS n 2n2 WS 2, MoS 2 z 1t uhlí cca 0,5t benzinu oktanového čísla výroba benzinu s nízkým oktanovým číslem (ca 40). s 60% výtěžkem) 2 o-th n 2n2 n 2n (alkoholy, karbonylové sl.)

8 II. Přehled příprav alkenů: 1) Z alkanů: Katalytická dehydrogenace Jiří anusek 2003 =, alkyl, aryl, 2 kat. Krakování - β-štěpení - výroba ethylenu 2 kat. = Pt 2, Pt, Pd, i butan 2 Al2 3, r Al 2 3, r but-1-en (E)-but-2-en 2 2 but-1,3-dien (Z)-but-2-en 2) Z alkenů: - Diels-Alderovou [42]resp. [22] cykloadicí (tepelně nebo fotochemicky) 20 cyklopentadien "dicyklopentadien isopren (2-methylbut-1,3-dien) limonen (4-(1-methylethenyl)-1-methylcyklohexen) allen (propadien) směs 1,2- a 1,4-dimethylencyklobutan

9 3) Z alkynů: 2 Pd/BaS 4 chinolin (Pb(Ac) 2 ) LiAl 4 / TF (E)-hex-3-en LiAl 4 TF Katalytická hydrogenace na deaktivovaném katalyzátoru (Lindlarův kat.) vede k cis-alkenům (A ) Alternativou je hydroborace a následný rozklad v prostředí karboxylové kyseliny. edukce komplexními hydridy poskytuje trans-olefiny alternativou je a/ 3 (l) 2 2 Pd/BaS chinolin hex-3-yn (Z)-hex-3-en Jiří anusek ) Z halogenderivátů: dehydrohalogenací a dehalogenací (eliminace E1, E2) X X X báze Zn (var) X = F, l,, I l 2-chlor-2-methylpropan a (var) 1,2-dibrom-1,3-difenylbutan 2 2-methylbuten Zn ethanol U l,, I derivátů platí Zajcevovo pravidlo u F derivátů ofmannovo pravidlo 1,3-difenylbut-1-en

10 5) Z alkoholů: kysele katalyzovaná dehydratace 2 Jiří anusek 2003 eliminace probíhá podle Zajcevova pravidla možnost doprovodných přesmyků (při použití 2 S 4 ). Průmyslově lze jako kat. použít Al methylcyklohexan-1-ol 3 P 4 1-methylcyklohex-1-en 3-methylbutan-2-ol 3 P methylbut-2-en 6) Z esterů, xanthátů, aminoxidů a kvarterních amonium hydroxidů: eliminace probíhá podle ofmannova pravidla -pyrolýzou při vznikají méně rozvětvené alkeny. Z Z =, S, 2, 3 S Z ) methylcyklohexyl-acetát S 2 3 P 4 methylencyklohexan 3-methylbut-1-en hlavní produkt

11 7) Z aldehydů a ketonů: Jiří anusek l Ph3 P 2 P(Ph) 3 l Bu-Li P(Ph) 3 Wittigova reakce: benzylchlorid benzyl-trifenylfosfonium chlorid benzyliden-trifenylfosfonium ylid 1 1 l 1) Ph 3 P 2) Bu-Li 3) 2 = 1 2 benzaldehyd stilben (1,2-difenylethen) Ph 3 P= P Ph Ph Ph Mc Murryho reakce: Til 3, K cyklohexanon Til 3, K cyklohexylidencyklohexan reduktivní zdvojování ketonů

12 III. Přehled příprav alkynů: Jiří anusek ) Z alkanů: acetylen (ethyn) se průmyslově vyrábí pyrolýzou methanu ev. ethanu methan ethyn alternativně se acetylen připraví: a a 2 a 2 2 a() 2 2) Z alkynů: prodlužování řetězce terminálních alkynů pomocí alkylačních činidel silná báze 1 X 1 = alkyl, aryl; 1 = primární a sekundární alkyl; X = l,, I jako báze se dá použít i a 2 MgI MgI 4 2 I 2 2,2-dimethylbut-1-yn 2,2-dimethylhex-1-yn příprava polyalkynů Glaserovou oxidací terminálních alkynů: u 2 pyridin =, alkyl, aryl 2 u 2 pyridin 3-fenylprop-1-yn 2 2 1,6-difenylhexa-2,4-diyn

13 3) Z halogenderivátů: dehydrohalogenací geminálních (1,1,-) a vicinálních (1,2-) dihalogenderivátů silnou bazí (K, a 2 ) l X X X X l 2,3-dichlorbutan l 2 l 2,2-dichlorbutan K K K K X = l,, I 2 2 but-2-yn 2 K 1,2-dibrom-1-fenylethan fenylethyn (fenylacetylen) but-1,3-dien 2 but-2-yn but-1-yn K 3 2 propyn 1,1-dibrompropan 4) Z 1,2-diketonů: převedením na dihydrazon a oxidací oxidem rtuťnatým Jiří anusek 2003 evýhodou je vznik 1,3- dienů (u vicinálních), resp. isomerního alkynu (u geminálních) pokud jsou dvě možnosti eliminace X g 2 2 cyklooktan-1,2-dion 1) 2 4 2) g / 2 2 cyklooktin

14 IV. Přehled příprav aromátů: 1) Z cykloalkanů: průmyslově dehydrogenací - tzv. reformováním benzínu methylcyklohexan Mo 2 3, Al , 3 MPa Jiří anusek 2003 toluen (methylbenzen) 2) Z alkenů: katalytickou dehydrogenací benzen 2 isopropylbenzen (kumen) cyklohexen dochází i k polyalkylaci benzen 3) Z alkynů: katalytickou trimerací Ph 3P i() 3 ethyn benzen styren 4) Z halogenderivátů: Friedel-raftsova alkylace 2 2 l All 3 benzen 1-chlorpropan kumen (isopropyl benzen) p diisopropylbenzen Wurtzova-Fittigova reakce: 2 2 a 2 2 brombenzen 1-brompropan propylbenzen

15 Ullmannova reakce: l 2 2-nitrochlorbenzen u 2 2 2,2 -dinitrobifenyl hydrolýzou Grignardových činidel 1-brom-2-methylnaftalen Mg ether Mg 1-(2-methylnaftyl)magnesium bromid 2 Jiří anusek methylnaftalen Dehalogenaci lze provést i hydrazinem za katalýzy palladiem resp. u jodaromátů reakcí s I. 5) Z fenolů: destilací s práškovým zinkem Zn 6) Z aminů: diazotací a redukcí diazo soli kyselinou fosfornou nebo varem s ethanolem fenanthren-9-ol 2 a 2 l 2,6-dimethylanilin fenanthren l 2,6-dimethylbenzendiazoniumchlorid 3 P 2 1,3-dimethylbenzen (m-kresol) 7) Ze sulfonových a karboxylových kyselin: desulfonace a dekarboxylace Průmyslově se aromáty získávají hlavně z dehtu (karbonizace uhlí) respektive reformováním některých ropných frakcí a následnou extrakcí (destilace není výhodná).

16 V. Přehled příprav halogenderivátů: Jiří anusek ) Z alkanů: radikálovou halogenací (S ) X 2 hν = alkyl, aryl X = l, X 2-methylpropan 2 hν 2-brom-2-methylpropan omace je mnohem selektivnější než chlorace. l 2 hν 2 l l 2 hν l 2 l 2 hν l toluen benzylchlorid benzylidendichlorid benzotrichlorid Za uvedených podmínek není atakováno benzenové jádro 2) Z alkenů: radikálovou resp. elektrofilní adicí halogenů, halogenvodíků (A, A E ) X X = F, l,, I X X X 2 2 l l X styren (1-fenylethen) trans-1,2-dibrom cyklohexan 2 cyklohexen F 35 1-chlor-1-fenylethan (1-chlorethylbenzen) F fluorcyklohexan orientace podle Markovnikova pravidla

17 2 X 2 hν 2 X = alkyl, aryl X = l, allylová halogenace probíhá jako radikálová substituce Jiří anusek ) Z alkynů: radikálovou resp. elektrofilní adicí halogenů, halogenvodíků (A, A E ) X l 2 gl 2 l ethyn chlorethen (acetylen) vinylchlorid X X X 2 X 2 l X X l l 1,1-dichlorethan X X X X X X 2-methylbut-3-yn-2-ol X X 2 a X = l,, I 4-brom-2-methylbut-3-yn-2-ol 4) Z aromátů: elektrofilní substitucí ( S EAr) - chlorace, bromace event. jodace. X l l platí orientační X 2 l 2 Fel pravidla; volbou FeX 3 3 podmínek i polyhalogenace. toluen 4-chlortoluen 2-chlortoluen X = l,

18 Jiří anusek ) Z halogenderivátů: substitucí halogenu jiným halogenem - zejména pro F a I deriváty. M(X 2 ) n 2 X 1 2 X 2 M = K X 2 = I n = 1 (v acetonu) M = Sb X 2 = F n = 3 ev. 5 (ev. gf 2 ) benzylchlorid 2 l KI aceton benzyljodid 2 I eakce primárních alkylchloridů a bromidů s KI v acetonu - Finkelsteinova reakce. eakce primárních alkylchloridů a bromidů s F SbF 5 ev. - Swartsova reakce. l 3 SbF 5 l 2 F SbF 5 lf 2 SbF 5 F 3 chloroform (trichlormethan) 250 dichlorfluormethan chlordifluormethan fluoroform (trifluormethan) F F F 6) Z alkoholů: reakcí s halogenačními činidly jako SX 2, PX 3, PX 5 event. i X halogenační X činidlo = alkyl X = l,, (I) Fluorderiváty vyžadují speciální činidla (SF 4, Ph 2 PF 3, Et 2 F 2 lf = Jarovenkovo činidlo, atd.) U jodderivátů hrozí redukce vnikajícím I až na alkan K, 2S butan-1-ol 1-brombutan 1-fenylethanol Sl 2 DMF l 1-chlor-1-fenylethan (1-chlorethylbenzen) cyklohexanol l al 2 l 1-chlorcyklohexan P, I 2 methanol I methyljodid l l 2-methylpropan-2-ol (terc.-butylalkohol) 2-chlor-2-methylpropan (terc.-butylchlorid)

19 7) Z etherů: štěpením etherů pomocí X (v případě I tzv. Zeiselovo štěpení etherů) I anisol (methoxybenzen) (fenyl(methyl)ether) fenol I methyljodid Jiří anusek 2003 tetrahydropyran 5-brompentan-1-ol 1,5-dibrompentan 8) Z karbonylových sloučenin: reakcí s halogenačními činidly jako PX 3, PX 5 () PX 5 X X () = alkyl, aryl X = l, benzaldehyd = l 2 Pl 5 benzylidendichlorid butan-2-on Pl 5 0 l l 2,2-dichlorbutan 9) Ze solí karboxylových kyselin: reakce s X 2 za současné dekarboxylace (unsdieckerova reakce) Ag Ag stříbrná sůl kyseliny adipové cyklopropankarboxylová kyselina 2 l 4 2 g ,4-dibrombutan bromcyklopropan 10) Z diazoniových solí: KI l u 2 X 2 I BF 4 X F Sandmayerova reakce (X = l, ) Schiemannova reakce Diazoniové soli se získají diazotací aromatických aminů

20 VI. Přehled příprav organokovových sloučenin: Zn ether ZnX X Mg ether MgX Li = alkyl, aryl Zn l ether X = l,, I Li Li l Li MgI propyn MgI propyn-1-ylmagnesium jodid 2-chlorpropan 1-chlorbutan hexan 4-bromfenyl(methyl)ether VII. Přehled příprav alkoholů: Mg ether Znl isopropylzinkium chlorid butyllithium rganokovové sloučeniny se neisolují v čistém stavu Mg - používají se ve formě roztoků 4-methoxyfenylmagnesium bromid 1) Z alkanů: řízenou oxidací vznikají směsi produktů (alkoholy, aldehydy, ketony, kyseliny) 2 o 3 cyklohexan cyklohexanol cyklohexanon ybnou silou je zde rozdílná acidita odpovídajících -kyselin. Jiří anusek 2003 Průmyslovou oxidací cyklohexanu při se získá směs, která se dá rozdělit (bisulfitový zp.) Lze provést i allylovou oxidaci (analogie chlorace)

21 Jiří anusek ) Z alkenů: kysele katalyzovanou hydratací (alkoholy) nebo oxidací (dioly) 2 2,3-dimethylbut-2-en 2 2,3-dimethylbutan-2-ol Jako katalyzátor se používá 2 S 4 nebo 3 P 4 ox. č. 2 cyklohexen KMn 4 2 cis-cyklohexan-1,2-diol Alternativou KMn 4 je s 4. eakce je stereospecifická (Wagnerova oxidace) ydroborací, následnou oxidací peroxidem vodíku a hydrolýzou vznikají alkoholy. 2 B B 2 2 a 2 B 3 2 =, alkyl, aryl, B B B 3 pent-1-en tris(pentyl)boran tris(pentyl)borát pentan-1-ol 3 Formálně se jedná o anti- Markovnikovu adici

22 Průmyslově se používá tzv. alfol proces: reakcí ethylenu s Al a 2 vzniká trialkyllaluminium, které se oxiduje a po hydrolýze poskytuje lineární alkoholy se sudým počtem. 2 Al, 2 2 p ethen ( 2 ) 3 Al 2 ( 2 2 ) n Jiří anusek [ 2 ( 2 2 ) n ] 3 Al 250 p 2 2 S 4 [ 2 ( 2 2 ) n ] 3 Al 3) Z aromátů (fenolů): katalytickou hydrogenací fenol i, MPa cyklohexanol průmyslová metoda i, MPa hydrochinon cyklohexan-1,4-diol 4) Z halogenderivátů: nukleofilní substitucí event. 2 X 2 = alkyl X = l,, I 2 l 2-chlorbutan 2 2 butan-2-ol Vedlejším produktem je alken vzniklý eliminací X 2 l 2 2 l 2 a 2 3 benzylchlorid benzylalkohol 1-chlor-1-methyl cyklohexan 1-methylcyklohexan-1-ol 1-methylcyklohex-1-en

23 5) Z Grignardových činidel: reakcí s karbonylovými sloučeninami a oxiranem MgX = alkyl, aryl MgX 2 1 MgX MgX 2 2 MgX primární alkoholy sekundární alkoholy terciární alkoholy primární alkoholy (delší o 2 uhlíky) Analogicky reagují i anhydridy, estery a chloridy karboxylových kyselin. Jiří anusek 2003 cyklohexylmagnesium chlorid Mgl 1) 2) l / 2 2 cyklohexylmethanol Mgl 2) l / 2 2 terc.-butylmagnesium 1,3,3-trimethylbutan-1-ol chlorid benzylmagnesium bromid 2 MgI ethylmagnesium jodid 2 Mg 1) 3 2) l / 2 fenyl(methyl)keton (acetofenon) 2) l / fenylpropan-2-ol 2 2-fenylbutan-2-ol

24 6) Z aldehydů a ketonů: kromě reakce s Grignardovými činidly redukcí LiAl 4, ab () redukce 1, 2 = alkyl, aryl 1 2 () Kromě komplexních hydridů lze použít i isopropylalkoholát hlinitý (Meerwein-Ponndorf-Verley) annizzarova reakce (a / 2 ) resp. zkřížena varianta / a cyklohexyl(methyl) keton 2, a-i 6 MPa benzylalkohol 1-cyklohexylethanol 2 za katalýzy aneyovým niklem fenylpropan-1-on (ethyl(fenyl)keton) kyselina benzoová aceton (propanon) a LiAl 4 2) / 2 i-pr- (i-pr-) 3 Al 2 benzaldehyd = a Mg 2) l / 2 2,3-dimethylbutan-2,3-diol (pinakol) 2 1-fenylpropan-1-ol Jiří anusek 2003 but-2-enal (krotonaldehyd) but-2-en-1-ol (krotylalkohol) benzylalkohol 2 Zdvojování sodíkem nebo hořčíkem (pinakolizace).

25 7) Z karboxylových kyselin a jejich funkčních derivátů : redukcí LiAl 4, ab 4... Jiří anusek 2003 Kyselina 2-naftoová LiAl 4 2) l / 2 naft-2-ylmethanol 2 2 ab 4 2) / 2 3 methyl 4-methylbenzoát 4-methylbenzylalkohol Bouveault-Blancova redukce: sodíkem v ethanolu a 2 2 ethyl 2-methylpropan-2-karboxylát 2 2,2-dimethylpropano VIII. Přehled příprav fenolů: 1) Z halogenaromátů: nukleofilní substitucí S Ar AE, EA l a p 2) l / 2 chlorbenzen fenol aschigův způsob výroby fenolu. 2 a 2 2) l / ,4,6-trinitrobrombenzen 2,4,6-trinitrofenol 2) Ze solí sulfonových kyselin: tavením s a (průmyslová i laboratorní metoda) 4-toluensulfonát sodný (4-methylbenzensulfonan a) S 3 a a (tavení) 2) l / methylfenol (p-kresol) S 3 a (tavení) 2) l / 2 naftalen-2-sulfonová kyselina 2-naftol

26 3) Z aromatických aminů: Buchererova reakce 1-naftylamin Výroby alkoholů a fenolů: Methanol: hydrogenace oxidu uhelnatého p 2 p = MPa kat. Zn 2 r 4 Propan-1-ol: hydroformylace ethylenu 2 2 ethen 2 as naftol p o 2 propan-1-ol Propan-2-ol: vyrábí se stejnou technologií jako ethanol (hydratace propenu). Griessova reakce - laboratorní metoda 2 3-nitroanilin a 2 2 S 4 2 Ethanol: hydratace ethylenu - 2 způsoby. 1) přímá hydratace - kat. 3 P 4 na křemelině ethen 2 ethanol 2) nepřímá hydratace - adicí 2 S 4 vzniká kyselina ethylsírová ( diethylsulfát), která hydrolyzuje na ethanol a 2 S 4. 2 S S 3 70 ethen kyselina ethylsírová l zř. 2 S nitrobenzendiazonium chlorid 2 Jiří anusek nitrofenol 2 T = ethanol Fenol: vyrábí se hlavně tzv. kumenovým způsobem: isopropylbenzen (kumen) S kumylhydroperoxid fenol aceton

27 IX. Přehled příprav etherů: Jiří anusek ) Z alkenů: kysele katalyzovanou adicí X, alkoholů nebo oxidací peroxykyselinami l a propen l 1-chlorpropan-2-ol methyloxiran (propylenoxid) 2-methylpropen (isobutylen) 2 methanol 2 S 4 lze adovat i alkyny terc.-butyl(methyl)ether Diethylether navíc vzniká jako vedlejší produkt při výrobě Et sulfátovým způsobem. 2) Z alkoholů a fenolů: kysele katalyzovanou dehydratací a Williamsonovou syntézou 2 2 S ethanol diethylether Průmyslově při katalyzátor: KAl(S 4 ) 2 1-fenylethanol 3-l fenylethyl(methyl)ether fenol eakce alkoholů a fenolů s diazoalkany I methyljodid a fenyl(methyl)ethe (anisol) 2, Ag propen oxiran (ethylenoxid) 2, i MPa furan tetrahydrofuran Williamsonova syntéza se hodí zejména na nesymetrické ethery Průmyslová syntéza oxiranu Tetrahydrofuran slouží jako rozpouštědlo

28 X. Přehled příprav aldehydů a ketonů: Jiří anusek ) Z alkanů: řízenou oxidací vznikají směsi produktů (alkoholy, aldehydy, ketony, kyseliny) a) xidací cyklohexanu se získá směs cyklohexanolu a cyklohexanonu. b) xidací kumenu se po kysele katalyzovaném rozkladu získá aceton a fenol. 2) Z alkenů: ozonolýza: ; l 4 80, 1, 2 =, alkyl, aryl, 1 2 Zn 2 3 ; l 4 2 Zn ,4-dimethylhex-3-en butan-2-on (ethyl(methyl)keton) synteticky vhodná pouze v případě symetrických a cyklických alkenů 1 2 1) 3 ; l ) Zn cyklohexen hexandial Wacker-proces: průmyslová výroba acetaldehydu tříkrokový mechanismus = ul 2, Pdl ethen 2 ethanal l, 2 (acetaldehyd) 2 2 Pdl 2 2 = Pd 2 l Pd 2 ul 2 Pdl 2 u 2 l 2 u 2 l 2 ½ 2 2 l 2 ul 2 2

29 hydroformylace - průmyslová metoda (výroba aldehydů) Jiří anusek , o 2 () klesající reaktivita, 1, 2 =, alkyl, aryl, (nevadí přítomnost,,, ) 2, o 2 () 8 propen butanal 2-methylpropanal 3) Z alkynů: kysele katalyzovaná adice vody 2 2 S 4 gs 4 =, alkyl, aryl 2 2 S ethyn 4 gs ethanal (acetylen) 4 (acetaldehyd) Kučerovova reakce - výroba acetaldehydu 2 3-fenylpropyn 2, o 2 () 8 cyklopenten cyklopentankarbaldehyd adicí vzniklý enol se tautomerizuje na keton (platí Markovnikovo pravidlo) S 4 gs 4 1-fenylpropanon (fenylaceton) 4) Z aromátů: oxidací postranního řetězce alkylaromátů (α-uhlík) 2 r 2 l 2 u Η lze i r 3 toluen r 2 l 2 benzaldehyd Ètardova reakce

30 Aromatické aldehydy: formylační činidlo Jiří anusek 2003 Gattermannova reakce: činidlem je směs l, a Znl 2 resp. l Zn() 2. ( =,,, alkyl) Gattermannova-Kochova reakce: činidlem je směs l a All 3.( =, 4-alkyl) toluen naftalen Zn() 2 l, l All 3 Aromatické ketony: 1 Y* All 3 4-methylbenzenkarbaldehyd (p-tolualdehyd) naftalen-1-karbaldehyd 1 =, alkyl,, halogen 1 = alkyl, aryl Y = halogen,, * lze použít i za katalýzy Znl 2 Vilsmeier-aackova reakce: činidlem je ( ) 2 a Pl 3 - následuje hydrolýza ( =, 2 ) eimer-tiemannova reakce: činidlem je dichlorkarben generovaný in-situ z l 3 a a. ( = 2-) methoxybenzen (anisol) ( ) 2 Pl 3 3 fenol a l 3 ( ) 2 Pl 2 2 Friedel-raftsova acylace - na rozdíl od alkylace nehrozí polysubstituce - k acylaci dochází většinou do para polohy. Jako acylační činidla slouží karboxylové kyseliny, jejich chloridy a anhydridy. 2-hydroxybenzaldehyd (salicylaldehyd) 4-methoxybenzenkarbaldehyd

31 benzen l chlorbenzen All 3 ftalanhydrid (benzen-1,2-dikarboxanhydrid) l All 3 l kyselina 2-benzoylbenzoová 4-chlorfenylethanon (4-chloracetofenon) 2 S 4 9,10-anthrachinon 1,3,5-trimethoxybenzen 2 Znl 2, l Průmyslová výroba 9,10- anthrachinonu ouben-oeschova reakce: jen pro = a -Alkyl Jiří anusek (1,3,5-trimethoxyfenyl)propan-1-on 5) Z halogenderivátů: hydrolýzou geminálních dihalogenderivátů nebo Sommeletovou reakcí l 2 a 2 4-nitrobenzylidendichlorid 2 4-nitrobenzaldehyd benzylchlorid 2 l 1) urotropin 2) l / 2 benzaldehyd 6) Z alkoholů: řízenou oxidací primárních a sekundárních alkoholů event. vicinálních diolů oxidační 2 činidlo 1 oxidační činidlo 1 ai 4 (Pb(Ac) 4 ) prim. alkoholy aldehydy sek. alkoholy ketony vic. dioly dva ketony

32 2 2 2 butan-1-ol K 2 r S butanal vznikající aldehyd je potřeba z reakční směsi oddestilovat (hrozí další oxidace) 2 Ag 700 průmyslová výroba formaldehydu 1-fenylethanol K 2 r S 4 2,3-difenylbutan-2,3-diol 1-fenylethanon (acetofenon) ai 4 Jiří anusek 2003 u ketonů nehrozí přeoxidování 1-fenylethanon (acetofenon) Jako oxidační činidlo lze použít i jiný aldehyd resp. keton za katalýzy (i-pr) 3 Al (ppenauer). Pinakolonový přesmyk: 2 S 4 2,3-dimethylbutan-2,3-diol (pinakol) 7) Z karboxylových kyselin a jejich funkčních derivátů: ( ) 2 M Vhodné pro M 3 symetrické ketony Zahříváním vápenatých, barnatých a manganatých solí karboxylových kyselin na 300 3,3-dimethylethanon (pinakolon) konkurenční reakcí je eliminace na dien (pomocí jen dien) ( ) 2 a a 3 octan vápenatý aceton Ba 2 adipát barnatý (hexandioát barnatý) Ba 3 cyklopentanon

33 Jiří anusek 2003 redukční l činidlo edukcí chloridů kyselin: osenmundova redukce: 2 Pd/BaS 4 (S) resp. pomocí LiAl(t-Bu) 3 2-fluorbenzoylchlorid l 2 Pd / BaS 4 (S) F F 2-fluorbenzaldehyd 3-ethylpentanoyl chlorid l LiAl(t-Bu) 3 3-ethylpentanal Z esterů laisenovou resp. Dieckannovou kondenzací a následnou kyselou hydrolýzou 2 1 zvláště výhodná pro přípravu ketonů s větším cyklem a dimethyl-adipát (dimethyl-hexynoát) 2 1,3-difenylaceton methyl-2-oxo cyklopentankarboxylát 2 1) a 2) / 2 l / b-ketoester cyklopentanon 1 1 / keton 2 2 1) a 2) / 2 methylacetát fenylaceton methyl-fenylacetát lze provést i zkříženou variantu laisenovy kondenzace. Ta je však synteticky užitečná pouze pokud je acidita obou esterů (α-) rozdílná.

34 eakcí orthoformiátu (ortho-esterů kyseliny mravenčí) s Grignardovými činidly: Mg 4-methylbenzenmagnesium bromid triethylorthoformiát 2 2 l / 2 4-methylbenzenkarbaldehyd-diethylacetal Z nitrilů Stephenovou redukcí resp. reakcí s Grignardovými činidly: l Snl = aryl event. alkyl do 6 l l alternativně lze použít jako redukční činidlo LiAl(Et) 3. 4-methylbenzenkarbaldehyd Jiří anusek MgX 1 MgX 2 1 reakce je univerzální, 1 = alkyl, aryl nafalen-2-karbonitril 1) Snl 2 / l 2) 2 nafalen-2-karbaldehyd ( ) Mg 2) l / 2 isopropylmagnesium bromid 4-methylbenzenkarbonitril hexannitril 1-(4-methylfenyl)-2-methylpropan-1-on (isopropyl(4-methylfenyl)keton) LiAl(Et) ) l / 2 hexanal Mg 4-methylfenylmagnesium bromid ( ) 2-methylpropannitr

35 Dikarbonylové sloučeniny: 2 a 2 l acetaldehyd nitrosoacetaldehyd a 2 l =, alkyl, aryl glyoxal-monooxim oxidace kyselinou dusitou nebo oxidem seleničitým 2 glyoxal 2 butan-2-on (ethyl(methyl)keton) varianta laisenovy kondenzace esteru a aldehydu nebo ketonu fenylethanon (acetofenon) , 2, 3 =, alkyl, aryl 3 methylacetát enasycené karbonylové sloučeniny: Keteny - dehalogenací halogenidů α-halogenkarboxylových kyselin dehydrohalogenací halogenidů kyselin 2 1-fenylbutan-2,3-dion (benzoylaceton) X X 2 2 1) a 2 / l 3 2) / 2 3 Jiří anusek 2003 butandion (dimethyldiketon) produktem jsou 1,3-dikarbonylové sloučeniny V případě aldehydů hrozí za uvedených podmínek i samokondenzace = aldolizace Zn Et 3 2 X

36 Jiří anusek 2003 l Et 3 cyklohexankarbonylchlorid cyklohexylidenmethanon 2 2-brombutanoylbromid Zn 2 ethylketen (but-1-en-1-on) ydroxykarbonylové sloučeniny: aldolizace - podle podmínek vznikají i nenasycené karbonylové sloučeniny , 1, 2 =, alkyl, aryl ( 2 ( 1 ) 1 ) = 2 Ba() 2 Ba() aceton 4-hydroxy-4-methylpentan-2-on 4-methylpent-3-en-2-on (mesityloxid) a() a() 2 acetaldehyd formaldehyd 2 pokud ani 1 nejsou - probíhá eliminace obtížněji za vzniku α,γ-ne nasycené karb. sl. 2 2 a() hydroxypropanal 2-hydroxymethyl-3-hydroxypropanal 2,2-bis(hydroxymethyl)- -3-hydroxypropanal 2 a()2 2 2 zkřížená varianta

37 Acyloinová kondenzace: zdvojováním esterů sodíkem v aprotickém rozpouštědle a hydrolýzou vzniklého enolátu a 1 1 a a 1 1 a Jiří anusek a a Benzoinová kondenzace: zdvojování některých aromatických aldehydů katalyzované. furan-2-karbaldehyd K Et benzaldehyd 1,2-bis(2-furyl)-2-hydroxyethanon (furoin) m K Et 1,2-difenyl-2-hydroxyethanon (benzoin) 1) a 2) 2 methylbenzoát 1) a 2) 2 methyl 2-methylpropanoát 4-hydroxy-2,5-dimethylhexan-3-o hinony: oxidací aromatických 1,2 a 1,4-dihydroxy resp. diaminoaromátů. 1,2-dihydroxybenzen (pyrokatechol) Ag 2 1,2-benzochinon 2 4-amino-1-naftol Ag 2 2 V 2 5 1,4-naftochinon naftalen oxidace V 2 5 se využívá průmyslově.

38 Sacharidy: v přírodním materiálu je zastoupeno velké množství sacharidů resp. polysacharidů isolují se. Sacharidy neobsažené v tomto materiálu se připravují buď prodlužováním nebo zkracováním uhlíkového řetězce. Jiří anusek V roztoku je 99.9 % cyklické formy Prodlužování řetězce: synteticky náročné - obvykle s malým výtěžkem (kyanhydrinová reakce) 2 L-arabinosa K = 2 ab směs L-mannosy a L-glukosy Zkracování řetězce: nejčastěji se používá tzv. Wohlovo odbourávání nitrilů vniklých z oximů. 2 D-glukosa 2 2 ( ) 2 2 Ag D-arabinosa posledním krokem je reakce opačná než kyanhydrinová reakce

39 XI. Přehled příprav nitrosloučenin: Jiří anusek ) Z alkanů: nitrací alkanů v plynné fázi (radikálově) pří nitraci delších alkanů vznikají isomery a částečně se štěpí řetězec nitropropan nitropropan propan nitroethan nitromethan cyklohexan nitrocyklohexan v kapalné fázi 2) Z aromátů: nitrací aromátů (S E Ar) - orientaci určují eventuální další substituenty na jádře, podle podmínek probíhá i polynitrace fenylnitromethan 2 4 us 4!!radikálově!! toluen 65% 3 85% 2 S 4 30 o-nitrotoluen 65% % % 2 S 4 85% 2 S p-nitrotoluen 2,4-dinitrotoluen 2,4,6-trinitrotoluen benzen 65% 3 85% 2 S 4 60 nitrobenzen 2 100% 3 100% 2 S ,3-dinitrobenzen 100% 3 20% oleum ,3,5-trinitrobenzen naftalen se nitruje na 1-nitronaftalen další nitrace probíhá do polohy 5 a 8.

40 3) Z halogenderivátů: nukleofilní substitucí (S 1, S 2 ) na alifatických halogenderivátech. Vedlejší reakcí vzniká ester kyseliny dusité. X 2 2 Jako činidlo se používá a 2 resp. Ag 2. = prim. a sek. alkyl; X = l,, I Výtěžek bývá okolo 60 %. benzylbromid 2 a2 DMF 2 2 fenylnitromethanbromcyklopentan 2 a 2 DMS nitrocyklopentan Ag butylbromid Jiří anusek nitrobutan 2-oktyljodid I a 2 DMS 2-nitrooktan 2 2 l kyselina chloroctová 1) a 2 3 2) a 2 a 2 2 nitrooctan sodný 1) l 2 2) 2 nitromethan 4) Z nitroalkanů: budování uhlíkového řetězce benzaldehyd 2 nitromethan XII. Přehled příprav nitrososloučenin fenol a 2 l p-nitrosobenzen fenyl-2-nitroethanol a 2 l,-dimethylanilin 4-nitroso-,-dimethylanilin 1-fenyl-2-nitroethen (ω-nitrostyren) 2 nitrosace na aromatickém jádře probíhá pouze u fenolů a,-disubstituovaných anilinů (silně aktivující M efekt a 2 ).

41 -methylanilin a 2 l l -nitroso--methylanilin 4-nitroso--methylanilin sekundární aromatické aminy se Jiří anusek 2003 rychle nitrosují na dusíku a vzniklé -nitrosaminy se v kyselém prostředí přesmykují (Fischerův-eppův přesmyk) nitrosace karbonylových sloučenin probíhá na α-uhlíku ale pokud je zde přítomen další vodík - dochází k tautomerii na oxim. 1,2-difenylpropan-1-on a 2 l 1 a 2 1 = 2 l 2 2-nitroso-1,2-difenylpropan-1-on itrososloučeniny lze připravit i oxidací hydroxylaminů: Alifatické nitrososloučeniny, u nichž není možná tautomerie připravujeme z Grignardových činidel reakcí s l. Mg terc.-butylmagnesium bromid l 2-methyl-2-nitroso propan 1 a l butan-2-on (ethyl(methyl)keton) fenylhydroxylamin a 2 r butandion-monooxim nitrosobenzen ximy: kromě tautomerie nitrososloučenin reakcí aldehydů a ketonů s hydroxylaminem. 2 aceton aceton-oxim hν l 2 propan

42 Jiří anusek 2003 XIII. Přehled příprav hydroxylaminů, hydrazinů a azosloučenin ydroxylaminy: redukcí nitrosloučenin zinkem v neutrálním prostředí nitrobenzen 2 Zn 4 l ydraziny: redukcí nitrosloučenin zinkem v alkalickém prostředí (1,2-disubst. hydrazin) nitrobenzen 2 Zn a 1,2-difenylhydrazin (hydrazobenzen) fenylhydroxylamin 2 nitromethan Zn 4 l methylhydroxylamin redukcí -nitrososloučenin zinkem v kyselém prostředí (1,1-disubstituované hydraziny) Zn l -nitroso--methylanilin 2 -fenyl--methylhydrazin redukcí diazoniových solí siřičitanem (monosubstituované hydraziny) Azosloučeniny: oxidací 1,2-disubstituovaných hydrazinů a, g, K 3 [Fe() 6 ]. 1,2-difenylhydrazin (hydrazobenzen) a = difenyldiazen (azobenzen) 2 l 3-nitrobenzendiazonium chlorid l a 2 S 3 nitrosobenzen 4-chloranilin l 3-nitrofenylhydrazin reakcí nitrosoaromátů s aminy (Millsova reakce) - vhodná pro nesymetrické deriváty = 4-chlorfenyl(fenyl)diazen

43 kopulace diazoniových solí na fenoly, terciární aromatické aminy, jiné aktivované aromáty a aktivované alifatické substráty l benzendiazonium chlorid benzendiazonium chlorid l l benzendiazonium chlorid 2-karboxybenzendiazonium chlorid l 3 2 Aca 2-benzylpropandinitril 2 butan-2-on (ethyl(methyl)keton),-dimethylanilin 1,3,5-trimethylbenzen (mesitylen) 3 S 2 2-benzyl-2-fenyldiazenylpropandinitr l 4-sulfobenzendiazonium chlorid fenyl(2,4,6-timethylfenyl)diazeno 3-fenyldiazenylbutan-2-on 3 2-(4-dimethylaminofenyldiazenyl)benzoová u kyselina (Methylčerveň) 2-naftol u primárních a sekundárních aromatických aminu probíha reakce podle p na dusíku - vznikají triazeny nebo na jádře l benzendiazonium benzenamin chlorid (anilin) p = 7 3-fenylhydrazonobutan-2-on difenyltriazen Jiří anusek S k 4-(2-hydroxynaftyldiazenyl)benzen sulfonová kyselina (ranž II) 2 U alifatických substrátů často azo-hydrazo tautomerie

Quiz Karboxylové kyseliny & jejich deriváty

Quiz Karboxylové kyseliny & jejich deriváty Quiz Karboxylové kyseliny & jejich deriváty 1. Určete produkt(y) reakce propionylchloridu s následujícími reaktanty: 2 i) C 3 C 2 C 2 2 (nadbytek) b) C 3 C 2 C 2 C 2 Li (nadbytek) j) m-toluidin (nadbytek)

Více

Organická chemie (KATA) rychlý souhrn a opakování

Organická chemie (KATA) rychlý souhrn a opakování Organická chemie (KATA) rychlý souhrn a opakování Molekulové orbitaly hybridizace N a O Polarita vazby, induktivní efekt U kovalentní vazby mezi rozdílnými atomy, nebude elektronový pár oběma atomy sdílen

Více

CH 2 = CH 2 ethen systematický název propen CH 2 = CH CH 3 but-1-en CH 2 = CH CH 2 CH 3 but-2-en CH 3 CH = CH CH 3 buta-1,3-dien CH 2 = CH CH = CH 2

CH 2 = CH 2 ethen systematický název propen CH 2 = CH CH 3 but-1-en CH 2 = CH CH 2 CH 3 but-2-en CH 3 CH = CH CH 3 buta-1,3-dien CH 2 = CH CH = CH 2 Základní názvy organických látek alifatické nasycené alkany (příklady s nerozvětvenými řetězci) methan CH 4 ethan CH 3 CH 3 propan CH 3 CH 2 CH 3 butan CH 3 CH 2 CH 2 CH 3 pentan CH 3 CH 2 CH 2 CH 2 CH

Více

Karboxylové kyseliny

Karboxylové kyseliny Karboxylové kyseliny Názvosloví pokud je karboxylováskupina součástířetězce, sloučenina mákoncovku -ovákyselina. Pokud je mimo řetězec má sloučenina koncovku karboxylová kyselina. butanová kyselina cyklohexankarboxylová

Více

OCH/OC2. Karbonylové sloučeniny 1

OCH/OC2. Karbonylové sloučeniny 1 OCH/OC2 Karbonylové sloučeniny 1 1 Rozdělení Aldehyd Keton Karboxylová kyselina Acylhalogenid Ester Anhydrid Amid Azid Hydrazid Hydroxamová kyselina Lakton Laktam 2 Rozdělení Deriváty kyseliny uhličité

Více

4. ročník - seminář Vzdělávací obor - Člověk a příroda

4. ročník - seminář Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium Vyučovací předmět - Chemie 4. ročník - seminář Vzdělávací obor - Člověk a příroda

Více

Projekt OCH. http://ich.vscht.cz/projects/och/ Tištěný výstup

Projekt OCH. http://ich.vscht.cz/projects/och/ Tištěný výstup Projekt OCH http://ich.vscht.cz/projects/och/ Tištěný výstup 4 6 Nakreslete produkt bromace anilinu do třetího stupně. 7 http://ich.vscht.cz/projects/och/ Strana 2 8 Meziproduktem následující reakce je

Více

UHLOVODÍKY ALKANY (...)

UHLOVODÍKY ALKANY (...) UHLOVODÍKY ALKANY (...) alifatické nasycené uhlovodíky nerozvětvené i rozvětvené mezi atomy uhlíku pouze jednoduché vazby (σ vazby), mezi nimi úhel 109 28 název: kmen + an obecný vzorec C n H 2n + 2 tvoří

Více

H H C C C C C C H CH 3 H C C H H H H H H

H H C C C C C C H CH 3 H C C H H H H H H Alkany a cykloalkany sexta Martin Dojiva uhlovodíky obsahující pouze jednoduché vazby obecný vzorec alkanů: C n 2n+2 cykloalkanů: C n 2n homologický přírůstek C 2 Dělení alkanů přímé větvené u větvených

Více

Aminy a další dusíkaté deriváty

Aminy a další dusíkaté deriváty Aminy a další dusíkaté deriváty Aminy jsou sloučeniny příbuzné amoniaku, u kterých jsou nahrazeny jeden, dva nebo všechny tři atomy vodíku alkylovými nebo arylovými skupinami. Aminy mají stejně jako amoniak,

Více

Obsah. 2. Mechanismus a syntetické využití nejdůležitějších organických reakcí 31 2.1. Adiční reakce 31 2.1.1. Elektrofilní adice (A E

Obsah. 2. Mechanismus a syntetické využití nejdůležitějších organických reakcí 31 2.1. Adiční reakce 31 2.1.1. Elektrofilní adice (A E Obsah 1. Typy reakcí, reakčních komponent a jejich roztřídění 6 1.1. Formální kritérium pro klasifikaci reakcí 6 1.2. Typy reakčních komponent a způsob jejich vzniku jako další kriterium pro klasifikaci

Více

2.3.2012. Oxidace. Radikálová substituce alkanů. Elektrofilní adice. Dehydrogenace CH 3 CH 3 H 2 C=CH 2 + 2 H. Oxygenace (hoření)

2.3.2012. Oxidace. Radikálová substituce alkanů. Elektrofilní adice. Dehydrogenace CH 3 CH 3 H 2 C=CH 2 + 2 H. Oxygenace (hoření) xidace alkanů Dehydrogenace Reaktivita alkanů xidace Radikálová substituce 3 3 2 = 2 2 xygenace (hoření) 4 2 2 2 2 2 2 4 3 2 2 4 2 Radikálová substituce alkanů Iniciace (vznik radikálu, homolytické štěpení

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í KARBONYLOVÉ SLOUČENINY = látky, které obsahují karbonylovou skupinu Aldehydy mají skupinu C=O na konci řetězce, aldehydická skupina má potom tvar... Názvosloví aldehydů: V systematickém názvu je zakončení

Více

Kyslíkaté deriváty. 1) Hydroxyderiváty: a) Alkoholy b) Fenoly. řešení. Dle OH = hydroxylová skupina

Kyslíkaté deriváty. 1) Hydroxyderiváty: a) Alkoholy b) Fenoly. řešení. Dle OH = hydroxylová skupina Kyslíkaté deriváty řešení 1) Hydroxyderiváty: a) Alkoholy b) Fenoly Dle = hydroxylová skupina 1 Hydroxyderiváty Alifatické alkoholy: náhrada 1 nebo více atomů H. hydroxylovou skupinou (na 1 atom C vázaná

Více

16.IZOMERIE a UHLOVODÍKY 1) Co je to izomerie a jak se dělí? 2) Co je konstituce, konfigurace a konformace? 3) V čem se izomery shodují a v čem liší?

16.IZOMERIE a UHLOVODÍKY 1) Co je to izomerie a jak se dělí? 2) Co je konstituce, konfigurace a konformace? 3) V čem se izomery shodují a v čem liší? 16.IZOMERIE a UHLOVODÍKY 1) Co je to izomerie a jak se dělí? 2) Co je konstituce, konfigurace a konformace? 3) V čem se izomery shodují a v čem liší? 4) Urči typy konstituční izomerie. 5) Co je tautomerie

Více

Karboxylové kyseliny a jejich funkční deriváty

Karboxylové kyseliny a jejich funkční deriváty Karboxylové kyseliny a jejich funkční deriváty Úvod Karboxylové kyseliny jsou nejdůležitější organické kyseliny. Jejich funkční skupina je karboxylová skupina a tento název je složen ze slov karbonyl a

Více

Školní vzdělávací program

Školní vzdělávací program Školní vzdělávací program Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Očekávané a školní výstupy - popíše a vysvětlí důkaz přítomnosti halogenů v organických sloučeninách jako halogenidů

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz Z.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Funkční

Více

KARBOXYLOVÉ KYSELINY C OH COOH. řešení. uhlovodíkový zbytek. KARBOXYLOVÝCH funkčních skupin. - obsahují 1 či více

KARBOXYLOVÉ KYSELINY C OH COOH. řešení. uhlovodíkový zbytek. KARBOXYLOVÝCH funkčních skupin. - obsahují 1 či více KARBXYLVÉ KYSELINY - obsahují 1 či více KARBXYLVÝCH funkčních skupin. - nejvyšší organické oxidační produkty uhlovodíků řešení R CH R C H R = uhlovodíkový zbytek 1 KARBXYLVÉ KYSELINY Dělení dle: a) typu

Více

Názvosloví v organické chemii

Názvosloví v organické chemii Názvosloví v organické chemii Anorganika - procvičování O BeF 2 a(n) 2 NaSN 5 IO 6 hydrogenfosforečnan vápenatý síran zinečnatý dusičnan hlinitý dusitan sodný hydroxid měďnatý oxid uhelnatý fluorid berylnatý

Více

Rozdělení uhlovodíků

Rozdělení uhlovodíků Rozdělení uhlovodíků 1/8 Alkany a cykloalkany Obecné vzorce: alkany C n H 2n+2, cykloalkany C n H 2n, kde n je přirozené číslo Homologický přírustek: - CH 2 - Alkany přímé ( n - alkany) rozvětvené Primární,

Více

Příklady k semináři z organické chemie OCH/SOCHA. Doc. RNDr. Jakub Stýskala, Ph.D.

Příklady k semináři z organické chemie OCH/SOCHA. Doc. RNDr. Jakub Stýskala, Ph.D. Příklady k semináři z organické chemie /SA Doc. RNDr. Jakub Stýskala, Ph.D. Příklady k procvičení 1. Které monochlorované deriváty vzniknou při radikálové chloraci následující sloučeniny. Který z nich

Více

OCH/OC2. Deriváty karboxylových kyseliny

OCH/OC2. Deriváty karboxylových kyseliny OCH/OC2 Deriváty karboxylových kyseliny 1 Reaktivita karboxylových kyselin H O O - H H H OH deprotonace redukce R O OH H O OH H O Y α-substituce Nukleofilní acylová substituce Substituční deriváty Funkční

Více

Jednou z nejdůležitějších skupin derivátů uhlovodíků jsou sloučeniny obsahující jednovazné hydroxylové skupiny OH, proto hydroxyderiváty:

Jednou z nejdůležitějších skupin derivátů uhlovodíků jsou sloučeniny obsahující jednovazné hydroxylové skupiny OH, proto hydroxyderiváty: ALKOHOLY, FENOLY A ANALOGICKÉ SIRNÉ SLOUČENINY Jednou z nejdůležitějších skupin derivátů uhlovodíků jsou sloučeniny obsahující jednovazné hydroxylové skupiny OH, proto hydroxyderiváty: Obecný vzorec hydroxysloučenin

Více

TEST + ŘEŠENÍ. PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2010

TEST + ŘEŠENÍ. PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2010 30 otázek maximum: 60 bodů TEST + ŘEŠEÍ PÍSEMÁ ČÁST PŘIJÍMACÍ ZKUŠKY Z CEMIE bakalářský studijní obor Bioorganická chemie 2010 1. apište názvy anorganických sloučenin: (4 body) 4 BaCr 4 kyselina peroxodusičná

Více

HETEROCYKLICKÉ SLOUČENINY

HETEROCYKLICKÉ SLOUČENINY eterocyklické sloučeniny ETERCYKLICKÉ LUČEIY cyklické sloučeniny obsahují v cyklu ještě jiný atom než uhlík heteroatom např.,, (vzácněji i, e, P, As, B) deriváty těchto látek: alkaloidy, barviva, léčiva

Více

1. Hydroxysloučeniny 2. Thioly 3. Ethery

1. Hydroxysloučeniny 2. Thioly 3. Ethery Kyslíkaté deriváty uhlovodíků I 1. ydroxysloučeniny 2. Thioly 3. Ethery deriváty kyslíkaté hydroxysloučeniny R alkoholy fenoly ethery RR karbonylové sloučeniny aldehydy RC ketony RCR karboxylové sloučeniny

Více

Nerozvětvené (atomy C jsou spojeny maximálně s dvěma dalšími C) Rozvětvené (atomy C jsou spojeny s více než dvěma dalšími C)

Nerozvětvené (atomy C jsou spojeny maximálně s dvěma dalšími C) Rozvětvené (atomy C jsou spojeny s více než dvěma dalšími C) Otázka: Uhlovodíky Předmět: Chemie Přidal(a): Majdush Obsahují ve svých molekulách pouze atomy uhlíku a vodíku Nejjednodušší org. sloučeniny Uhlík je schopný řetězit se a vytvářet tak nejrůznější řetězce,

Více

Halogenderiváty a dusíkaté deriváty. Názvosloví verze VG

Halogenderiváty a dusíkaté deriváty. Názvosloví verze VG Halogenderiváty a dusíkaté deriváty Názvosloví verze VG definice I/ halogenderiváty Obsahují vazbu uhlík halogen (C-X). Odvozují se od všech druhů uhlovodíků náhradou jednoho nebo více vodíkových atomů

Více

OCH/OC2. Hydroxyderiváty

OCH/OC2. Hydroxyderiváty OCH/OC2 Hydroxyderiváty 1 Voda alkoholy - ethery voda methanol (monoalkyl derivát vody) dimethylehter (dialkyl derivát vody) 2 Rozdělení Alkoholy (alifatické) Fenoly (aromatické) primární sekundární terciární!

Více

1.1.2. ALKENY C n H 2n

1.1.2. ALKENY C n H 2n 1.1.. ALKEY n n 1.1..1. Příprava 1 3 4 I) Z látek se stejným počtem atomů především eliminační reakce 1) Transeliminace v tranzitním stavu jsou eliminující skupiny v antiperiplanární konformaci a) Dehydrohalogenace

Více

Obecné emisní limity pro vybrané znečišťující látky a jejich stanovené skupiny

Obecné emisní limity pro vybrané znečišťující látky a jejich stanovené skupiny Příloha č. 12 (Příloha č. 1 k vyhlášce č. 205/2009 Sb.) Obecné emisní limity pro vybrané znečišťující látky a jejich stanovené skupiny I. Obecné emisní limity pro vybrané znečišťující látky a jejich stanovené

Více

Alkyny. C n H 2n-2 (obsahuje jednu trojnou vazbu) uhlíky v sp hybridizaci

Alkyny. C n H 2n-2 (obsahuje jednu trojnou vazbu) uhlíky v sp hybridizaci Alkyny C n H 2n-2 (obsahuje jednu trojnou vazbu) uhlíky v sp hybridizaci 1 Klasifikace 2 Alkyny - dvě π vazby; lineární uspořádání Pozor! 3 Vlastnosti -π elektrony jsou méně mobilní než u alkenů H CH 3

Více

DERIVÁTY - OPAKOVÁNÍ

DERIVÁTY - OPAKOVÁNÍ DERIVÁTY - OPAKOVÁNÍ Doplňte k názvu derivátu uhlovodíku charakteristickou skupinu: alkohol Název derivátu Charakteristická skupina nitroderivát karboxylová kyselina aldehyd halogenderivát keton Doplňte

Více

1. nitrosloučeniny R-NO 2 CH 3 -NO aminosloučeniny R-NH 2 CH 3 -NH 2

1. nitrosloučeniny R-NO 2 CH 3 -NO aminosloučeniny R-NH 2 CH 3 -NH 2 DUSÍKATÉ DERIVÁTY UHLOVODÍKŮ Dusíkaté deriváty uhlovodíků obsahují ve svých molekulách atom dusíku vázaný přímo na atom uhlíku. Atom dusíku přitom bývá součástí funkční skupiny, podle níž dusíkaté deriváty

Více

Karbonylové sloučeniny

Karbonylové sloučeniny Aldehydy a ketony Karbonylové sloučeniny ' edoxní reakce Nukleofilní adice Aldolová kondenzace aldehyd formaldehyd = keton Aldehydy a ketony edoxní reakce aldehydů/ketonů E + Aldehydy oxidace mírnými oxidačními

Více

Reaktivita karboxylové funkce

Reaktivita karboxylové funkce eaktivita karboxylové funkce - M efekt, - I efekt - I efekt < + M efekt - I efekt kyslíku eaktivita: 1) itlivost na působení bází - tvorba solí karboxylových kyselin (také většina nukleofilů zde působí

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, anorganická chemie Tercie 2 hodiny týdně Školní tabule, interaktivní tabule, Apple TV, tablety, tyčinkové a kalotové modely molekul,

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto H 3 C Vymezení arenů V aromatickém cyklu dochází k průniku orbitalů kolmých k rovině cyklu. Vzniká tzv. delokalizovaná vazba π. Stabilita benzenu

Více

Chemie - Sexta, 2. ročník

Chemie - Sexta, 2. ročník - Sexta, 2. ročník Chemie Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Inovace bakalářského studijního oboru Aplikovaná chemie

Inovace bakalářského studijního oboru Aplikovaná chemie Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz Z.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Funkční

Více

Příklady k procvičování k bakalářské zkoušce z organické chemie KATA Pojmenujte:

Příklady k procvičování k bakalářské zkoušce z organické chemie KATA Pojmenujte: Příklady k procvičování k bakalářské zkoušce z organické chemie KATA Pojmenujte: a) b) c) d) H H H H K l l H l F 3 l l l H H H 2 H 2 H 2 H 2 H H == a H H == H==H H 2 H H apište vzorec pro: 2,3-dibrom-cyklopenta-1,3-dien,

Více

Karboxylové kyseliny

Karboxylové kyseliny Karboxylové kyseliny Učební text, Hb 2008 Obsahují jednu nebo více charakteristických karboxylových skupin COOH. Název vznikl kombinací karboxyl = karbonyl + hydroxyl Obecný vzorec např. R-COOH, HOOC-R-COOH,

Více

Chemie. 5. K uvedeným vzorcům (1 5) přiřaďte tvar struktury (A D) jejich molekuly. 1) CO 2 2) SO 2 3) SO 3 4) NH 3 5) BF 3.

Chemie. 5. K uvedeným vzorcům (1 5) přiřaďte tvar struktury (A D) jejich molekuly. 1) CO 2 2) SO 2 3) SO 3 4) NH 3 5) BF 3. Chemie 1. Analýzou vzorku bylo zjištěno, že vzorek o hmotnosti 25 g obsahuje 15,385 g mědi, 3,845 g síry a zbytek připadá na kyslík. Který empirický vzorec uvedeným výsledkům analýzy odpovídá? A r (Cu)

Více

Reaktivita oxosloučenin: Nukleofilní adice na karbonylovou skupinu Reakce vedle karbonylové skupiny Oxidace a redukce

Reaktivita oxosloučenin: Nukleofilní adice na karbonylovou skupinu Reakce vedle karbonylové skupiny Oxidace a redukce Názvosloví pokud je keton nebo aldehyd funkčnískupinou s nejvyššíprioritou (v praxi tedy obvykle jen kdyžv molekule neníobsažena karboxylováskupina) je uveden v koncovce, např. butan-2-on nebo butanal

Více

Odolnost GFK-produktů vůči prostředí

Odolnost GFK-produktů vůči prostředí Odolnost GFK-produktů vůči prostředí 2 A Acetaldehyd vše / neodolá neodolá neodolá Aceton 25 50 odolá s omezením odolá odolá Aceton 100 jede neodolá neodolá neodolá Anhydrid kyseliny octové vše 30 neodolá

Více

P Ř ÍRODOVĚ DECKÁ FAKULTA

P Ř ÍRODOVĚ DECKÁ FAKULTA OSTRAVSKÁ UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ORGANICKÁ CEMIE I ING. RUDOLF PETER, CSC. OSTRAVA 2003 Na této stránce mohou být základní tirážní údaje o publikaci. 1 OBSA PŘ EDMĚ TU Úvod... 3 1. Alkany...

Více

OCH/OC2. Hydroxyderiváty

OCH/OC2. Hydroxyderiváty OCH/OC2 Hydroxyderiváty 1 Voda alkoholy - ethery voda methanol (monoalkyl derivát vody) dimethylehter (dialkyl derivát vody) 2 Rozdělení Alkoholy (alifatické) Fenoly (aromatické) primární sekundární terciární!

Více

ALKOHOLY, FENOLY A ETHERY. b. Jaké zdroje cukru znáte a jak se nazývají produkty jejich kvašení?

ALKOHOLY, FENOLY A ETHERY. b. Jaké zdroje cukru znáte a jak se nazývají produkty jejich kvašení? ALKOLY, FENOLY A ETHERY Kvašení 1. S použitím literatury nebo internetu odpovězte na následující otázky: a. Jakým způsobem v přírodě vzniká etanol? Napište rovnici. b. Jaké zdroje cukru znáte a jak se

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto DUSÍKATÉ DERIVÁTY ITRSLUČEIY R CH 2 Ar Fyzikální vlastnosti skupenství barva kapalné nebo pevné bílá žlutá Chemické vlastnosti acidita u primárních

Více

HYDROXYDERIVÁTY UHLOVODÍKŮ

HYDROXYDERIVÁTY UHLOVODÍKŮ Na www.studijni-svet.cz zaslal(a): Nemám - Samanta YDROXYDERIVÁTY ULOVODÍKŮ - deriváty vody, kdy jeden z vodíkových atomů je nahrazen uhlovodíkovým zbytkem alkyl alkoholy aryl = fenoly ( 3 - ; 3 2 - ;

Více

Názvosloví uhlovodíků

Názvosloví uhlovodíků Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Říjen 2010 Mgr. Alena Jirčáková Varianty názvosloví: Triviální názvosloví tradiční, souvisí s výskytem

Více

AROMATICKÉ SLOUČENINY - REAKTIVITA TYPICKÉ REAKCE AROMATICKÝCH SLOUČENIN - SUBSTITUCE ELEKTROFILNÍ AROMATICKÁ

AROMATICKÉ SLOUČENINY - REAKTIVITA TYPICKÉ REAKCE AROMATICKÝCH SLOUČENIN - SUBSTITUCE ELEKTROFILNÍ AROMATICKÁ TYPICKÉ EAKCE AMATICKÝC SLUČENIN - SUBSTITUCE ELEKTFILNÍ AMATICKÁ + E E E - E mechanismus substituce elekrofilní aromatické komplex komplex produkt SE Ar E reakční koordináta C 3 + BF 4 3 C C 3 3 C aromatické

Více

Experimentální biologie Bc. chemie

Experimentální biologie Bc. chemie Experimentální biologie Bc. chemie 1. značte prvek s největší elektronegativitou: a) draslík b) chlor c) uhlík d) vápník e) fluor 3. Mezi p prvky nepatří: a) P b) As c) Fe d) B e) Si 4. Radioaktivní záření

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT VY_32_INOVACE_C.3.01 Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

Více

1)uhlovodík musí být cyklický, všechny atomy musí být v jedné rovině

1)uhlovodík musí být cyklický, všechny atomy musí být v jedné rovině Otázka: Areny Předmět: Chemie Přidal(a): I. Prokopová 3 podmínky: 1)uhlovodík musí být cyklický, všechny atomy musí být v jedné rovině 2) musí existovat minimálně dvě možnosti uspořádání π elektronů 3)

Více

Alkeny. Alkeny. Největšíprůmyslový význam majíethen (ethylen) a propen (propylen) jako suroviny pro další přeměny nebo pro polymerace

Alkeny. Alkeny. Největšíprůmyslový význam majíethen (ethylen) a propen (propylen) jako suroviny pro další přeměny nebo pro polymerace Alkeny Dvojná vazba je tvořena jednou vazbou sigma a jednou vazbou pí. Dvojná vazba je kratší než vazba jednoduchá a všechny čtyři atomy vázané na dvojnou vazbu leží v jedné rovině. Fyzikální vlastnosti

Více

Alkany. Typická reakce alkenů. Radikálová substituce. Průběh elektrofilní adice. Průběh elektrofilní adice. Průběh elektrofilní adice

Alkany. Typická reakce alkenů. Radikálová substituce. Průběh elektrofilní adice. Průběh elektrofilní adice. Průběh elektrofilní adice Alkany nepolární, nerozpustné ve vodě málo reaktivní dehydrogenace 3 3 2 = 2 2 Radikálová substituce Iniciace (vznik radikálu, homolytické štěpení vazby) l l l l Propagace (reakce radikálu s alkanem alkylový

Více

ALKANY. ený. - homologický vzorec : C n H 2n+2 2 -

ALKANY. ený. - homologický vzorec : C n H 2n+2 2 - ALKANY - nasycené uhlovodíky, řetězec otevřený ený - homologický vzorec : C n H 2n+2 - názvy zakončeny koncovkou an - tvoří homologickou řadu = řada liší šící se o stále stejný počet atomů - stále stejný

Více

PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011

PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011 Kód uchazeče:... Datum:... PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011 30 otázek maximum: 60 bodů čas: 60 minut 1. Napište názvy anorganických sloučenin: (4

Více

Organická chemie. názvosloví acyklických uhlovodíků

Organická chemie. názvosloví acyklických uhlovodíků Organická chemie názvosloví acyklických uhlovodíků Obsah definice vlastnosti organických sloučenin prvkové složen ení organických sloučenin vazby v molekulách org. sloučenin rozdělen lení organických sloučenin

Více

Halogenderiváty. Halogenderiváty

Halogenderiváty. Halogenderiváty Názvosloví Halogeny jsou v názvu vždy v předponě. Trichlormethan mátriviálnínázev CHLOROFORM Podle připojení halogenu je dělíme na primární sekundární a terciární Br Vazba mezi uhlíkem a halogenem je polarizovaná

Více

VY_32_INOVACE_29_HBENO5

VY_32_INOVACE_29_HBENO5 Alkany reakce Temacká oblast : Chemie organická chemie Datum vytvoření: 15. 7. 2012 Ročník: 2. ročník čtyřletého gymnázia (sexta osmiletého gymnázia) Stručný obsah: Výroba alkanů. Reakvita alkanů, důležité

Více

Testy k procvičení Základy organické chemie

Testy k procvičení Základy organické chemie 1. Které z uvedených vzorců představují organické sloučeniny? C 6 H 12 O 6 (A), Na 2 CO 3 (B), NH 2 CONH 2 (C), CuSO 4 (D), HCI 3 (E), CO (F), C 2 H 6 (G) a) ABCE b) ACDG c) ACEG d) ACFG 2. Typické vaznosti

Více

Alkoholy. Alkoholy. sekundární. a terciární

Alkoholy. Alkoholy. sekundární. a terciární Názvosloví pokud je alkohol jedinou funkční skupinou je uveden v koncovce, např. butan-2-ol pokud je v molekule jináfunkčnískupina, kterámápřed alkoholem přednost, je uveden v předponě, např. 2-hydroxybutanová

Více

Úvod Obecný vzorec alkoholů je R-OH.

Úvod Obecný vzorec alkoholů je R-OH. Alkoholy a fenoly Úvod becný vzorec alkoholů je R-. Názvosloví alkoholů a fenolů Běžná jména alkoholů se odvozují od alifatického zbytku připojeného k hydroxylové skupině, ke kterému se přidá slovo alkohol.

Více

Organická chemie pro biochemiky II část 14 14-1

Organická chemie pro biochemiky II část 14 14-1 rganická chemie pro biochemiky II část 14 14-1 oxidace a redukce mají v organické chemii trochu jiný charakter než v chemii anorganické obvykle u jde o adici na systém s dvojnou vazbou či štěpení vazby

Více

Struktura organických sloučenin

Struktura organických sloučenin Struktura organických sloučenin Vzorce: Empirický (stechiometrický) druh atomů a jejich poměrné zastoupení v molekule Sumární(molekulový) druh a počet atomů v molekule Strukturní které atomy jsou spojeny

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto FUNKČNÍ DEIVÁTY KABXYLVÝH KYSELIN X KABXYLVÉ KYSELINY funkční deriváty + H reakce na vazbě vodík kyslík hydroxylové skupiny reakce probíhající

Více

Karboxylová skupina vzniká připojením hydroxylové skupiny OH ke karbonylové skupině (oxoskupině) >C=O. Souhrnně

Karboxylová skupina vzniká připojením hydroxylové skupiny OH ke karbonylové skupině (oxoskupině) >C=O. Souhrnně Karboxylové kyseliny 1. Obecná charakteristika karboxylových kyselin Karboxylová skupina vzniká připojením hydroxylové skupiny OH ke karbonylové skupině (oxoskupině) >C=O. Souhrnně můžeme tuto skupinu

Více

Kyslíkaté deriváty uhlovodíků I

Kyslíkaté deriváty uhlovodíků I deriváty kyslíkaté hydrysloučeniny alkoholy Kyslíkaté deriváty uhlovodíků I ethery fenoly 1. ydrysloučeniny. Thioly. Ethery karbonylové sloučeniny karbylové sloučeniny aldehydy ketony 1. ydrysloučeniny

Více

Aromáty. Aromáty. Jak bylo uvedeno v kapitole o názvosloví, jinak nakreslená molekula není jiná látka, tj. Všechny uvedené obrázky jsou TOLUEN

Aromáty. Aromáty. Jak bylo uvedeno v kapitole o názvosloví, jinak nakreslená molekula není jiná látka, tj. Všechny uvedené obrázky jsou TOLUEN Pokud je konjugovaný systém kruhový, vede konjugace k tomu, že se zcela ztratírozdíly mezi jednotlivými atomy a vazbami (dvojná x jednoduchá). Aby byl systém aromatický, musíkroměvýše uvedených (je cyklický

Více

VLASTNOSTI ALKANŮ 2. RADIKÁLOVÁ SUBSTITUCE 3. ELIMINAČNÍ REAKCE VÝZNAMNÉ ALKANY. Substituční reakce. Sulfochlorace alkanů. Termolýza.

VLASTNOSTI ALKANŮ 2. RADIKÁLOVÁ SUBSTITUCE 3. ELIMINAČNÍ REAKCE VÝZNAMNÉ ALKANY. Substituční reakce. Sulfochlorace alkanů. Termolýza. Kromě CO 2 vznikají i saze roste svítivost Substituční reakce vazby: C C C H jsou nepolární => jsou radikálové S R...radikálová substituce 3 fáze... VLASTNOSTI ALKANŮ tady něco chybí... 2. RADIKÁLOVÁ SUBSTITUCE

Více

nenasycené uhlovodíky nestálé, přeměňují se na karbonyly

nenasycené uhlovodíky nestálé, přeměňují se na karbonyly Otázka: Alkoholy, fenoly, ethery a jejich sirné podoby Předmět: Chemie Přidal(a): VityVity Hydroxylové sloučeniny - deriváty uhlovodíků obsahující hydroxylovou skupinu -OH - dělí se na alkoholy hydroxylová

Více

Organická chemie. Lektor: Mgr. Miroslav Zabadal, Ph.D.

Organická chemie. Lektor: Mgr. Miroslav Zabadal, Ph.D. Přípravný kurz k přijp ijímacím m zkouškám m z chemie rganická chemie (2. část) (kurz CŽV) C Lektor: Mgr. Miroslav Zabadal, Ph.D. (zabadal@fch fch.vutbr.cz) 1 Chemické vazby v organických molekulách charakteristiky

Více

SADA VY_32_INOVACE_CH1

SADA VY_32_INOVACE_CH1 SADA VY_32_INOVACE_CH1 Přehled anotačních tabulek k dvaceti výukovým materiálům vytvořených Mgr. Danou Tkadlecovou. Kontakt na tvůrce těchto DUM: tkadlecova@szesro.cz Základy názvosloví anorganických sloučenin

Více

ANORGANICKÁ ORGANICKÁ

ANORGANICKÁ ORGANICKÁ EMIE ANORGANIKÁ ORGANIKÁ 1 EMIE ANORGANIKÁ Anorganické látky Oxidy: O, O 2.. V neživé přírodě.. alogenidy: Nal.. ydroxidy: NaO Uhličitany: ao 3... Kyseliny: l. ydrogenuhličitany: NaO 3. 2 EMIE ORGANIKÁ

Více

KARBOXYLOVÉ KYSELINY

KARBOXYLOVÉ KYSELINY KARBXYLVÉ KYSELINY kyslíkaté deriváty uhlovodíků v jejichž molekulách se vyskytuje jedna nebo více karboxylových skupin karboxylová skupina vzniká spojením karbonylové a hydroxylové skupiny rozlišujeme:

Více

Výukový materiál zpracován v rámci projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_INOVACE_CHE_410 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

3. ročník Vzdělávací obor - Člověk a příroda

3. ročník Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium Vyučovací předmět - Chemie 3. ročník Vzdělávací obor - Člověk a příroda Očekávané

Více

Charakteristika Teorie kyselin a zásad. Příprava kyselin Vlastnosti + typické reakce. Významné kyseliny. Arrheniova teorie Teorie Brönsted-Lowryho

Charakteristika Teorie kyselin a zásad. Příprava kyselin Vlastnosti + typické reakce. Významné kyseliny. Arrheniova teorie Teorie Brönsted-Lowryho Petra Ustohalová 1 harakteristika Teorie kyselin a zásad Arrheniova teorie Teorie Brönsted-Lowryho Příprava kyselin Vlastnosti + typické reakce Fyzikální a chemické Významné kyseliny 2 Látky, které ve

Více

CH 3 -CH 3 -> CH 3 -CH 2 -OH -> CH 3 -CHO -> CH 3 -COOH ethan ethanol ethanal kyselina octová

CH 3 -CH 3 -> CH 3 -CH 2 -OH -> CH 3 -CHO -> CH 3 -COOH ethan ethanol ethanal kyselina octová KARBOXYLOVÉ KYSELINY Karboxylové kyseliny jsou sloučeniny, v jejichž molekule je karboxylová funkční skupina: Jsou nejvyššími organickými oxidačními produkty uhlovodíků: primární aldehydy uhlovodíky alkoholy

Více

Jedná se o sloučeniny odvozené od uhlovodíků nebo heterocyklů náhradou jednoho nebo více atomů vodíku halogenem. , T/2 = 8,3 hod.

Jedná se o sloučeniny odvozené od uhlovodíků nebo heterocyklů náhradou jednoho nebo více atomů vodíku halogenem. , T/2 = 8,3 hod. . HALGENDEIVÁTY Jedná se o sloučeniny odvozené od uhlovodíků nebo heterocyklů náhradou jednoho nebo více atomů vodíku halogenem. =, l,, I ( Di a trihalogenderiváty mohou být: 0 At 85, T/ = 8, hod.) monotopické,

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í KARBOXYLOVÉ KYSELINY

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í KARBOXYLOVÉ KYSELINY I N V E S T I E D R Z V J E V Z D Ě L Á V Á N Í KARBXYLVÉ KYSELINY = deriváty uhlovodíků, které obsahují alespoň jednu... skupinu... skupina H H... skupina Názvosloví Nasycené monokarboxylové kyseliny

Více

Ethery, thioly a sulfidy

Ethery, thioly a sulfidy Ethery, thioly a sulfidy Úvod becný vzorec alkoholů je R--R. Ethery Názvosloví etherů Názvy etherů obsahují jména alkylových a arylových sloučenin ze kterých tvořeny v abecedním pořadí následované slovem

Více

1. Jeden elementární záporný náboj 1,602.10-19 C nese částice: a) neutron b) elektron c) proton d) foton

1. Jeden elementární záporný náboj 1,602.10-19 C nese částice: a) neutron b) elektron c) proton d) foton varianta A řešení (správné odpovědi jsou podtrženy) 1. Jeden elementární záporný náboj 1,602.10-19 C nese částice: a) neutron b) elektron c) proton d) foton 2. Sodný kation Na + vznikne, jestliže atom

Více

Substituční deriváty karboxylových kyselin

Substituční deriváty karboxylových kyselin Substituční deriváty karboxylových kyselin Vznikají substitucemi v, ke změnám v karboxylové funkční skupině. Poloha nové skupiny se často ve spojení s triviálními názvy označuje řeckými písmeny: Mají vlastnosti

Více

PROPEN - PŘEHLED VYUŽITÍ

PROPEN - PŘEHLED VYUŽITÍ PRPEN - PŘEHLED VYUŽITÍ polymery propandioly propylenkarbonát isopropanolaminy C 4 aldehydy alkoholy kyseliny jejich estery CH methyloxiran (propylenoxid) hydroformylace hydrokarbonylace + 2 isopropylbenzen

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Organická chemie, biochemie 3. ročník a septima 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný

Více

Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace

Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace VY_52_INOVACE_737 8. Chemie notebook Směsi Materiál slouží k vyvození a objasnění pojmů (klíčová slova - chemická látka, směs,

Více

!STUDENTI DONESOU! PET

!STUDENTI DONESOU! PET Důkaz prvků v organických sloučeninách (C, H, N, S, halogeny), vlastnosti organických sloučenin, pokusy se svíčkou sacharosa oxid měďnatý, pentahydrát síranu měďnatého oxid vápenatý hydroxid sodný, hydrogenuhličitan

Více

1. Složení a struktura atomu

1. Složení a struktura atomu 1. Složení a struktura atomu Atom: vývoj názorů na stavbu hmoty, modely atomu stavba atomového jádra kvantově-mechanický model atomu stavba elektronového obalu elektronová konfigurace atomů a iontů Radioaktivita:

Více

Dusíkaté deriváty. Rozdělení Názvosloví Vznik Reakce Významné dusíkaté látky

Dusíkaté deriváty. Rozdělení Názvosloví Vznik Reakce Významné dusíkaté látky Dusíkaté deriváty Rozdělení Názvosloví Vznik Reakce Významné dusíkaté látky Dusíkaté deriváty Nitrosloučeniny Aminy a mnoho dalších často významné biologické vlastnosti (NK, bílkoviny, alkaloidy) Nitrosloučeniny

Více

KARBONYLOVÉ SLOUČENINY

KARBONYLOVÉ SLOUČENINY řešení KARBNYLVÉ SLUČENINY = deriváty uhlovodíků, jejichž molekuly obsahují funkční skupinu: karbonylovou = oxoskupinu Proto sloučeniny:.. karbonylové = oxosloučeniny X Y Pzn. X a Y ve vzorci představuje

Více

Organická chemie 1 (pro posluchače kombinovaného studia oboru Speciální chemickobiologické obory)

Organická chemie 1 (pro posluchače kombinovaného studia oboru Speciální chemickobiologické obory) UNIVERZITA PARDUBIE Fakulta chemickotechnologická Katedra organické chemie rganická chemie 1 (pro posluchače kombinovaného studia oboru Speciální chemickobiologické obory) Ing. Petr Šimůnek, Ph. D. ZÁKLADNÍ

Více

Repetitorium anorganické a organické chemie Ch51 volitelný předmět pro 4. ročník

Repetitorium anorganické a organické chemie Ch51 volitelný předmět pro 4. ročník Repetitorium anorganické a organické chemie Ch51 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru

Více

Aromáty a reakce na aromatických systémech

Aromáty a reakce na aromatických systémech Aromáty a reakce na aromatických systémech ázvosloví K vyjadřování názvů lze použít buď názvosloví systematické nebo tzv. triviální. V následující tabulce jsou uvedeny názvy některých organických látek.

Více

Autor: Tomáš Galbička Téma: Alkany a cykloalkany Ročník: 2.

Autor: Tomáš Galbička  Téma: Alkany a cykloalkany Ročník: 2. Alkany uhlovodíky s otevřeným řetězcem a pouze jednoduchými vazbami vazby sigma, největší výskyt elektronů na spojnici jader v názvu mají koncovku an Cykloalkany uhlovodíky s uzavřeným řetězcem a pouze

Více

Tabulka chemické odolnosti

Tabulka chemické odolnosti Acetaldehyd (vodný roztok), 40% + o x + o + x x o x x o + o + + + o Acetamid (vodný roztok), 50% + + 1 x + + 1 + x x x + 1 x x x + x + 1 x + x + Kyselina octová, 2% + + + + + + + + o + + + + o + x x o

Více

NaLékařskou.cz Přijímačky nanečisto

NaLékařskou.cz Přijímačky nanečisto alékařskou.cz Chemie 2016 1) Vyberte vzorec dichromanu sodného: a) a(cr 2 7) 2 b) a 2Cr 2 7 c) a(cr 2 9) 2 d) a 2Cr 2 9 2) Vypočítejte hmotnostní zlomek dusíku v indolu. a) 0,109 b) 0,112 c) 0,237 d) 0,120

Více