Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Rozměr: px
Začít zobrazení ze stránky:

Download "Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám"

Transkript

1 Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit Ostrv

2 Druhy rovinných rámů Rámy : ) prvoúhlé () b) kosoúhlé (b), (c) c) rozvětvené (b) d) otevřené (), (b), (c) Příkldy jednoduchého otevřeného rovinného rámu Obr. 5.. / str. 6 Zákldní vlstnosti rovinného rámu / 5

3 Druhy rovinných rámů Rámy : ) prvoúhlé () b) kosoúhlé (b), (c) c) rozvětvené (c) d) uzvřené (), (b), (c) Příkldy jednoduchého uzvřeného rovinného rámu Obr. 5.. / str. 6 Zákldní vlstnosti rovinného rámu / 5

4 Druhy rovinných rámů Rozvětvený rám Obr. 5.. / str. 6 Zákldní vlstnosti rovinného rámu 4 / 5

5 Druhy rovinných rámů, rámy sdružené Rámy sdružené - vznikjí seřzením několik otevřených jednoduchý ch rámů vedle sebe Příkldy prvoúhlého kosoúhlého rovinného sdruženého rámu Obr / str. 6 Zákldní vlstnosti rovinného rámu 5 / 5

6 Druhy rovinných rámů Vierendeelův rámový nosník seřzením Ptrový několik rám vzniká uzvřených rámových příhrd vedle sebe dostneme seřzením rámových příhrd nd sebe Vierendeelův nosník ptrový rám Obr / str. 7 Zákldní vlstnosti rovinného rámu 6 / 5

7 Silová metod, jednoduchý otevřený rám První krok silové metody Obr / str. 7 Jednoduchý otevřený rám 7 / 5

8 Silová metod, jednoduchý otevřený rám Různé způsoby vytvoření zákldní stticky určité soustvy ve druhém kroku silové metody Obr / str. 8 Jednoduchý otevřený rám 8 / 5

9 Silová metod, jednoduchý otevřený rám Náhrd odebrných vzeb složkmi rekcí nebo interkcí ve třetím kroku silové metody Obr / str. 8 Jednoduchý otevřený rám 9 / 5

10 Silová metod, jednoduchý otevřený rám Přetvárné (deformční) podmínky pro silové ztížení ztížení změnou tep loty : Obrázková rovnice znázorňující rozkld n nultý stv jednotkové stvy Obr / str. 8 Jednoduchý otevřený rám 0 / 5

11 Silová metod, jednoduchý otevřený rám Přetvárné podmínky (knonické rovnice) lze zpst pro n s krát stticky neurčitou konstrukci ve tvru : ns i, k k i,0 (pro i,...n s ) k Výpočet deformčních součinitel ů : m l j m l j i k Ni N k dxj dxj m je počet prutů rámové I A i,k j 0 Pltí m i,0 j 0 i, k k, i m i,0 t j 0 l j i l j N i j I j 0 dx t j 0, j j 0 Výpočet ztěžovcích členů od silového ztížení : m dx j 0 j l j Ni m j l j N A 0 j t j 0 dx Výpočet ztěžovcích členů od oteplení : i j t h, j j dx j konstrukce / 5

12 Silová metod, jednoduchý otevřený rám, popuštění podpor Přetvárné podmínky pro popuštění podpor: d d d n s k i, k k i,0 d i pro i,..., n s / 5

13 Silová metod, jednoduchý otevřený rám, popuštění podpor Popuštění podpor jejich d b * b w u * b * b d ( ( R ( H w b w u d ) směry : w u b ) ) ( ), w u w b ( (dopr.), ), u b l v ( (dopr.) ), u b ( ), Jednoduchý otevřený rám Výpočet ztěžovcích členů od popuštění podpor Obr / str. / 5

14 4 / 5 Silová metod, jednoduchý otevřený rám, popuštění podpor d d d Po doszení: v u u l w w v u l w u d w d d b b b b b b je,,,,,

15 Upozornění Prut c - d n obr. 5. je podepřen proti posunu ve směru osy prutu. Je nezbytné počítt s vlivem normálovýc h sil n přetvoření prutu c - d. V opčném přípdě, což se čsto oprávněně dělá, je soustv knonickýc h rovnic singulární. Dvě vzby v ose téhož prutu Obr. 5.. / str. Jednoduchý otevřený rám 5 / 5

16 Příkld 5., zdání I =0,00m, I =I =0,004m l, c sin l Zdání příkldu 5. znázornění prvních tří kroků silové metody,,8,5m,8 rctg rctg(, ), 59,0,8, 0,8, cos 0,6,5,5 0 Obr. 5.. / str. Jednoduchý otevřený rám 6 / 5

17 Příkld 5., řešení Dílčí stvy průběhy ohybových momentů v dílčích stvech příkldu 5. R R R 0 0kN( ), kn( 5,7,8 kn( 5,7 R b0 ), R ), R b b 0, Jednoduchý otevřený rám H 0 kn( 5,7,8 kn( 5,7 0 ), H ), H 0 ( ) Obr. 5.. / str. 7 / 5

18 8 / 5 Jednoduchý otevřený rám Příkld 5., pokrčování řešení 64989,4, , ,6 ) 0,684 (0,658,5 6 0,00. 76,5,6,7684 0,004.,5,7684 0,00. 50,4,6 0,004 0,658,7684 ) 0,684 (0,658,5,7684 0,00. 04, 0,004,6 0,658 0,684 )) (0,658,5 0684,658,5 (0,658 0, Deformční podmínky:

19 Příkld 5., řešení lineárních rovnic Deformční podmínky: ,, 50,4, 76,5, ,6, ,4 04, 50,4 50,4 76,5 4585, ,4 0 04, ( 64989,4) 50, , , 76,5 50,4 50,4 4570,5 04, ( 64989,4) ( 4585,6) 50, , 76,5 50,4 50,4 4570,5,84 kn 6,906 kn Jednoduchý otevřený rám 9 / 5

20 R H R H b b R R H Příkld 5., dokončení, výpočet rekcí průběhu složek vnitřních sil, obr.5.4, str.4,8 0 R R 0 (,84) ( 6,557) 40,8kN( ) 5,7 5,7 b0 0 R H,84 knm(doprv) b R H b 6,557 kn( ) 0 0 ( 6,557) 6,557 kn( ),8 0 (,84) ( 6,557) 0,8kN( ) 5,7 5,7 Jednoduchý otevřený rám 0 / 5

21 Jednoduchý uzvřený rám Odebrání vnitřních vzeb jejich náhrd interkcemi Obr / str. 5 Jednoduchý uzvřený rám / 5

22 Jednoduchý uzvřený rám-příkld 5. Stupeň sttické neurčitost i n s I konst. Zdání příkldu 5. znázornění prvních tří kroků silové metody Obr / str. 6 Jednoduchý uzvřený rám / 5

23 Příkld 5., ztěžovcí stvy Rekce nenulové pouze v "0". ztěžovcí m stvu R z R z0 9, 666kN( ) R bz R bz0 0, kn( ) R x R x0 8kN( ) Složky vni třních sil se v příkldu vynášejí ke spodním vláknům příčlí k prvým vláknům sloupů Dílčí stvy průběhy ohybových momentů v dílčích stvech příkldu 5. Obr / str. 7 Jednoduchý uzvřený rám / 5

24 4 / 5 Příkld 5., sestvení knonických rovnic I I I I I I I I 78,7 (,7)),6 (,7),7,7) (,7 (,7) ( 0,088,6) 5,4,6,6,6,6,6) ( ( 0 0,40,6)) ( 5,4,6,6 ),6 ( (,6 8 ),6 ) ( ) (,6 5,4 ) ( ) ( (5, Výpočet deformčních součinitelů:

25 Příkld 5., sestvení knonických rovnic, pokrčování Výpočet ztěžovcích členů: I I I 8,8 ( 8,8 (,7 ( 54,9,7 54,9,7,7 (8,8 54,9 ( 8,8) ( ),7 ( ),6 ) 54,9 ( 8,8),6,7,6,6 (,6)) 54,9 8,8 (,7),7 54,9 ( 8,8) ) 6 8,95 I 798, I,6 (,7)) 09,95 I Doszení 8,4 0 do knonickýc h rovnic :, 4 0, , 8,95 798,0 09,95 Řešení knonickýc h rovnic :,09kNm, N N 8,60kN, V V, 667kN ec ed ec ed ec ed 5 / 5

26 6 / 5 Jednoduchý uzvřený rám Příkld 5., dokončení Průběhy sloţek vnitřních sil můţeme určit: ) Z podmínek rovnováhy při znlosti rekcí stticky neurčitých veličin b) Superpozicí jednotlivých ztěţovcích stvů po vynásobení sloţek vnitřních sil kţdého ztěţovcího stvu (vyjm 0. stvu) příslušnou stticky neurčitou veličinou. Ad b): x x x x x x x x x x x x x x x N N N N V V V V V N

27 Příkld 5., dokončení =-,09kNm, =-8,60kNm, =-,667kN x c c 0 x x 8,8 (,09) 8,60 ( 7,59k Nm (s loup) x b x,6),667 ( 7,59k Nm,7) bd bd 0 (,09) ( ),557k Nm 8,60 b (,6),667 (,7),557k Nm c c 0 (,09) 4,99k Nm () 8,60 (0),667 cd 4,99k Nm (,7) dc dc 0 (,09) () 8,60 9,409k Nm db (0),667 ( 9,409k Nm,7) mx m x 54,9 (,09) 6,4k Nm ( ) 8,60 (,6),667 (0) Jednoduchý uzvřený rám 7 / 5

28 Příkld 5., dokončení výpočtu ohybových momentů =-,09kNm, =-8,60kNm, =-,667kN x c c 0 x x 8,8 (,09) 8,60 ( 7,59k Nm (s loup) x b x,6),667 ( 7,59k Nm,7) bd bd 0 (,09) ( ),557k Nm 8,60 b (,6),667 (,7),557k Nm c c 0 (,09) 4,99k Nm () 8,60 (0),667 cd 4,99k Nm (,7) dc dc 0 (,09) () 8,60 9,409k Nm db (0),667 ( 9,409k Nm,7) mx m x 54,9 (,09) 6,4k Nm ( ) 8,60 (,6),667 (0) Jednoduchý uzvřený rám 8 / 5

29 Příkld 5., jiný výpočet ohybových momentů =-,09kNm, =-8,60kNm, =-,667kN cd c c c lépe : c c b b b,09 8,6,667,7 8,60,6 7,59kN 7,59kNm ce cd ce c b c,09,667,7 4,99kNm 8,6 8,6 V b,559knm V N ec ec,7 7,59kNm N ec 4,99kNm,6,6 4,99 8,6 8,60,6 5,4 0,7 7,59, 5,4 0,7 Při zkráceném výpočtu musíme znát sloţky vnitřních sil (npř. V b ) Jednoduchý uzvřený rám 9 / 5

30 Příkld 5., dokončení Výsledné rekce, interkce průběhy vnitřních sil v příkldu 5. Obr / str. 9 Jednoduchý uzvřený rám 0 / 5

31 Rámová ocelová konstrukce průmyslové hly Rozpětí 0,5 m Ukázky rámových konstrukcí / 5

32 Hl pro výrobu komponent jderných elektráren, Vítkovice Půdorys 0 x 0 m Jeřáby o nosnosti t Poddolovné území Ukázky rámových konstrukcí / 5

33 Rámová ocelová konstrukce dvojhlí, Vítkovice Rozpětí 0 4 m Jeřáby o nosnosti t Poddolovné území Ukázky rámových konstrukcí / 5

34 Sportovní hl Slvi, Prh Ukázky rámových konstrukcí 4 / 5

35 Administrtivní budov, Glsgow, UK Prostorový ocelový rám se ztuţením Ukázky rámových konstrukcí 5 / 5

36 Administrtivní budov, Glsgow, UK Prostorový ocelový rám se ztuţením Ukázky rámových konstrukcí 6 / 5

37 Administrtivní budov, Glsgow, UK Detil prostorového rámu se ztuţením Ukázky rámových konstrukcí 7 / 5

38 Sn Sebstin, Auditorium, Špnělsko Prostorový rám Ukázky rámových konstrukcí 8 / 5

39 Sn Sebstin, Auditorium, Špnělsko Ukázky rámových konstrukcí 9 / 5

40 Kongresové centrum, Brněnské výstviště Přiznná nosná prostorová rámová konstrukce Ukázky rámových konstrukcí 40 / 5

41 Fkultní dětská nemocnice, Brno Nosná prostorová rámová konstrukce s převislými konci, projekt OK Ukázky rámových konstrukcí 4 / 5

42 Zákldní škol, Brumov Bylnice Rámová konstrukce se ztuţením, projekt OK Ukázky rámových konstrukcí 4 / 5

43 Aul, VŠB-TU Ostrv ŢB prostorový rám Ukázky rámových konstrukcí 4 / 5

44 Aul, VŠB-TU Ostrv Detil ŢB prostorového rámu Ukázky rámových konstrukcí 44 / 5

45 Rdio Svobodná vrop, Prh Vierendeelův (rámový) nosník z roku 968: Půdorys 59x8 m 6 pilířů Ukázky rámových konstrukcí 45 / 5

46 Rdio Svobodná vrop, Prh Vierendeelův (rámový) nosník z roku 968: Půdorys 59x8 m 6 pilířů Ukázky rámových konstrukcí 46 / 5

47 Rdio Svobodná vrop, Prh Vierendeelův (rámový) nosník z roku 968: Půdorys 59x8 m 6 pilířů Ukázky rámových konstrukcí 47 / 5

48 Silniční most, Krviná Lázně Drkov Ţelezobetonový obloukový most z roku 95: Vierendeelův (rámový) nosník Unikátní příčné ztuţení Výšk 6,5 m Délk mostovky 55,8 m Šířk 6,5 m Ukázky rámových konstrukcí Foto: Ing. Rent Zdřilová 48 / 5

49 Silniční most, Krviná Lázně Drkov Ţelezobetonový obloukový most z roku 95 Ukázky rámových konstrukcí Foto: Ing. Rent Zdřilová 49 / 5

50 Silniční most, Krviná Lázně Drkov Ţelezobetonový obloukový most z roku 95 Ukázky rámových konstrukcí Foto: Ing. Rent Zdřilová 50 / 5

51 Silniční most, Krviná Lázně Drkov Ukázky rámových konstrukcí 5 / 5

52 Silniční most, Krviná Lázně Drkov Foto: Ing. Rent Zdřilová Ukázky rámových konstrukcí 5 / 5

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

Výpočet vnitřních sil přímého nosníku

Výpočet vnitřních sil přímého nosníku Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil přímého nosníku nitřní síly přímého vodorovného nosníku prostý nosník konzol nosník s převislým koncem Ktedr stvení mechniky Fkult stvení, ŠB

Více

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Letní semestr. Stavební statika, 1.ročník bakalářského studia

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Letní semestr. Stavební statika, 1.ročník bakalářského studia Stvení sttik, 1.ročník klářského studi Stvení sttik Úvod do studi předmětu n Stvení fkultě VŠB-TU Ostrv Letní semestr Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerzit Ostrv Stvení sttik -

Více

Téma 5 Lomený a zakřivený nosník

Téma 5 Lomený a zakřivený nosník Stavební statika, 1.ročník bakalářského studia Téma 5 Lomený a zakřivený nosník Rovinně lomený nosník v rovinné úloze Rovinně lomený nosník v příčné úloze Prostorově lomený nosník Katedra stavební mechaniky

Více

Výpočet vnitřních sil přímého nosníku III: šikmý nosník

Výpočet vnitřních sil přímého nosníku III: šikmý nosník Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

Téma 7 Smyková napětí v ohýbaných nosnících

Téma 7 Smyková napětí v ohýbaných nosnících Pružnost a plasticita,.ročník bakalářského studia Téma 7 Smková napětí v ohýbaných nosnících Základní vtah a předpoklad řešení Výpočet smkového napětí vbraných průřeů Dimenování nosníků namáhaných na smk

Více

Téma 1 Nosné lano. Statika stavebních konstrukcí I., 2.ročník bakalářského studia

Téma 1 Nosné lano. Statika stavebních konstrukcí I., 2.ročník bakalářského studia Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 1 Nosné lano Pojem nosného lana Obecné vlastnosti příčně zatíženého nosného lana Lano zatížené svislými bodovými silami (vláknový polygon)

Více

II. 5. Aplikace integrálního počtu

II. 5. Aplikace integrálního počtu 494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu

Více

Složené soustavy v rovině, stupně volnosti

Složené soustavy v rovině, stupně volnosti Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové

Více

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004. STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou

Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou Příkld 1: SPŘAŽEÝ SLOUP (TRUBKA VYPLĚÁ BETOE) ZATÍŽEÝ OSOVOU SILOU Posuďte oboustrnně kloubově uložený sloup délk L 5 m, který je entrik ztížen silou 1400 kn. Sloup tvoří trubk Ø 45x7 z oeli S35 vplněná

Více

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný

Více

Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB

Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB 1 Obsah: 1. statické posouzení dřevěného krovu osazeného na ocelové vaznice 1.01 schema konstrukce 1.02 určení zatížení na krokve 1.03 zatížení kleštin (zatížení od 7.NP) 1.04 vnitřní síly - krokev, kleština,

Více

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavebních konstrukcí

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavebních konstrukcí Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavebních konstrukcí 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního

Více

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

ý č Í É Ě Í š Č č ý Ú ť š č ú š ý š ď č č ý Š Š č č Á ý ť ť Í ý ť č Ť É Ě Í š Č Č Ý ť Í ý ý č Ý É Ě Í č š ý ň č ý Í ď Í ú Ě Í č É Ě Í š č č Í ý ý úč č É Ě Í ý č ň š č ý ď ť ť ž ý č č É š Ě Í č š Ě š čď

Více

Zjednodušená styčníková metoda

Zjednodušená styčníková metoda Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ h Předmět: Ročník: Vytvořil: Dtum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 11. SRPNA 2013 Název zprcovného celku: SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ Ke sloţenému nmáhání dojde tehdy, vyskytnou-li se součsně

Více

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky.

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky. SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ Hilti. Splní nejvyšší nároky. Spřhovcí prvky Technologie spřhovcích prvků spočívá v připevnění prvků přímo k pásnici ocelového nosníku, nebo připevnění k pásnici přes

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

STATICKÉ POSOUZENÍ K AKCI: RD TOSCA. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB

STATICKÉ POSOUZENÍ K AKCI: RD TOSCA. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB STATICKÉ POSOUZENÍ K AKCI: RD TOSCA Obsah: 1) statické posouzení krovu 2) statické posouzení stropní konstrukce 3) statické posouzení překladů a nadpraží 4) schodiště 5) statické posouzení založení stavby

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce

Více

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015 2015 STAVBA STUPEŇ Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem DSP STATICKÝ POSUDEK srpen 2015 ZODP. OSOBA Ing. Jiří Surovec POČET STRAN 8 Ing. Jiří Surovec istruct Trabantská 673/18, 190

Více

Témata profilové části ústní maturitní zkoušky z odborných předmětů

Témata profilové části ústní maturitní zkoušky z odborných předmětů Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů Stavební konstrukce Adresa.: Střední průmyslová

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ. .8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité

Více

LANGERŮV TRÁM MOST HOLŠTEJN

LANGERŮV TRÁM MOST HOLŠTEJN LANGERŮV TRÁM MOST HOLŠTEJN Ing. Jiří Španihel, Firesta - Fišer, rekonstrukce, stavby a.s. Konference STATIKA 2014, 11. a 12. června POPIS KONSTRUKCE Most pozemní komunikace přes propadání potoka Bílá

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ

VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ ZADÁNÍ Navrhněte most z prefabrikovaných předepnutých nosníků IST. Délka nosné konstrukce mostu je 30m, kategorie komunikace na mostě je S 11,5/90.

Více

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá. TRIN_STT_P11.doc STTIK - SOUOR PŘNÁŠK 11. Prutové soustavy, základní pojmy, metody řešení. Teoreticky je PRUTOVÁ SOUSTV definována jako soustava složená z tuhých prutů, které jsou navzájem spojeny ideálními

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

Téma 6 Rovinné nosníkové soustavy

Téma 6 Rovinné nosníkové soustavy Stavební statika, 1.ročník bakalářského studia Téma 6 Rovinné nosníkové soustavy Spojitý nosník s vloženými klouby Trojkloubový rám a oblouk Trojkloubový rám a oblouk s táhlem Katedra stavební mechaniky

Více

Ocelobetonové konstrukce

Ocelobetonové konstrukce Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB

STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN Obsah: 1) statické posouzení krovu 2) statické posouzení stropní konstrukce 3) statické posouzení překladů a nadpraží 4) schodiště 5) statické posouzení založení

Více

Numerická analýza dřevěných lávek pro pěší a cyklisty

Numerická analýza dřevěných lávek pro pěší a cyklisty Ing. Jana Bártová, Helika, a.s. Konference STATIKA 2014, 12. a 13. června Lávky Lávka přes Roklanský potok v Modravě 1 Lávka přes Roklanský potok v Modravě Technické parametry: Lávka převádí běžeckou trať

Více

STAVEBNÍ ÚPRAVY ZÁMEČNICKÉ DÍLNY V AREÁLU FIRMY ZLKL S.R.O. V LOŠTICÍCH P.Č. 586/1 V K.Ú. LOŠTICE

STAVEBNÍ ÚPRAVY ZÁMEČNICKÉ DÍLNY V AREÁLU FIRMY ZLKL S.R.O. V LOŠTICÍCH P.Č. 586/1 V K.Ú. LOŠTICE Stavba : Objekt : STAVEBNÍ ÚPRAVY ZÁMEČNICKÉ DÍLNY V AREÁLU FIRMY ZLKL S.R.O. V LOŠTICÍCH P.Č. 586/1 V K.Ú. LOŠTICE - Dokumentace : Prováděcí projekt Část : Konstrukční část Oddíl : Ocelové konstrukce

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad) KERAMICKÉ STROPY HELUZ MIAKO Tabulky statických únosností stropy HELUZ MIAKO Obsah tabulka č. 1 tabulka č. 2 tabulka č. 3 tabulka č. 4 tabulka č. 5 tabulka č. 6 tabulka č. 7 tabulka č. 8 tabulka č. 9 tabulka

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4.

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4. h MECHNIK + y 2 F Vy F 2y 1 FV V F 1y F 3y F3 3 - x F 1x F 3x F 4x 0 F 2x F 4y F4 F Vx + x F FRy 4 - y FRy F l FRy C D FRy I 2 III 6 V 1 3 5 7 D II 4 IV C c Z Z Ing. Rdek Šeek 2012 MECHNIK 1. OSH 2. MECHNIK

Více

Téma 4 Výpočet přímého nosníku

Téma 4 Výpočet přímého nosníku Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK Sada č. /10.7.01 FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK 01 01 OBOR: POZEMNÍ STAVBY (S) Část A TEST 1. Má-li spojitá náhodná veličina X distribuční

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Matematika II: Aplikované úlohy

Matematika II: Aplikované úlohy Mtemtik II: Aplikovné úlohy Zuzn Morávková Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - plikovné úlohy Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Princip virtuálních posunutí (obecný princip rovnováhy)

Princip virtuálních posunutí (obecný princip rovnováhy) SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical

Více

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled Petr Hájek, Ctislav Fiala Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

STATICKÉ POSOUZENÍ. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB

STATICKÉ POSOUZENÍ. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB STATICKÉ POSOUZENÍ OBSAH STATICKÉ POSOUZENÍ OCELO-DŘEVĚNÉ STŘEŠNÍ KONSTRUKCE 1.01 SCHÉMA KONSTRUKCE, POPIS ŘEŠENÍ 1.02 ZATÍŽENÍ STŘECHY, ZATĚŽOVACÍ STAVY 1.03 VÝPOČET VNITŘNÍCH SIL - DŘEVO 1.04 VÝPOČET

Více

Atic, s.r.o. a Ing. arch. Libor Žák

Atic, s.r.o. a Ing. arch. Libor Žák Atic, s.r.o. a Ing. arch. Libor Žák Riegrova, 62 00 Brno Sdružení tel. 2 286, 60 323 6 email: zak.apk@arch.cz Investor : Stavba : Objekt : Jihomoravský kraj Brno, Žerotínovo nám. 3/, PSČ 60 82 KOMPETENČNÍ

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví 5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými

Více

Rovinné nosníkové soustavy II

Rovinné nosníkové soustavy II Prázý Prázý Prázý Ství sttik,.roík kláského stui Rovié osíkové soustvy II Trojklouový rám (osík) Trojklouový olouk (osík) Trojklouový rám s táhlm Trojklouový olouk s táhlm Ktr ství mhiky Fkult ství, VŠB

Více

Prostorové konstrukce - rošty

Prostorové konstrukce - rošty Prostorové konstrukce - rošty a) princip působení roštu, b) uspořádání nosníků v pravoúhlé c) kosoúhlé, d) šestiúhelníkové, e) trojúhelníkové osnově, f) příhradový rošt 14.4.2010 Nosné konstrukce III 1

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

PŘEHLED SVISLÉHO POHYBLIVÉHO ZATÍŽENÍ SILNIČNÍCH MOSTŮ

PŘEHLED SVISLÉHO POHYBLIVÉHO ZATÍŽENÍ SILNIČNÍCH MOSTŮ PŘEHLED SVISLÉHO POHYBLIVÉHO ZATÍŽENÍ SILNIČNÍCH MOSTŮ 1 MOSTNÍ ŘÁD C.K. MINISTERSTVA ŽELEZNIC Z ROKU 1887 Pohyblivé zatížení mostů I. třídy (dynamické účinky se zanedbávají). Alternativy : 1) Čtyřkolové

Více

4.6 Složené soustavy

4.6 Složené soustavy 4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu

Více

STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE

STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE Datum: 01/2016 Stupeň dokumentace: Dokumentace pro stavební povolení Zpracovatel: Ing. Karel

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013 OBOR: POZEMNÍ STAVBY (S) Sada č. 1/20.6.2012 Část A TEST 1. Má-li spojitá náhodná veličina X distribuční

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

15. ŽB TRÁMOVÉ STROPY

15. ŽB TRÁMOVÉ STROPY 15. ŽB TRÁMOVÉ STROPY Samostatné Společně s deskou trámového stropu Zásady vyztužování h = l/10 až l/20 b = h/2 až h/3 V každém rohu průřezu musí být jedna vyztužená ploška Nosnou výztuž tvoří 3-5 vložek

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013 FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013 OBOR: MANAGEMENT STAVEBNICTVÍ TEST A.1 MATEMATIKA 1) Je-li F distribuční funkce spojité náhodné veličiny

Více

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců Stvení sttik, 1.ročník klářského studi Tém 9 Těžiště Těžiště rovinných čr Těžiště jednoduchých rovinných orců Těžiště složených rovinných orců Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerit

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

http://www.tobrys.cz STATICKÝ VÝPOČET

http://www.tobrys.cz STATICKÝ VÝPOČET http://www.tobrys.cz STATICKÝ VÝPOČET REVITALIZACE CENTRA MČ PRAHA - SLIVENEC DA 2.2. PŘÍSTŘEŠEK MHD 08/2009 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY:

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Ktedr geotechniky podzemního stvitelství Modelování v geotechnice Princip metody mezní rovnováhy (prezentce pro výuku předmětu Modelování v geotechnice) doc. RNDr. Ev Hrubešová, Ph.D. Inovce studijního

Více

Vodorovné protipožární konstrukce > Podhledy Interiér/Exteriér > Vzhled s utěsněnou spárou a hlavičkami vrutů

Vodorovné protipožární konstrukce > Podhledy Interiér/Exteriér > Vzhled s utěsněnou spárou a hlavičkami vrutů Technický průvodce Vodorovné protipožární konstrukce > Rozsh pltnosti N zákldě výsledků zkoušek, které jsou zde uvedené, lze plikovt desky CETRIS v těchto typech protipožárních vodorovných konstrukcí:

Více

ROBUSTNÍ METODA NÁVRHU ŽELEZOBETONOVÝCH DESEK PRUŽNOU ANALÝZOU METODOU KONEČNÝCH PRVKŮ

ROBUSTNÍ METODA NÁVRHU ŽELEZOBETONOVÝCH DESEK PRUŽNOU ANALÝZOU METODOU KONEČNÝCH PRVKŮ 20. Betonářské dny (2013) Sborník Sekce ČT1B: Modelování a navrhování 2 ISBN 978-80-87158-34-0 / 978-80-87158-35-7 (CD) ROBUSTNÍ METODA NÁVRHU ŽELEZOBETONOVÝCH DESEK PRUŽNOU ANALÝZOU METODOU KONEČNÝCH

Více

Materiály ke 12. přednášce z předmětu KME/MECHB

Materiály ke 12. přednášce z předmětu KME/MECHB Materiály ke 12. přednášce z předmětu KME/MECH Zpracoval: Ing. Jan Vimmr, Ph.D. Prutové soustavy Prutové soustavy představují speciální soustavy těles, které se uplatňují při navrhování velkorozměrových

Více

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010 1 Jaká máme zatížení? 2 Co je charakteristická hodnota zatížení? 3 Jaké jsou reprezentativní hodnoty proměnných zatížení? 4 Jak stanovíme návrhové hodnoty zatížení? 5 Jaké jsou základní kombinace zatížení

Více

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34. I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce

Více

Oxidačně-redukční reakce (Redoxní reakce)

Oxidačně-redukční reakce (Redoxní reakce) Seminář z nlytické chemie idčně-redukční rekce (Redoxní rekce) RNDr. R. Čbl, Dr. Univerzit Krlov v Prze Přírodovědecká fkult Ktedr nlytické chemie Definice pojmů idce částice (tom, molekul, ion) ztrácí

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( )

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( ) Program předmětu YMVB 1. Modelování konstrukcí (17.2.2012) 1.1 Globální a lokální modelování stavebních konstrukcí Globální modely pro konstrukce jako celek, lokální modely pro návrh výztuže detailů a

Více

NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁMU

NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁMU NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁU Navrhněte ohybovou výztuž do železobetonového nosníku uvedeného na obrázku. Kromě vlastní tíhy je nosník zatížen bodovou silou od obvodového pláště ostatním stálým rovnoměrným

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Konstrukční uspořádání koleje

Konstrukční uspořádání koleje Konstrukční uspořádání koleje Otto Plášek, doc. Ing. Ph.. Ústv železničních konstrukcí stveb Tto prezentce byl vytvořen pro studijní účely studentů. ročníku mgisterského studi oboru Geodézie krtogrfie

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

předběžný statický výpočet

předběžný statický výpočet předběžný statický výpočet (část: dřevěné konstrukce) KOUNITNÍ CENTRU ATKY TEREZY V PRAZE . Základní inormace.. ateriály.. Schéma konstrukce. Zatížení 4. Návrh prvků 5.. Střecha 5.. Skleněná asáda KOUNITNÍ

Více

Statické tabulky profilů Z, C a Σ

Statické tabulky profilů Z, C a Σ Statické tabulky profilů Z, C a Σ www.satjam.cz STATICKÉ TABULKY PROFILŮ Z, C A OBSAH PROFIL PRODUKCE..................................................................................... 3 Profi ly Z,

Více

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní

Více

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. 7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více