26. listopadu a 10.prosince 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "26. listopadu a 10.prosince 2016"

Transkript

1 Integrální počet Přednášk listopdu 10.prosince 2016

2 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

3 K čemu integrální počet? určení funkce, je-li znám její derivce neurčitý integrál výpočet plochy, která je vymezen grfem funkce f (x) n intervlu,, b osou nezávislé proměnné x, délky křivky, objemu, fyzikálních veličin - moment,... Úloh: zdné funkci f budeme hledt funkci F tkovou, by pltilo: F = f. Doporučený text

4 Neurčitý integrál Definice. Necht funkce f (x) je definovná n intervlu I. Funkce F (x) se nzývá primitivní k funkci f (x) n I, jestliže pltí F (x) = f (x) pro kždé x I. Množin všech primitivních funkcí k funkci f (x) n I se nzývá neurčitý integrál z funkce f (x) znčí se f (x)dx: f (x)dx = F (x) Vět. Necht funkce F (x) je primitivní k funkci f (x) n intervlu I. Pk kždá jiná primitivní funkce k funkcif (x) n I má tvr F (x) + c, kde c R. Vět. Je-li funkce f spojitá n intervlu I, pk n tomto intervlu existuje lespoň jedn primitivní funkce k funkci f.

5 Vět. Necht n intervlu I existují integrály f (x)dx g(x)dx. Pk n I existují tké integrály (f (x) ± g(x))dx f (x)dx, kde R je libovolná konstnt, pltí: (f (x) ± g(x))dx = f (x)dx ± g(x)dx, f (x)dx = f (x)dx Neurčitý integrál ze součtu (rozdílu) je součtem (rozdílem) neurčitých integrálů, konstntu lze z neurčitého integrálu vytknout. Přímo z definice neurčitého integrálu vyplývá pltnost rovností [ f (x)dx] = f (x) F (x) dx = F (x) + c, c R

6 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

7 Zákldní integrční metody Tbulkové integrály Metod per prtes Substituční metod

8 Tbulkové integrály 1 2 0dx = c dx = x + c 3 x α dx = xα+1 α c α R, α dx = ln x + c x 5 e x dx = e x + c 6 x dx = x ln + c, > 0 7 sin xdx = cos x + c 8 cos xdx = sin x + c 1 9 dx = rctgx + c 1 + x dx = rcsinx + c 1 x cos 2 dx = tgx + c x Příkldy ( x ) dx x x 3 1 x 1 dx x 4 1 x + 2 dx ( 3 ) 2 x x dx x 2 x x 2 dx dx sin 2 x cos 2 x cos 2x cos 2 x dx cotg 2 xdx

9 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

10 Substituční metod Připomenutí: (F [ϕ(x)]) = F [ϕ(x)] ϕ (x) Vět. Necht funkce f (u) má n otevřeném intervlu J primitivní funkci F (u), funkce ϕ(x) má derivci n otevřeném intervlu I pro libovolé x I je ϕ(x) J. Pk má složená funkcef [(ϕ(x))]ϕ (x) n intervlu I primitivní funkci pltí f [(ϕ(x))]ϕ (x) dx = F [ϕ(x)] + c Použití: Oznčíme u = ϕ(x). Rovnost u = ϕ(x) diferencujeme: u = du dx = 1, ϕ (x) = dϕ(x) dx Nhrdíme ϕ(x) u, ϕ (x) dx du: f [(ϕ(x))]ϕ (x) dx = ϕ(x) = u ϕ (x)dx = du = f (u) du

11 Příkldy : substituční metod sin x cos xdx dx x ln x dx 1 x 2 rccosx e x e x + 2 dx sin 2xdx e 5x dx dx x dx 4x x 2

12 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

13 Metod per-prtes Připomenutí: (u(x) v(x)) = u (x) v(x) + u(x) v (x) u(x) v (x)dx = u(x) v(x) u (x) v(x)dx Příkldy 1. (2x + 3) cos x dx 2. x 2 ln x dx 3. x ln 2 x dx 4. ln x dx rctgx dx e x cos x dx cos(ln x)x dx 2x sin 2 x dx

14 Rozkld n prciální zlomky Rcionální funkce je podíl dvou mnohočlenů. Kždou neryze lomenou rcionální funkci (stupeň čittele je větší než stupeň jmenovtele nebo je mu roven) lze dělením převést n součet mnohočlenu ryze lomené rcionální funkce ( stupeň čittele je menší než stupeň jmenovtele). Prciální zlomky A, k N, α, A R (x α) k Mx + N (x 2 + px + q) k, k N, M, N, p, q R, p2 4q < 0

15 Rozkld n prciální zlomky - příkldy Necht R(x) P(x) je rcionální ryze lomená funkce. Q(x) Podle rozkldu jmenovtele Q(x) = (x α 1 ) k 1... (x α r ) kr (x 2 +p 1 x +q 1 ) l 1... (x 2 +p s x +q s ) ls rozkládáme R(x) n součet prciálních zlomků: k násobnému reálnému kořenu α hledáme A i : A 1 x α,..., A k (x α) k l násobným komplexně sdruženým kořenům (x + px + q): M 1 x + N 1 x 2 + px + q,..., M l x + N l (x 2 + px + q) l 2x x x 2 6x + 5 dx 3. x dx dx 3x x 2 (x 1) dx 4. x 3 1 dx

16 Integrály obshující goniometrické funkce: R(cos x, sin x) cos m x sin n x dx, m, n Z spoň jedno z čísel m, n je liché: substituce: (m je liché) sin x = t resp. (n je liché) cos x = t cos x dx = dt resp. sin x dx = dt, sin 2 x = 1 cos 2 x cos 2 x = 1 sin 2 x obě čísl jsou sudá úprv: sin 2 x = Příkldy 1. cos 5 x sin 2 x dx 2. 1 cos 2x, cos 2 x = sin x dx, x (0, π) 1 + cos 2x 2 cos 2 x dx univerzální substituce t = tg x, x ( π, π), 2 x = rctg t, dx = 2 2t 1 t2 dt, sin x =, cos x = 1 + t2 1 + t2 1 + t 2

17 Integrály obshující odmocniny R(x, s x): substituce x = t s x 2 + x + 1 Příkld: x + x dx R(x, s x + b): substituce x + b = t s R(x, x 2 + bx + c): Eulerovy substituce, goniometrické substituce

18 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv z následujících podmínek: (1) f (x) je monotónní, (2) f (x) je spojitá, (3) f (x) je omezená má nejvýše konečný počet bodů nespojitosti. Potom existuje určitý integrál b f (x)dx. Výpočet určitého integrálu: Newtonov - Leibnitzov formule Necht funkce f (x) je integrovtelná n intervlu, b necht F (x) je její primitivní funkce. Potom pltí: b f (x) dx = F (b) F ()

19 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

20 Aplikce určitého integrálu Geometrické plikce Obsh rovinné množiny Délk křivky Objem rotčního těles Obsh pláště rotčního těles Fyzikální plikce hmotnost, sttický moment, souřdnice těžiště, moment setrvčnosti...

21 Výpočet obshu (plochy) rovinných útvrů Necht je funkce f (x) integrovtelná n intervlu, b, je n něm nezáporná. Pk pro obsh křivočrého lichoběžník ohrničeného shor grfem funkce f (x), přímkmi x =, x = b osou x pltí P = b f (x) dx. Je-li funkce f (x) n intervlu, b nekldná, pro obsh křivočrého lichoběžník ohrničeného zdol grfem funkce f (x), přímkmi x =, x = b osou x pltí P = b f (x) dx. Necht jsou funkce f (x) g(x) integrovtelné pltí g(x) f (x) pro kždé x, b. Pk pro obsh křivočrého lichoběžník ohrničeného zdol grfem funkce g(x), shor grfem funkce f (x) přímkmi x =, x = b pltí P = b (f (x) g(x)) dx.

22 Příkldy Vypočtěte obsh rovinného obrzce ohrničeného 1 y = 4 x 2 ; y = 0 2 xy = 4; x + y = 5 3 y 2 = 2x + 1, x y 1 = 0 4 y 4, x 2 y, x 2 4y

23 Prmetricky zdná funkce Necht funkce f je dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), přičemž funkce ϕ(t) ψ(t)jsou spojité pro t α, β. Je-li funkce ϕ(t) ryze monotonní má spojitou derivci n intervlu α, β, přičemž ϕ(α) = ϕ(β) = b, pk pro obsh křivočrého lichoběžník ohrničeného shor grfem funkce f, přímkmi x =, x = b osou x pltí β P = ψ(t)ϕ (t) dt. Příkldy 1 x = 2 sin t, y = 2 cos t, 0 t π; 2 x = 2t t 2, y = 2t 2 t 3, 0 t 2 α

24 Délk oblouku křivky Necht je funkce f (x) definovná n intervlu <, b > má zde spojitou derivci. Pk délk této křivky s = b 1 + [f (x)] 2 dx. Necht funkce f je dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), přičemž funkce ϕ(t) ψ(t)jsou spojité pro t α, β, přičemž funkce ϕ(t) ψ(t) mjí spojité derivci n intervlu α, β Pk délk této křivky Příkldy s = β 1 y = ln x, 3 x 8 α [ϕ (t)] 2 + [ψ (t)] 2 dt. 2 x = 2 cos t, y = 2 sin t, 0 t π

25 Objem rotčního těles Necht je funkce f (x) spojitá nezáporná n intervlu <, b >. Pk rotční těleso, které vznikne rotcí křivočrého lichoběžník ohrničeného shor funkcí f (x), osou x přímkmi x =, x = b kolem osy x, má objem V = π b f 2 (x) dx Pro výpočet objemu rotčního těles, které vznikne rotcí oblsti ohrničené křivkmi g(x) f (x) kolem osy x pro x <, b > použijeme vzth V = π b f 2 (x) dx π b g 2 (x) dx = π b [ f 2 (x) g 2 (x) ] dx Zcel nlogicky můžeme určit objem rotčního těles, jehož plášt vznikl rotcí spojité křivky x = h(y), y < c, d > kolem osy y: d V = π h 2 (y) dy c Příkld: y = x 2, x = y 2 kolem osy x; kolem osy y

26 Obsh pláště rotčního těles Necht je funkcef (x) spojitá nezáporná n intervlu <, b > má zde spojitou derivc if (x). Pk pro obsh rotční plochy vzniklé rotcí oblouku křivkyy = f (x) kolem osy x pltí S = 2π b f (x) 1 + [f (x)] 2 dx Necht je funkce f dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), t α, β, přičemž funkce ϕ(t), ψ(t) mjí spojité derivce n intervlu α, β funkceψ(t) je nezáporná n intervlu α, β. Pk pro obsh plochy, která vznikne rotcí grfu funkce f kolem osy x pltí β S = 2π ψ(t) [ϕ (t)] 2 + [ψ (t)] 2 dt α

27 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

28 Křivk zdná prmetricky Necht je křivk dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), t α, β, přičemž funkce ϕ(t), ψ(t) mjí spojité derivce n intervlu α, β. Je-li délková hustot ρ křivky konstntní, pk má křivk hmotnost β m = ρ [ϕ (t)] 2 + [ψ (t)] 2 dt α Pro sttické momenty pltí β S x = ρ ψ(t) [ϕ (t)] 2 + [ψ (t)] 2 dt S y = ρ α β α ϕ(t) [ϕ (t)] 2 + [ψ (t)] 2 dt Momenty setrvčnosti této křivky dostneme ze vzthů: β I x = ρ ψ 2 (t) [ϕ (t)] 2 + [ψ (t)] 2 dt I y = ρ α β α ϕ 2 (t) [ϕ (t)] 2 + [ψ (t)] 2 dt Těžiště T = (ξ, η) má souřdnice ξ = S y m, η = S x m

29 Křivk zdná explicitně Necht je hmotná křivk určená explicitní rovnicíy = f (x) se spojitou derivci f (x) n intervlu <, b > konstntní délkovou hustotou ρ. Pk má křivk hmotnost m = ρ Pro sttické momenty pltí: S x = ρ S y = ρ b b b 1 + [f (x)] 2 dx f (x) 1 + [f (x)] 2 dx x 1 + [f (x)] 2 dx Momenty setrvčnosti této křivky dostneme ze vzthů: b I x = ρ f 2 (x) 1 + [f (x)] 2 dx I y = ρ b x [f (x)] 2 dx Těžiště T = (ξ, η) má souřdnice ξ = S y m, η = S x m

30 Těžiště moment setrvčnosti rovinné oblsti Necht je hmotná rovinná oblst ohrničen křivkmi g(x) f (x), kde g(x) f (x) n intervlu, b. Pk hmotnost této oblsti s konstntní plošnou hustotou ρ je m = ρ Pro sttické momenty pltí: S x = ρ 1 2 S y = ρ b b b [f (x) g(x)] dx [f 2 (x) g 2 (x)] dx x[f (x) g(x)] dx Momenty setrvčnosti této rovinné oblsti dostneme ze vzthů: S x = ρ 1 3 S y = ρ b b [f 3 (x) g 3 (x)] dx x 2 [f (x) g(x)] dx Těžiště T = (ξ, η) má souřdnice ξ = S y m, η = S x m

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná čísl C komplení čísl: { + jy :, y R}, j R \ Q ircionální čísl, π, e, ) Tvrzení Mezi kždými dvěm

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík Zákldy vyšší mtemtiky(nejen) pro rboristy Robert Mřík 2.září2014 Ústv mtemtiky lesnická dřevřská fkult Mendelov univerzit v Brně E-mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik Podpořeno projektem

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou MATMATIKA (NJN) PRO KRAJINÁŘ A NÁBYTKÁŘ Robert Mřík 26. říjn 2012 KAT. MATMATIKY FAKULTA LSNICKÁ A DŘVAŘSKÁ MNDLOVA UNIVRZITA V BRNĚ -mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik ABSTRAKT. Předkládný

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

CVIČENÍ Z MATEMATIKY I

CVIČENÍ Z MATEMATIKY I Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav fyziky CVIČENÍ Z MATEMATIKY I Sbírka příkladů Andrea Kotrlová Opava Obsah Příklady k opakování středoškolské látky. Úprava algebraických

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Cyklometrické funkce

Cyklometrické funkce Cyklometrické funkce Definice. Cyklometrické funkce jsou funkce arcsin(x) (čteme arkussinus x), arccos(x) (čteme arkuskosinus x), arctg(x) (čteme arkustangens x) a arccotg(x) (čteme arkuskotangens x),

Více

Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016

Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ. strana ze 36 Šárka Hošková Jaromír Kuben Pavlína Račková Vytvořeno v rámci projektu Operačního programu Rozvoje

Více

Základní poznatky z matematiky

Základní poznatky z matematiky Zákldní pozntky z mtemtiky Obsh. Zákldní pozntky z mtemtiky.... Číselné obory..... Celá čísl..... Reálná čísl.... Odmocniny.... Mocniny... 5.. Mocniny se zákldem 0... 5.. Mocniny s přirozeným mocnitelem...

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school Technická univerzit v Liberci FAKULTA PŘÍRODOVĚDNĚHUMANITNÍ A PEDAGOGICKÁ Ktedr: Studijní progrm: Studijní obor: Ktedr mtemtiky didktiky mtemtiky N750 Učitelství pro zákldní školy Učitelství fyziky pro.

Více

R e á l n á č í s l a - R

R e á l n á č í s l a - R Č Í S E L N É M N O Ž I N Y R e á l n á č í s l - R R c i o n á l n í č í s l - Q Ircionální čísl π ;,99 C e l á č í s l - Z Seznm některých mtemtických smbolů znček kulté ; hrnté ; úhlové ;{ složené závork

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

WICHTERLOVO GYMNÁZIUM, OSTRAVA-PORUBA. Matematika MATURITNÍ OTÁZKY

WICHTERLOVO GYMNÁZIUM, OSTRAVA-PORUBA. Matematika MATURITNÍ OTÁZKY WICHTERLOVO GYMNÁZIUM, OSTRAVA-PORUBA Matematika MATURITNÍ OTÁZKY Ostrava 2008 Tomáš Vejpustek OBSAH 1 Obsah 1 Výrazy a jejich úpravy 8 1.1 Mocniny a odmocniny........................ 8 1.1.1 Umocňování

Více

Porovnání výsledků analytických metod

Porovnání výsledků analytických metod Metdický lit 1 EURCHEM-ČR 212 Editr: Zbyněk Plzák (plzk@iic.c.cz) Prvnání výledků nlytických metd Chrkterizce výknnti nlytické měřící metdy je jedním z důležitých znků nlytickéh měřicíh ytému, zejmén pr

Více

Gaussovská prvočísla

Gaussovská prvočísla Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, 658 70 Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium

Více

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách. MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky.

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky. SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ Hilti. Splní nejvyšší nároky. Spřhovcí prvky Technologie spřhovcích prvků spočívá v připevnění prvků přímo k pásnici ocelového nosníku, nebo připevnění k pásnici přes

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN: 978-80-87035-94-8

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více