Tlumené kmity. Obr
|
|
- Jindřich Čech
- před 8 lety
- Počet zobrazení:
Transkript
1 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující luený kiavý pohyb koeficien odporu prosředí, součiniel úluu, úlu, logariický dekreen úluu. 6. Vědě, jaký je vzah ezi periodou a frekvencí nelueného a lueného kiavého pohybu. 7. Uě vysvěli energii lueného kiavého pohybu. Dosud jse uvažovali kiavé pohyby, při kerých se poenciální energie pružnosi ění na energii kineickou a celková energie, jež je rovna jejich souču, je konsanní. Apliuda akových kiů je neěnná. Ve skuečnosi se čás energie u všech echanických pohybů přeěňuje vlive ření a odporu prosředí na eplo,a není edy využia. V o případě se velikosi po sobě jdoucích apliud zenšují a kiající sousava koná luené kiy. Obr Při enších rychlosech působí proi pohybu síla luící síla (síla odporu prosředí). Je úěrná rychlosi, kde koeficiene úěrnosi je koeficien odporu prosředí R. Tao síla působí proi pohybu, proo ji zapisujee ve varu F = R v V neodporující prosředí kiá ěleso s frekvencí f a periodou T. Po vložení do odporujícího prosředí se pohyb zpoalí, perioda T se prodlouží a frekvence f se zkráí. Těleso bude kia s periodou T a frekvencí f luených kiů Rovnice lueného kiavého pohybu Při kiavé pohybu v odporující prosředí působí na honý bod dvě síly: 1. síla pružnosi F = k y, kde k je uhos pružiny a y je okažiá výchylka, p. luící síla F = R v, kde R je koeficien odporu prosředí a v rychlos. Jednokou konsany k je kg.s -, jednokou konsany R je kg.s
2 Výsledná síla, kerá honéu bodu uděluje zrychlení je rovna jejich vekorovéu souču F F + F = p Ve skryé exu najdee podrobnější odvození pohybové rovnice luených kiů Podle Newonova zákona ůžee psá a = k y R v Po úpravách a poocí subsiucí k R ω =, b = je pohybová rovnice lueného kiavého pohybu ve varu d y d y + b + ω y = d d Řešení pohybové rovnice je rovnice, kerá popisuje okažiou výchylku honého bodu z rovnovážné polohy lueného kiavého pohybu. y = Asin( ω + ϕ ) V oo případě ovše apliuda A neá konsanní hodnou, ale zenšuje se podle exponenciální funkce b A = A e, kde A je počáeční apliuda a b je součiniel úluu. Rovnice okažié výchylky je pak b y = A e sin ( ω + ϕ ) Úhlová frekvence ω je úhlová frekvence luených kiů a je určena vzahe. = ω b ω. Odud pak ůžee sanovi periodu T a frekvenci f luených kiů podle vzahů Obr π π ω =, ω =, T T
3 ω = π f, ω = π f. T, f jsou perioda a frekvence kiavého pohybu, jesliže odsraníe luení. Kroě koeficienu odporu prosředí R a součiniele úluu b zavádíe další konsany, keré charakerizují luený kiavý pohyb. Jsou o úlu λ a logariický dekreen úluu δ. Úlu λ je podíl dvou po sobě jdoucích apliud sejného sěru.tyo apliudy jsou od sebe časově vzdáleny o jednu periodu T. Obr Pak b A A e b b e e 1 λ = = = = =. A b( + T ) b bt b bt bt A e e 1 e e e bt = e λ Úlu λ je bezrozěrné číslo. Logariický dekreen úluu δ je přirozený logarius úluu λ 179
4 bt δ = ln λ = ln e = bt ln e = bt. δ = bt Rovněž i δ je bezrozěrná veličina. Aperiodický pohyb Teno pohyb vzniká ehdy, když je ření příliš veliké a periodický pohyb vůbec nevznikne. Časo je úyslně vyvářen u ěřících přísrojů vhodně volený luení. TO Těleso honosi je zavěšeno na pružině uhosi k a koná luený haronický pohyb. Odpor prosředí je F = R v. Diferenciální rovnici ěcho luených kiů ůžee psá ve varu d y d y + b + ω y =. Určee, keré vzahy charakerizují součiniel úluu d d a úhlovou frekvenci neluených kiů (vlasní frekvenci). a) R b = a ω = k b) b = aω = R k R k c) b = a ω = R k d) b = aω = TO Těleso honosi je zavěšeno na pružině uhosi k a koná luený haronický pohyb. Síla odporu prosředí je F = R v. Diferenciální rovnici ěcho d y d y luených kiů ůžee psá ve varu + b + ω y =. Řešení éo d d rovnice je a) y = Asin( ω + ϕ ) b) y = Asin( ω + ϕ ) c) y = Asin( ω + ϕ ), kde, kde, kde b A = A e b A = A e b A = A e 18
5 d) y = Asin( ω + ϕ ), kde b A = A e TO Součiniel úluu je b = s -1, logariický dekreen úluu δ = 8. Určee periodu lueného kiavého pohybu a) 16 s b) 4 s c) 4 1 s d) 64 s T. Při luené kiavé pohybu bylo zjišěno, že podíl dvou za sebou jdoucích výchylkách se apliuda zenšila o 1 6 a doba kiu T =,5 s. Určee a) součiniel úluu, b) frekvenci kiů, odsraníe-li luení. a) Proože logariický dekreen úluu je δ = ln λ = bt a pro apliudy plaí 4 4 A ln 4 = ln λ A A = = λ, pak b = = 1 = 1, 83 s A 1 T,5 1 Součiniel úluu je 1,83 s -1. c) Z rovnice ω = ω b po dosazení dosanee 4π f = 4π f + b. Vydělení 4π f + b f =. 4π Po dosazení je frekvence po odsranění luení f = 1,4 s -1. Určee vzah pro rychlos a zrychlení lueného kiavého pohybu. d y Rychlos je v =, derivujee edy vzah pro okažiou výchylku lueného d kiavého pohybu. Proěnná veličina čas se vyskyuje v exponenu apliudy a ve fázi kiavého pohybu. Derivujee proo jako součin dvou funkcí. 181
6 Pak vzah pro rychlos je b b v = b Ae sin ω + ϕ + Ae ω cos ω + ϕ ( ) ( ) d v Podobně je zrychlení a =. d Posupně derivujee rychlos podle času. Pak zrychlení je b b a = b ω Ae sin ω + ϕ b Ae ω cos ω + ϕ ( ) ( ) ( ).. KO Co způsobuje luený kiavý pohyb? KO Zapiše vzah pro sílu odporu prosředí při alých rychlosech. KO Určee jednoku koeficienu odporu R prosředí. KO Určee jednoku součiniele úluu b. KO Popiše, jak se zění perioda a frekvence luených kiů Energie lueného kiavého pohybu 1 Kiová energie neluených kiů je konsanní a je popsána výraze E = k A. U luených kiů apliuda exponenciálně klesá vlive ření, a proo klesá zároveň celková energie. Proože b A = A e, kde E A je počáeční apliuda, pak b ( A e ) = 1 k Po úpravě je 1 b E = k A e Výraz 1 k A předsavuje počáeční kiovou energii E. V konečné varu je vzah pro energii luených kiů E b = E e,
7 TO Určee výraz pro energii luených kiů. a) E = 1 k A e b c) b) 1 E = ω E = A e 1 b k A e b d) 1 b A e E = ω TO Apliuda luených kiů se ění podle funkce a) logariicky rose b) hyperbolicky klesá c) exponenciálně klesá d) exponenciálně rose TO Energie luených kiů se ění podle funkce a) b) c) d) E = E Ae E = E Ae E = E e E = E Ae b b b Součiniel úluu je 3 s -1. Určee dobu, za kerou klesne energie luených kiů na %. 1 Pro energii kiů plaí vzah E = k A. Apliuda luených kiů klesá b podle funkce A = A e. Pak 1 b ( ) E = k A e. b b Po úpravě E 1 = k A e E = E e. b,e = E e, = e b 183
8 ln, = b ln e ln, b = ln, =,3 =,7s. Energie klesne na % za,7 s. KO Zakreslee graf pro celkovou energii luených kiů. KO Vysvělee zěnu celkové energie luených kiů. KO Kerá funkce popisuje zěnu celkové energie luených kiů. KO Definuje apliudu luených kiů. KO Zapiše rovnici pro okažiou výchylku luených kiů. KO Charakerizuje součiniel úluu b. KO Zapiše vzah ezi součiniele úluu b a koeficiene odporu prosředí R. KO Definuje úlu. KO Určee vzah ezi úlue λ a logariický dekreene úluu δ. KO Určee jednoku součiniele úluu b, úluu λ a logariického dekreenu úluu δ. KO Zapiše vzah ezi luenou úhlovou frekvencí ω a neluenou úhlovou frekvencí ω. 184
MECHANICKÉ KMITÁNÍ TLUMENÉ
MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava
Více4. KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolují pohyb 2. pružně poddajné vazby - dovolují pohyb
4. MITÁNÍ VOLNÉ 4. Lineární kiání (haronický osciláor ve fyzice) Veli časný pohye honého odu je kiavý pohy. iání ude lineární, jesliže síla, kerá při výchylce x vrací honý od do rovnovážné polohy, je úěrná
VíceFYZIKA I. Pohyb těles po podložce
VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová
VíceÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
VíceLineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()
VíceEKONOMETRIE 6. přednáška Modely národního důchodu
EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,
VíceDynamika hmotného bodu. Petr Šidlof
Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení
Více3.1.2 Harmonický pohyb
3.1.2 Haronický pohyb Předpoklady: 3101 Graf závislosti výchylky koštěte na čase: Poloha na čase 200 10 100 poloha [c] 0 0 0 10 20 30 40 0 60 70 80 90 100-0 -100-10 -200 čas [s] U některých periodických
VíceKmitání tělesa s danou budicí frekvencí
EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů
Více(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení
(). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí
VíceI. část - úvod. Iva Petríková
Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,
VíceNA POMOC FO. Pád vodivého rámečku v magnetickém poli
NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním
VíceUniverzita Tomáše Bati ve Zlíně
Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí
VícePříloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY
říloha: Elekrická práce, příkon, výkon říklad: 4 variana: onorné čerpadlo vyčerpá axiálně 22 lirů za inuu do axiální výšky 1,5 erů Jaká je jeho účinnos, když jeho příkon je 9 Husoa vody je 1 ř 4 var: BEZ
Více3.1.8 Přeměny energie v mechanickém oscilátoru
3..8 Přeěny energie v echanické oscilátoru Předoklady: 0050, 03007 Pedagogická oznáka: Odvození zákona zachování energie rovádí na vodorovné ružině, rotože je říočařejší. Pro zájece je uvedeno na konci
VíceIMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie
VíceJméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B
Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:
VícePasivní tvarovací obvody RC
Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :
VíceUniverzita Tomáše Bati ve Zlíně
Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,
VíceStudijní texty FYZIKA I. Fakulta strojní Šumperk
Sudijní exy FYZIKA I Fakula srojní Šumperk RNdr Eva Janurová, PhD Kaedra fyziky, VŠB-TU Osrava 6 OBSAH ÚVOD, ZÁKLADNÍ POJMY 3 FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY 3 ROZDĚLENÍ FYZIKÁLNÍCH VELIČIN 4 KINEMATIKA
VíceLaplaceova transformace Modelování systémů a procesů (11MSP)
aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála
Více1.3.4 Rovnoměrně zrychlený pohyb po kružnici
34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb
VíceHlavní body. Úvod do nauky o kmitech Harmonické kmity
Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice
VíceStýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu
Sýskala, 22 L e k c e z e l e k r o e c h n i k y Víězslav Sýskala TÉA 6 Oddíl 1-2 Sylabus k émau 1. Definice elekrického pohonu 2. Terminologie 3. Výkonové dohody 4. Vyjádření pohybové rovnice 5. Pracovní
Více9.7. Vybrané aplikace
Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž
Více3.1.3 Rychlost a zrychlení harmonického pohybu
3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf
VíceKMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině
KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme
VíceParciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
VíceDiferenciální rovnice 1. řádu
Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou
Více10 Lineární elasticita
1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí
VíceOBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI
OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka
VíceBiologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8
Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická
Více! " # $ % # & ' ( ) * + ), -
! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA FYZIKA METODIKA Mechanické kmiání a vlnní RNDr. Ludmila Ciglerová duben 010 Obížnos éo kapioly fyziky je dána ím, že se pi výkladu i ešení úloh využívají
VíceSeznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.
4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci
VíceMatematika v automatizaci - pro řešení regulačních obvodů:
. Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.
VíceLS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle
Obyčejné diferenciální rovnice Jiří Fišer LS 2014 1 Úvodní moivační příklad Po prosudování éo kapioly zjisíe, k čemu mohou bý diferenciální rovnice užiečné. Jak se pomocí nich dá modelova prakický problém,
VíceZrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs.
MTF, rozlišovací schopnos Zrnios Graininess vs. granulariy Zrnios Zrnios foografických maeriálů je definována jako prosorová změna opické husoy rovnoměrně exponované a zpracované plošky filmu měřená denziomerem
VíceDerivace funkce více proměnných
Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme
VícePráce a výkon při rekuperaci
Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava
Více3B Přechodné děje v obvodech RC a RLC
3B Přechodné děje v obvodech a íl úlohy Prohloubi eoreické znalosi o přechodných dějích na a obvodu. Ukáza možnos měření paramerů přechodných dějů v ěcho obvodech. U obvodu 2. řádu () demonsrova vliv lumicího
Více9 Viskoelastické modely
9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály
VíceKMITÁNÍ MECHANICKÉHO OSCILÁTORU
KMITÁNÍ MECHANICKÉHO OSCILÁTORU 1. Periodický pohb, kineaika haronického kiání pohb příočarý, po kružnici, a a zpě vibrace, kiání, osciace kiání ůže bý nepravidené, se ae budee zabýva jen pravidený kiání,
VíceMECHANICKÉ KMITÁNÍ NETLUMENÉ
MECHANICKÉ KMITÁNÍ NETLUMENÉ Kitání je PERIODICKÝ pohyb hotného bodu (tělesa). Pohybuje se z jedné rajní polohy KP do druhé rajní polohy KP a zpět. Jaýoliv itající objet se nazývá OSCILÁTOR. A je aplituda
Vícer Co se stane se spektrem signá lu z obr.1.12, dojde-li k zvětšení jeho opakovací frekvence na 500Hz? Ř ešení: Viz obr.1.15
r.5. Co se sane se spere signá lu z obr.., dojde-li zvěšení jeho opaovací frevence na 5Hz? Viz obr..5 u( )[ V] u( )[ V] 3 5 6 [ s] 3 5 6 [ s] s s U i, U [ V] U i,5 U [ V],,5,,,5,5 ϕ [ rad] π ϕ [ rad] π
Více4. Střední radiační teplota; poměr osálání,
Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění
Vícefrekvence f (Hz) perioda T = 1/f (s)
1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu
VíceSTATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ
STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují
VíceFyzikální praktikum II - úloha č. 4
Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných
VíceNecht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
VíceObsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9
Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů
Více5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav
5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických
VíceNakloněná rovina II
3 Nakloněná rovina II Předoklady: Pedagogická oznáka: Obsah hodiny se za norálních okolnosí saozřejě nedá sihnou, záleží na Vás, co si vyberee Pedagogická oznáka: Na začáku hodiny zadá sudenů říklad Nečeká
Vícef ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce
Funkce daná paramerick polárně a implicině 4 Funkce daná paramerick polárně a implicině Výklad Definice 4 Nechť jsou dán funkce ϕ() ψ () definované na M R a nechť ϕ () je prosá na M Složená funkce ψϕ definovaná
VíceT t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka
Analýza časových řad Klasický přísup k analýze ČŘ dekompozice časové řady - rozklad ČŘ na složky charakerizující různé druhy pohybů v ČŘ, keré umíme popsa a kvanifikova rend periodické kolísání cyklické
Více(test version, not revised) 9. prosince 2009
Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie
VíceDigitální učební materiál
Číso projeu Název projeu Číso a název šabon íčové aivi Digiání učební aeriá CZ..7/.5./3.8 Zvainění výu prosřednicví ICT III/ Inovace a zvainění výu prosřednicví ICT Příjece podpor Gnáziu, Jevíčo, A. K.
VíceDYNAMIKA časový účinek síly Impuls síly. 2. dráhový účinek síly mechanická práce W (skalární veličina)
DYNAMIKA 2 Působením síly na čásici se obecně mění její pohybový sav. Síla působí vždy v učiém časovém inevalu a záoveň na učiém úseku ajekoie s. 1. časový účinek síly Impuls síly 2. dáhový účinek síly
VíceKmitání vynucené. kmitání při působení konstantní síly, harmonicky buzené kmitání amplitudová a fázová charakteristika.
Kiání vynucené Osh přednášy : iání při půsoení onsnní síly, hronicy uzené iání pliudová fázová chrerisi Do sudi : si,5 hodiny Cíl přednášy : seznái sudeny se záoniosi vynuceného iání Kiání vynucené D =
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS
VícePraktikum I Mechanika a molekulová fyzika
Oddělení fzikálních praktik při Kabinetu výuk obecné fzik MFF UK Praktiku I Mechanika a olekulová fzika Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Matáš Řehák stud.sk.:
VíceÚloha V.E... Vypař se!
Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee
Více3.2.2 Rovnice postupného vlnění
3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny
VíceMECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTRSKÉHO PROGRAMU STAVBNÍ INŽNÝRSTVÍ -GOTCHNIKA A PODZMNÍ STAVITLSTVÍ MCHANIKA PODZMNÍCH KONSTRUKCÍ Základní vzahy z reologie a reologického
Více1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.
Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,
VíceÚLOHA Závaží pružin kmitá harmonicky amplituda = 2 cm, doba kmitu = 0,5 s. = 0 s rovnovážnou polohou vzh ru. Úkoly l :
ÚLOHA Závažíčko zavěšené na pružině kitá haronick tak, že: aplituda výchlk je 2 c, doba kitu je T 0,5 s. Předpokládáe, že včase t 0 s prochází závažíčko rovnovážnou polohou a sěřuje vzhůru. Úkol: a) Zjistíe
VíceSkupinová obnova. Postup při skupinové obnově
Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi
VíceXI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny...
XI- Nesacionární elekromagneické pole... XI- Rovinná harmonická elekromagneická vlna...3 XI- Vlasnosi rovinné elekromagneické vlny...5 XI-3 obrazení rovinné elekromagneické vlny v prosoru...7 XI-4 Fázová
VíceKatedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY
Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných
Vícex udává hodnotu směrnice tečny grafu
Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je
Více1.7.4. Skládání kmitů
.7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát
VíceAnalogový komparátor
Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací
VíceLaboratorní práce č. 1: Pozorování tepelné výměny
Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Laboraorní práce č. 1: Pozorování epelné výměny Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Tes k laboraorní
VíceNumerická integrace. b a. sin 100 t dt
Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě
VíceZáklady fyziky + opakovaná výuka Fyziky I
Úsav fyziky a měřicí echniky Pohodlně se usaďe Přednáška co nevidě začne! Základy fyziky + opakovaná výuka Fyziky I Web úsavu: ufm.vsch.cz : @ufm444 Zimní semesr opakovaná výuka + Základy fyziky 2 hodiny
VíceOdezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti
Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad
VíceEkonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011
Evropský sociální fond Praha & EU: Invesujeme do vaší budoucnosi Ekonomika podniku Kaedra ekonomiky, manažersví a humaniních věd Fakula elekroechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Kriéria efekivnosi
VíceREAKČNÍ KINETIKA 1. ZÁKLADNÍ POJMY. α, ß jsou dílčí reakční řády, α je dílčí reakční řád vzhledem ke složce A, ß vzhledem ke složce
REKČNÍ KINETIK - zabývá se ryhlosí hemikýh reakí ZÁKLDNÍ POJMY Definie reakční ryhlosi v - pro reake probíhajíí za konsanního objemu v dξ di v V d ν d i [] moldm 3 s Ryhlosní rovnie obeně vyjadřuje vzah
VíceVY_32_INOVACE_06_III./1._OBVOD STŘÍDAVÉHO PROUDU
VY_32_INOVACE_06_III./1._OBVOD STŘÍDAVÉHO PROUDU Střídavý proud Vznik střídavého napětí a proudu Fyzikální veličiny popisující jevy v obvodu se střídavý proude Střídavý obvod, paraetry obvodu Střídavý
VíceLaboratorní úloha č. 4 - Kmity II
Laboratorní úloha č. 4 - Kmity II Úkoly měření: 1. Seznámení s měřením na přenosném dataloggeru LabQuest 2 základní specifikace přístroje, způsob zapojení přístroje, záznam dat a práce se senzory, vyhodnocování
Více= 0 C. Led nejdříve roztaje při spotřebě skupenského tepla Lt
Měření ěrného skupenského epla ání ledu a varu vody Měření ěrného skupenského epla ání ledu a varu vody Úkol č : Zěře ěrné skupenské eplo ání ledu Poůcky Sěšovací kalorier s íchačkou, laboraorní váhy,
Víceω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
VíceStatika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.
Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní
VíceMECHANIKA PRÁCE A ENERGIE
Projek Efekivní Učení Reformou oblasí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a sáním rozpočem České republiky. MECHANIKA PRÁCE A ENERGIE Implemenace ŠVP Učivo - Mechanická
VíceÚloha VI.3... pracovní pohovor
Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro
VíceVýroba a užití elektrické energie
Výroba a užií elekrické energie Tepelné elekrárny Příklad 1 Vypočíeje epelnou bilanci a dílčí účinnosi epelné elekrárny s kondenzační urbínou dle schémau naznačeného na obr. 1. Sesave Sankeyův diagram
VíceMATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická
VíceFYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO
FYZIKÁLNÍ PRAKIKUM Úsav fyziky FEI VU BRNO Spolupracoval Příprava Šuranský Radek Opravy méno Ročník 1 Škovran an Předn. skup. B Měřeno dne 5.4. Učiel Sud. skupina 1 Kód 17 Odevzdáno dne 16.5. Hodnocení
VíceMECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A
MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující
VíceZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné
Více3.2.2 Rovnice postupného vlnění
3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny
Více6. Optika. Konstrukce vlnoploch pro světlo:
6. Opika 6. Základní pojmy Tělesa, kerá vysílají svělo, jsou svěelné zdroje. Zářivá energie v nich vzniká přeměnou z energie elekrické, chemické, jaderné. Zdrojem svěla mohou bý i osvělená ělesa (vidíme
VíceX 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS =
11. Výpoče poměrů při zkraeh ve vlasní spořebě elekrárny Zkra má v obvodeh shémau smysl pouze v čáseh provozovanýh s účinně uzemněným sředem zdroje, čili mimo alernáor, vyvedení výkonu a přilehlá vinuí
VíceTéma: Analýza kmitavého pohybu harmonického oscilátoru
PRACOVNÍ LIST č. Téa úlohy: Analýza kitavého pohybu haronického ocilátoru Pracoval: Třída: Datu: Spolupracovali: Teplota: Tlak: Vlhkot vzduchu: Hodnocení: Téa: Analýza kitavého pohybu haronického ocilátoru
VíceZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS
ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu
VíceFINANČNÍ MATEMATIKA- ÚVĚRY
Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-
VíceHydrostatické váhy. HANA MALINOVÁ Katedra didaktiky fyziky, MFF UK. Princip hydrostatického vážení. Veletrh nápadů učitelů fyziky 14
Velerh nápadů učielů fyziky 4 Hydrosaické váhy HANA MALINOVÁ Kaedra didakiky fyziky, MFF UK V příspěvku bude prezenována eoda hydrosaického vážení, kerá se používá na určování husoy různých aeriálů. Žáci
Více2. Sestrojte graf závislosti prodloužení pružiny na působící síle y = i(f )
1 Pracovní úkoly 1. Zěřte tuost k pěti pružin etodou statickou. 2. Sestrojte raf závislosti prodloužení pružiny na působící síle y = i(f ) 3. Zěřte tuost k pěti pružin etodou dynaickou. 4. Z doby kitu
VíceB. MECHANICKÉ KMITÁNÍ A VLNĚNÍ
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy
Více2.2.2 Měrná tepelná kapacita
.. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro
VíceNUMP403 (Pravděpodobnost a Matematická statistika II) 1. Na autě jsou prováděny dvě nezávislé opravy a obě opravy budou hotovy do jedné hodiny.
Spojiá rozdělení I.. Na auě jou prováděny dvě nezávilé opravy a obě opravy budou hoovy do jedné hodiny. Předpokládejme, že obě opravy jou v akové fázi, že rozdělení čau do ukončení konkréní opravy je rovnoměrné.
Více