nestacionární děj - průběh charakterizují časově proměnné veličiny

Rozměr: px
Začít zobrazení ze stránky:

Download "nestacionární děj - průběh charakterizují časově proměnné veličiny"

Transkript

1 MECHNICKÉ KMITÁNÍ

2 MECHNICKÉ KMITÁNÍ (OSCILCE) esacioáí ěj - půběh chaakeizují časově poměé veliči epeioický peioický ahamoický hamoický vuceé kmi vlasí kmi pohb hmoého bou (sousav HB ebo ělesa), při ěmž bo epřekočí koečou vzáleos o zv. ovovážé poloh v ovovážé poloze jsou všech síl působící a HB avzájem ve saické ovováze poku se opakuje půběh kmiavého pohbu po sejém časovém ievalu T (peioě) kmiavý peioický ěj

3 chaakeisické veliči lze vjáři ve vau ψ ( ) ψ ( ), mt ke m,,,3, hamoické kmi: ( ) si( ω ϕ ) ψ fekvece (kmioče) uává, koliká se kmi ebo jiý peioický ěj opakuje za jeoku času jeoka: s - Hz f T kmiající objek se azývají osciláo ejjeoušší jsou lieáí osciláo, při ichž se hmoý bo pohbuje po přímce (apř. ěleso a pužiě) Oscilace mohou mí ůzou fzikálí posau: mechaické, elekomageické, elekomechaické oscilace.

4 . VOLNÝ NETLUMENÝ HRMONICKÝ OSCILÁTOR - zojem kmiáí je hamoický osciláo jeouchý aslačí (lieáí) elasický osciláo - chaakeisika osciláou: hmoos závaží m, uhos puži k (přepoklááme, že pužia má zaebaelou hmoos opoi závaží, keé lze považova za hmoý bo) l l l l F P F G F P ovovážá poloha x mg k l F G F v mg k( l ) mg k l k k

5 le. Newoova zákoa: po -ové souřaice veliči: ) DYNMICKÝ POPIS KMITŮ POHYBOVÁ ROVNICE F ma F F P k Fp ma ma k m k k ke m vlasí úhlová fekvece osciláou ω p m k m ω k k ω πf f, T π m π m ω m k

6 B) KINEMTICKÝ POPIS KMITŮ ROVNICE VÝCHYLKY - ovice výchlk je řešeím pohbové ovice: si ( ω ϕ ) ke: okamžiá výchlka maximálí možá výchlka ampliua výchlk (bo vau) ( ) siϕ ϕ počáečí výchlka počáečí fáze ϕ ω ϕ okamžiá fáze pohbu počáečí pomík po

7 okamžiá výchlka: si si ω ( ω ϕ ), ke ϕ ( ϕ ) si ω, ke ϕ π chlos kmiů: v ω ( ω ϕ ) ampliua chlosi v a a ω cos v ω max zchleí kmiů: ω si( ω ϕ ) ampliua zchleí a max ω

8 C) FÁZOVÝ ROZDÍL -mezi ůzými veličiami popisujícími oéž kmiáí - mezi sejými veličiami popisujícími vě ůzá kmiáí ϕ ϕ ϕ je-li ϕ, π, 4π..., sejá fáze veliči (esp. kmiáí) je-li ϕ π, 3π, 5π..., opačá fáze veliči (esp. kmiáí) PŘÍKLDY STNOVENÍ FÁZOVÉHO ROZDÍLU:. okamžiá výchlka a chlos hamoického kmiáí si max cos ( ω ϕ ) ( ω ϕ ) v v - fázový ozíl mezi ěmio veličiami je. okamžié výchlk vou hamoických kmiáí π si ω π si ω 4 - fázový ozíl mezi ěmio kmi je ϕ π ϕ π 4

9 D) GRFICKÉ VYJÁDŘENÍ fázoový iagam časový iagam x FÁZOR: oující veko v oviě x, mající počáek v počáku sousav souřaic élka fázou opovíá ampliuě veliči, keou přesavuje půmě fázou o svislé os () je ove okamžié hooě aé veliči úhel, keý svíá fázo s vooovou osou je ove okamžié fázi éo veliči

10 ( ω ϕ ), ke ϕ si π si ω cosω siω

11 E) ENERGIE KMITŮ u hamoických kmiů se peioick měí kieická eegie v poeciálí eegii pužosi a aopak poeciálí eegie pužosi je číselě ova páci, keou vkoáme při vchýleí osciláou z ovovážé poloh E P F ( k ) E p k si k ( ω ϕ ) mω kieická eegie (pohbová): E K E k ( ω ϕ ) mv mω cos k cos ( ω ϕ )

12 ZÁKON ZCHOVÁNÍ MECHNICKÉ ENERGIE plaí u elumeého kmiáí ( ) ( ) ( ) ( ) ( ) ( ). cos si si cos cos kos k E k E E E k E k m mv E K P P K ϕ ω ϕ ω ϕ ω ϕ ω ϕ ω ω Celková mechaická eegie osciláou: k E

13 PŘÍKLD: Hmoý bo kmiá hamoick s ampliuou. Při jaké výchlce je jeho kieická eegie ova eegii poeciálí?

14 . TLUMENÝ OSCILÁTOR - ampliua kmiů s časem expoeciálě klesá - pohb v opoujícím posřeí, opoová síla v F ) POHYBOVÁ ROVNICE. Newoův pohbový záko: F F ma F P po -ové souřaice: b m k b m m k m m k m v k ma ω ω vlasí úhlová fekvece osciláou součiiel lumeí ω b

15 B) ROVNICE VÝCHYLKY vlasí úhlová b je řešeím pohbové ovice: e ( ω ) ampliua lumeého kmiáí: si ϕ e b úhlová fekvece lumeého kmiáí: ω ω b fekvece elumeých kmiů po b osáváme elumeé kmi s peioou T T > T oba kmiu se lumeím polužuje

16 akiické lumeí: b >ω apeioický ěj bω bω kiické lumeí: b ω ejchlejší z apeioických ějů pokiické lumeí: b <ω peioický ěj elumeý pohb lumeý peioický pohb

17 pokiické lumeí: b <ω peioický ěj úbek celkové mechaické eegie

18 CHRKTERISTICKÉ VELIČINY TLUMENÝCH KMITŮ a) úlum (kosaí, a čase ezávislá hooa): λ b) logaimický ekeme úlumu: δ l λ bt -b e -b( T ) e e bt c) elaxačí oba ampliu: ampliua klese a e iu : τ b ) peioa lumeých kmiů: T π ω ω π b

19 PŘÍKLD: Za s vkoá čásice kmiů, ampliua se přiom zmeší,78ká. Učee: a) koeficie úlumu b) logaimický ekeme úlumu c) poměou čás úbku eegie za peiou

20 3. VYNUCENÉ KMITY vuceé vější buící silou, keá se s časem peioick měí velikos vucující síl H F V Ω si ampliua buící síl osciláo kmiá v mu buící síl a) pohbová ovice le. NPZ: V o P F F F ma F po -ové souřaice: h b Ω si ω F h m H b m m k H m m m k m H k m H v k ma Ω Ω Ω si si si ω

21 ehomogeí ifeeciálí ovice. řáu: b ω hsi Ω OBECNÉ ŘEŠENÍ: SOUČET obecého řešeí homogeí ovice (bez pavé sa) a paikuláího řešeí ehomogeí ovice (kopíuje pavou sau) e b ( ω ϕ ) si( Ω γ ) si ampliua uceých kmiů γ počáečí fáze uceých kmiů zakmiáváí sousav lumeé kmi hamoické kmi usáleé kmiáí sousav

22 b ovice výchlk e ( ω ϕ ) si( Ω γ ),ϕ,γ ( Ω) jsou iegačí kosa si získáme osazeím o pohbové ovice mpliua uceých kmiů: m ( ω Ω) 4b Ω F Počáečí fáze uceých kmiů: (fázový posu kmiů a uící síl) gγ bω ω Ω mpliua uceých kmiů závisí a fekveci uící síl: ( Ω)

23 zakmiáváí sousav usáleé kmiáí sousav V pví fázi zakmiáváí sousav mohou výchlk překoči maximálí výchlku usáleých vuceých kmiů sousav!!!

24 MPLITUDOVÁ REZONNCE -sav osciláou, k ampliua uceých kmiů je maximálí -asává při Ω ω b ezoačí úhlová fekvece osciláou Pavá ezoace: v ieálím osciláou bez lumeí b Ω ω Ω Ω ω b F mbω F Ω ezoačí fekvece maximálí hooa ezoačí ampliu V paxi b<<ω Ω ω

25 REZONNČNÍ KŘIVK MPLITUDY

26 Výchlka i eegie začě aůsají i při epaé vucující síle: E m k

27 SUPERPOZICE HRMONICKÝCH KMITŮ sklááí kmiů u osciláoů sjeím supěm volosi lze ealizova je sklááí kmiů éhož směu řešeí aalické (počeí), gafické či geomeické (pomocí časového esp. fázoového iagamu), ebo expeimeálí izochoí kmi: kmi sejé fekvece ( a e i peio aizochoí kmi ozkla kmiáí

28 . SUPERPOZICE IZOCHRONNÍCH HRMONICKÝCH KMITŮ TÉHOŽ SMĚRU -mějme N izochoích hamoických kmiů: ( ) si ke,,n ( ω ϕ ) - výsleé kmiáí: N N si si ( ) ω ϕ ( ω ϕ )

29 Př. po vojici izochoích sejosměých kmiů Gafické řešeí uveeého poblému: cos ( ϕ ) ϕ ϕ acg siϕ cosϕ siϕ cosϕ

30 DISKUSE MPLITUDY max a) maximálí ampliua kmiů: plaí za přepoklau, že fázový ozíl ϕ ϕ, π, 4... π zv. KMITÁNÍ SE STEJNOU FÁZÍ b) miimálí ampliua kmiů: max plaí za přepoklau, že fázový ozíl ϕ ϕ π, 3π, 5... π zv. KMITÁNÍ S OPČNOU FÁZÍ je-li, je výsleá ampliua kmiáí se vzájemě vuší

31 . SUPERPOZICE NIZOCHRONNÍCH HRMONICKÝCH KMITŮ TÉHOŽ SMĚRU -aizochoí kmi mají ůzé fekvece ( ) si ( ω ϕ ) -výsleé kmiáí N () () si( ω ϕ ) N N ( cosϕ siω siϕ cosω) ZÁKLDNÍ pomíka peioičosi: ω T m π T π ω m ω, eboť T ω T,m,,3, EKVIVLENTNÍ pomíka peioičosi: ω m ω m T T zv. souměřielé peio (fekvece)

32 Výsleé kmi buou peioické (ale obecě ehamoické) je eh, kž poíl peio a fekvecí skláaých hamoických kmiů je á poměem celých klaých čísel. Splěí pomíek peioičosi: Výsleé kmiáí: () si( ω ϕ ) N pom je výsleý ěj hamoický s úhlovou fekvecí ω m

33 Supepozice aizochoích hamoických kmiů se souměřielými fekvecemi: RÁZY (ZÁZNĚJE)

34 3. SUPERPOZICE HRMONICKÝCH KMITŮ RŮZNÉHO SMĚRU -ejjeoušší přípa po sklááí vou izochoích kmiů vzájemě kolmých (ve směu souřaých os x a ) o výchlkách: x x ( ) si( ω ϕ ) () si( ω ϕ ) paameické ovice výsleého oviého kmiáí převeďme a obecou ovici křivk (elimiací paameu čas): x siω cosϕ cosω siϕ siω cosϕ cosω siϕ ( siϕ ) ( cosϕ ) ( siϕ ) ( cosϕ ) sečeme ovice

35 ROVNICE TRJEKTORIE VÝSLEDNÉHO KMITÁNÍ x x cos ϕ ( ϕ ϕ ) si ( ϕ ) obecá ovice elips -sře elips vpočáku souřaic -její os souměosi obecě esplývají se souřaými osami -os leží v oviě (x,) -hlaví osa smeie je ochýlea o os x o úhel α gα cos ( ϕ ϕ )

36 DISKUSE: x x a) ϕ ϕ kπ ke k,,, ± ± x lieáí hamoické kmi (elipsa přechází v přímku) π b) ϕ ϕ kπ x kuhové kmi (HB se pohbuje ovoměě po kužici)

37 Jsou-li skláaá kmiáí eizochoí a peio jsou v poměu celých čísel, osáváme jejich složeím Lissajousov obazce.

38 KYVDL

39 FYZICKÉ KYVDLO kažé zavěšeé ěleso o hmoosi m oáčivé kolem vooové pevé os ěžišě je po osou oáčeí ve vzáleosi mome sevačosi vzhleem k éo ose je J vieálím přípaě při malých úhlových výchlkách poukuje volé elumeé oačí hamoické kmi θ θ 4,5

40 Po vchýleí ělesa z ovovážé poloh se vací zpě vlivem momeu íhové síl: M mgh siθ mghθ Dle pohbové ovice M Jε osáváme: θ θ J mghθ mgh θ J vlasí úhlová fekvece ω Pohbová ovice fzického kvala po malé výchlk: θ ωθ Vlasí oba kmiu: T π J mgh

41 moel fzického kvala MTEMTICKÉ KYVDLO HB o hmoosi m zavěšeý a ehmoém vlákě élk l J ml, x l T ml π π mgl -eukovaá élka fzického kvala: aková élka maemaického kvala, keé má sejou obu kmiu jako aé fzické kvalo. l g

42 TORZNÍ KYVDLO při vchýleí vziká vaý silový mome T π J κ M κθ ozí uhos (uhos ve zkuu)

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

DYNAMIKA časový účinek síly Impuls síly. 2. dráhový účinek síly mechanická práce W (skalární veličina)

DYNAMIKA časový účinek síly Impuls síly. 2. dráhový účinek síly mechanická práce W (skalární veličina) DYNAMIKA 2 Působením síly na čásici se obecně mění její pohybový sav. Síla působí vždy v učiém časovém inevalu a záoveň na učiém úseku ajekoie s. 1. časový účinek síly Impuls síly 2. dáhový účinek síly

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Obsah 1.Rozklad podle vlastních tvaru kmitu... 2 2.Výpočtové modely... 2 3. kozistentni matice hmotnosti... 2 4.Rayleigho utlum/podíl... 3 5.

Obsah 1.Rozklad podle vlastních tvaru kmitu... 2 2.Výpočtové modely... 2 3. kozistentni matice hmotnosti... 2 4.Rayleigho utlum/podíl... 3 5. Obsah Rozklad podle vlasích vau kmiu Výpočové modely 3 kozisei maice hmoosi 4Rayleigho ulum/podíl 3 5 řešeí seismicky amáhaé kosukce / seismicia 3 6 Hamoické buzeí 4 7 meody řešeí úlumu - log dekeme, polovičí

Více

asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia :

asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia : Dmk I, 3. předášk Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm

Více

Křivočarý pohyb bodu.

Křivočarý pohyb bodu. Křočý pohb bodu. Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

23. Mechanické vlnění

23. Mechanické vlnění 3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze

Více

MECHANICKÉ KMITÁNÍ TLUMENÉ

MECHANICKÉ KMITÁNÍ TLUMENÉ MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt

Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt DALŠÍ TYPY VLN Iotozvukové vly (elektostatiké ízkofekvečí vly) jsou to podélé vly podobé klasikému zvuku v plyu ω γ kt k M B s = = plazma zvuk pomalý po elektoy, yhlý po ioty hustota elektoů je v každém

Více

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011 Přijíací zkoušky do avazujícího agiseského sudia čiesví fyziky po supeň ZŠ a čiesví fyziky po SŠ po akadeický ok / ) Při akceeačích závodech sauje závodí auoobi z kidu a ěří se čas, za keý uazí dáhu 4

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy

Více

Dynamický model prostorového lanového manipulátoru a jeho řízení Obor Inženýrská Mechanika a Mechatronika

Dynamický model prostorového lanového manipulátoru a jeho řízení Obor Inženýrská Mechanika a Mechatronika ČVU FKUL SROJNÍ Úsav mechaik DIPLOMOVÁ PRÁCE Damický model posoového laového maipuláou a jeho říeí Obo Ižeýská Mechaika a Mechaoika Paha HOSSY Cossi lidé Hugues ob. Půmslový obo Výhod-Nevýhod Výhod Věší

Více

Kolmost rovin a přímek

Kolmost rovin a přímek Kolmost rovin a přímek 1.Napište obecnou rovnici roviny, která prochází boem A[ 7; ;3] a je kolmá k přímce s parametrickým vyjářením x = + 3 t, y = t, z = 7 t, t R. Řešení: Hleanou rovinu si označíme α:

Více

3.1.5 Složené kmitání

3.1.5 Složené kmitání 315 Složené kmitání Předpoklady: 3104 Pokus: Dvě pružiny zavěsíme vedle sebe, na obě dáme závaží Spodní konce obou pružin spojíme gumovým vláknem (velmi pružným, aby ho bylo možno prodloužit malou silou)

Více

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu

Více

Kmity a mechanické vlnění. neperiodický periodický

Kmity a mechanické vlnění. neperiodický periodický rozdělení časově proměnných pohybů (dějů): Mechanické kmitání neperiodický periodický ne(an)harmonický harmonický vlastní kmity nucené kmity - je pohyb HB (tělesa), při němž HB nepřekročí konečnou vzdálenost

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha. Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní

Více

β. Potom dopadající výkon bude

β. Potom dopadající výkon bude Učebí ex k předášce UFY Feselovy vzoce a jevy a ozhaí dvou posředí II Odazvos a popusos Ve vakuu je plošá husoa oku zářeí dáa Poygovým vekoem S c ε E B a zářvos (W/m je defováa jako časová sředí hodoa

Více

2. ZÁKLADY KINEMATIKY

2. ZÁKLADY KINEMATIKY . ZÁKLDY KINEMTIKY Kinemaika se zabýá popisem pohbu čásice nebo ělesa, aniž sleduje příčinné souislosi. Jedním ze základních lasnosí pohbu je, že jeho popis záleží na olbě zažného ělesa ( souřadnicoého

Více

je dána vzdáleností od pólu pohybu πb

je dána vzdáleností od pólu pohybu πb 7_kpta Tyč tvaru le obrázku se pohybuje v rohu svislé stěny tak, že bo A se o rohu (poloha A 0 ) vzaluje s konstantním zrychlením a A 1. m s. Počáteční rychlost bou A byla nulová. Bo B klesá svisle olů.

Více

2 VEDENÍ TEPLA KONDUKCE

2 VEDENÍ TEPLA KONDUKCE VEDENÍ TEPLA KONDUKCE Veeí epa ze seova v epoím savu: usáeém sacoáím epoa se v učém mísě s časem eměí eusáeém esacoáím epoa v učém mísě měí s časem Sacoáí veeí epa Nemá- ěeso ve všech mísech sejou epou,

Více

frekvence f (Hz) perioda T = 1/f (s)

frekvence f (Hz) perioda T = 1/f (s) 1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají Teploa laky obou čásech se yroají 1 m1 1 m rooáe budou sředí kieické eergie obou druhů molekul sejé: 1 1 m m 1 1 ěžší molekuly se pohybují pomaleji ež lehčí sejé musí edy bý i objemoé kocerace: 1 když

Více

f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim

f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim KAPITOLA 4: 4 Úvod Derivace fkce [MA-8:P4] Moivačí příklady: okamžiá ryclos, směrice ečy Defiice: Řekeme, že fkce f má v bodě derivaci [ derivaci zleva derivaci zprava ] rov čísl a, jesliže exisje [ x

Více

STACIONÁRNÍ MAGNETICKÉ POLE

STACIONÁRNÍ MAGNETICKÉ POLE Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat

Více

Světlo v izotropním látkovém prostředí a na rozhraní izotropní bezztrátové dielektrikum je charakterizováno skalární permitivitou ε = εε.

Světlo v izotropním látkovém prostředí a na rozhraní izotropní bezztrátové dielektrikum je charakterizováno skalární permitivitou ε = εε. Učebí ex k předášce UFY2 Feselovy vzoce a jevy a ozhaí dvou posředí I Svělo v zoopím lákovém posředí a a ozhaí zoopí bezzáové delekkum je chaakezováo skaláí pemvou ε εε a pemeablou μ μμ (kde μ po emagecké

Více

Modelování vlivu parametrického buzení na kmitání vetknutého nosníku

Modelování vlivu parametrického buzení na kmitání vetknutého nosníku . ročík echické koferece ARaP, 4. a 5.. 4, Praha Modelováí vlivu paramerického buzeí a kmiáí vekuého osíku Jiří TŮMA, Per Ferfecki, Pavel ŠURÁNE, Miroslav MAHDA VŠB - Techická uiverzia Osrava ARaP 4 Osova

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 5

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 5 Fakula srojího ižeýrsví VUT v Brě Úsav kosruováí KONSTRUOVÁNÍ STROJŮ převody Předáška 5 Čelí soukolí se šikmými zuby hp://www.audiforum.l/ Moderaio is bes, ad o avoid all exremes. PLUTARCHOS Čelí soukolí

Více

Interference. 15. prosince 2014

Interference. 15. prosince 2014 Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude

Více

Elektrické přístroje. Přechodné děje při vypínání

Elektrické přístroje. Přechodné děje při vypínání VŠB - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky Katedra elektrických strojů a řístrojů Předmět: Elektrické řístroje Protokol č.5 Přechodé děje ři vyíáí Skuia: Datum: Vyracoval: - -

Více

Harmonické oscilátory

Harmonické oscilátory Harmonické oscilátory Jakub Kákona, kaklik@mlab.cz Abstrakt Tato úloha se zabývá měřením rezonančních vlastností mechanických tlumených i netlumených oscilátorů. 1 Úvod 1. Změřte tuhost pružiny statickou

Více

8.6 Dynamika kmitavého pohybu, pružinový oscilátor

8.6 Dynamika kmitavého pohybu, pružinový oscilátor 8.6 Dynamika kmitavého pohybu, pružinový oscilátor a) dynamika zkoumá příčiny pohybu b) velikost síly vyvolávající harmonický kmitavý pohyb F = ma = mω 2 y pohybová rovnice (II. N. z. a = ω 2 y m sin ωt

Více

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 9.11.2012 Klasifikace: Část I Lineární

Více

F1040 Mechanika a molekulová fyzika

F1040 Mechanika a molekulová fyzika 4 Mechnik molekuloá fzik Pe Šfřík 4 Přednášk 4 Mechnik molekuloá fzik Tped b Pe Šfřík 4 Mechnik molekuloá fzik... Zchlení:... 3 Pohb po kužnici... 4 Pohb z hledisk ůzných pozooelů... 6 Pohboé onice hmoného

Více

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1 Řešení úloh 1 kola 7 ročníku fyzikální olympiáy Kategorie C Autoři úloh: J Thomas (1,, 3), J Jírů (4, ), J Šlégr (6) a T Táborský (7) 1a) Označme stranu čtverce na mapě Autobus za 1 hoinu urazí ráhu s

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence :

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence : Skládání různoběžných kmitů Uvědomme si principiální bod tohoto problému : na jediný hmotný bod působí dvě nezávislé pružné síl ve dvou různých směrech. Jednotlivé mechanické pohb, které se budou skládat,

Více

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil 3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová

Více

Fyzika základního kurzu I (hypertextově) seznam důležitých skutečností

Fyzika základního kurzu I (hypertextově) seznam důležitých skutečností Fyzika základního kurzu I (hypertextově) seznam důležitých skutečností kolektiv ÚFI FSI Copyright c 005, ÚFI FSI VUT v Brně Tento text obsahuje rovnice, které jsou barevně vyznačeny v textu Fyzika. Kliknutím

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Předmět studia klasické fyziky

Předmět studia klasické fyziky Přemě sui klsiké fik mehnik, emonmik, elekonmik, opik klsiká fik eoeiká fik epeimenální fik eoie elivi sisiká fik kvnová fik moení fik Přemě sui klsiké fik Fik oeně koumá sukuu hmo její ákon, hování přío

Více

Materiál: Lepené lamelové dřevo (GL 24h) stojka 2 x 120x1480 mm příčel 1 x 200x1480 mm Třída provozu: 1 Spojovací prostředek: kolíky ϕ24 mm

Materiál: Lepené lamelové dřevo (GL 24h) stojka 2 x 120x1480 mm příčel 1 x 200x1480 mm Třída provozu: 1 Spojovací prostředek: kolíky ϕ24 mm RÁOÝ ROH TROJKLOUBOÁ HALA Náv oje ojy a říčle ojloubovéo ámu (viz obáze): aeiál: Leeé lamelové řevo (GL 4) oja x 0x480 mm říčel x 00x480 mm Třía ovozu: Sojovací ořee: olíy ϕ4 mm Nejeřízivější ombiace (áoobýc)

Více

Mechanika soustavy hmotných bodů

Mechanika soustavy hmotných bodů echaika soustav hotých boů oel soustav hotých boů: - ssté vtvořeý hotýi bo - hotý bo (,,... ) á pak hotost, polohu, chlost v Dva uh sil ( hleiska soustav): ) Vější síl, kteé ají svoje cetu io soustavu

Více

ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE

ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE ÚLOHA VÍCE TĚLES V NEBESKÉ ECHANICE SPECIFIKACE PROBLÉU Řeš úlohu ěles zaeá aléz pohyby ( foulova pohybové ovce a aléz ech řešeí) hoých bodů (esp ěles př zaedbáí duhoé oace) a eé působí pouze vzáeé gavačí

Více

MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH

MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH Úloha č. 6 MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH ÚKOL MĚŘENÍ: 1. V zapojení dvou RC generátorů nalezněte na obrazovce osciloskopu Lissajousovy obrazce pro frekvence 1:1, 2:1, 3:1, 2:3 a 1:4 a zakreslete

Více

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice

Více

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel

Více

Laboratorní úloha č. 3 - Kmity I

Laboratorní úloha č. 3 - Kmity I Laboratorní úloha č. 3 - Kmity I Úkoly měření: 1. Seznámení se s měřením na osciloskopu nastavení a měření základních veličin ve fyzice (frekvence, perioda, amplituda, harmonické, neharmonické kmity).

Více

KMS cvičení 5. Ondřej Marek

KMS cvičení 5. Ondřej Marek KMS cvičení 5 Ondřej Marek Ondřej Marek KMS 5 KINEMAICKÉ BUZENÍ ABSOLUNÍ SOUŘADNICE Pohybová rovnice: mx + b x x + k x x = mx + bx + kx = bx + kx Partikulární řešení: x = X e iωt x = iωx e iωt k m b x(t)

Více

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

KMS cvičení 6. Ondřej Marek

KMS cvičení 6. Ondřej Marek KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

6. Setrvačný kmitový člen 2. řádu

6. Setrvačný kmitový člen 2. řádu 6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

FOURIEROVA A LAPLACEOVA TRANSFORMACE,

FOURIEROVA A LAPLACEOVA TRANSFORMACE, FOUIEOVA A LAPLACEOVA ANSFOMACE, OPEÁOOVÉ CHAAKEISIKY DVOJPÓLŮ Fourierovy řady prodlužováí periody Prodloužeí periody při zachováí šířy ipulsu π sižováí záladí frevece ω = frevece, eré jsou u raší periody

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

1.7.2 Moment síly vzhledem k ose otáčení

1.7.2 Moment síly vzhledem k ose otáčení .7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

Nauka o Kmitání Přednáška č. 4

Nauka o Kmitání Přednáška č. 4 Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená

Více

Stavební mechanika 1 (K132SM01)

Stavební mechanika 1 (K132SM01) Stavebí mechaka (K32S) Předáší: doc. Ig. atěj Lepš, Ph.D. Kateda mechak K32 místost D234 koutace Čt 9:3-: e-ma: matej.eps@fsv.cvut.c http://mech.fsv.cvut.c/~eps/teachg/de.htm 4. Soustav s a statckých mometů

Více

ÚLOHA Závaží pružin kmitá harmonicky amplituda = 2 cm, doba kmitu = 0,5 s. = 0 s rovnovážnou polohou vzh ru. Úkoly l :

ÚLOHA Závaží pružin kmitá harmonicky amplituda = 2 cm, doba kmitu = 0,5 s. = 0 s rovnovážnou polohou vzh ru. Úkoly l : ÚLOHA Závažíčko zavěšené na pružině kitá haronick tak, že: aplituda výchlk je 2 c, doba kitu je T 0,5 s. Předpokládáe, že včase t 0 s prochází závažíčko rovnovážnou polohou a sěřuje vzhůru. Úkol: a) Zjistíe

Více

Kmity vynucené

Kmity vynucené 1.7.3. Kmit nucené 1. Umět sětlit posttu nucených kmitů.. Pochopit ýznm buící síl. 3. Vsětlit přechooý st. 4. Věět, jk se mění mplitu nucených kmitů záislosti n fekenci buící síl. 5. Věět, co je ezonnční

Více

Contribution to Stability Analysis of Nonlinear Control Systems Using Linearization Vyšetřování stability nelineárních systémů metodou linearizace

Contribution to Stability Analysis of Nonlinear Control Systems Using Linearization Vyšetřování stability nelineárních systémů metodou linearizace XXIX. ASR '4 Semi, Istumets Cotol, Ostv, Apil, 4 6 Cotibutio to Stbility Alysis o Nolie Cotol Systems Usig Lieiztio Vyšetřováí stbility elieáích systémů metoou lieizce GAHURA, Pet Ig., VUT FSI v Bě, Ústv

Více

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka

Více

1.8. Mechanické vlnění

1.8. Mechanické vlnění 1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát

Více

Mechanická silová pole

Mechanická silová pole Mechanická siloá pole siloé pole mechanice je ekooé pole chaakeizoané z. inenziou siloého pole (inenziou síly): E m [ms ] inenzia je oožná se zychlením, keé siloé pole aném mísě uělí liboolnému ělesu Siloé

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

MODELOVÁNÍ KMITÁNÍ DYNAMICKÉ SOUSTAVY S N-STUPNI VOLNOSTI

MODELOVÁNÍ KMITÁNÍ DYNAMICKÉ SOUSTAVY S N-STUPNI VOLNOSTI VYSOKÉ UČENÍ ECHNICKÉ V BRNĚ BRNO UNIVERSIY OF ECHNOLOGY FAKULA SROJNÍHO INŽENÝRSVÍ ÚSAV MECHANIKY ĚLES, MECHARONIKY A BIOMECHANIKY FACULY OF MECHANICAL ENGINEERING INSIUE OF SOLID MECHANICS, MECHARONICS

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

Digitální učební materiál

Digitální učební materiál Čísl pjeku ázev pjeku Čísl a ázev šably klíčvé akiviy Digiálí učebí aeiál CZ..07/.5.00/4.080 Zkvaliěí výuky psředicví ICT III/ Ivace a zkvaliěí výuky psředicví ICT Příjece pdpy Gyáziu, Jevíčk,. K. Viáka

Více

Elektromagnetické pole

Elektromagnetické pole Elekomagneické pole Zákon elekomagneické inukce pohybujeme-li uzařeným oičem honým způsobem magneickém poli, zniká e oiči elekický pou nachází-li se uzařený oič časoě poměnném magneickém poli, zniká e

Více

pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa

pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa Výstup RVP: Klíčová slova: Eva Bochníčková žák měří vybrané veličiny vhodnými metodami, zpracuje získaná data

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č. 3 DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ Prof. Ing. Vladimír Zeman, DrSc. OBSAH 1. Úvod. Základní výpočtový model v rotujícím prostoru 3. Základní výpočtový model rotoru

Více

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

Analýza světla odraženého tenkým kmitajícím zrcadleěm s použitím MATLABu

Analýza světla odraženého tenkým kmitajícím zrcadleěm s použitím MATLABu Alýz svěl odžeého eký kijící zcdleě s požií MATLAB A.Mikš J.Novák ked fzik Fkl svebí ČVUT v Pze Absk Páce se zbývá eoeicko lýzo vibcí ekého oviého zcdl khového půřez vlive defocí kovéhoo zcdl svělo odžeé

Více

Mechanické kmitání a vlnění, Pohlovo kyvadlo

Mechanické kmitání a vlnění, Pohlovo kyvadlo Fyzikální praktikum FJFI ČVUT v Praze Mechanické kmitání a vlnění, Pohlovo kyvadlo Číslo úlohy: 10 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum : 26. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo

Více

γ α β E k r r ρ ρ 0 θ θ G Θ G U( r, t) w(z) w 0 ω z R z U( r, t) 1 c 2 2 U( r, t) t 2 = 0, U( r, t) U( r, t) = E( r, t) U( r, t) = u( r)e iωt. u( r) + k 2 u( r) = 0, k = ω/c u( r) = A exp( i k r), k

Více

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY 2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

DYNAMIKA HMOTNÉHO BODU

DYNAMIKA HMOTNÉHO BODU DYNAMIKA HMOTNÉHO BODU suium příčin změn pohybového savu hmoného bou Poč? Za jakých pomínek? 3 zákony fomulované I. Newonem (17. sol.) Síla : veko chaakeizující vzájemné působení ěles : je učena velikosí,

Více

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2) Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném

Více

Rovnice 1.řádu. (taková řešení nazýváme singulární řešení). řeší rovnici (*) na intervalu ( a, b)

Rovnice 1.řádu. (taková řešení nazýváme singulární řešení). řeší rovnici (*) na intervalu ( a, b) Rovce řáu Rovce se separovaým proměým Derecálí rovc tvaru g h * azýváme rovcí se separovaým proměým latí: Nechť g je spojtá uce a tervalu a b h je spojtá a eulová uce a tervalu c Ozačme postupě G a H prmtví

Více

Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice (4.1)

Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice (4.1) 4 Řešení odezev dynamických systémů ve fázové rovině 4.1 Základní pojmy teorie fázové roviny Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice ( ) x+ F x, x = (4.1) kde F(

Více