4. KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolují pohyb 2. pružně poddajné vazby - dovolují pohyb
|
|
- Arnošt Soukup
- před 6 lety
- Počet zobrazení:
Transkript
1 4. MITÁNÍ VOLNÉ 4. Lineární kiání (haronický osciláor ve fyzice) Veli časný pohye honého odu je kiavý pohy. iání ude lineární, jesliže síla, kerá při výchylce x vrací honý od do rovnovážné polohy, je úěrná výchylce x kde konsana úěrnosi - pérová konsana, proože uvažujee honý od, kerý je držen v rovnovážné poloze, např. pružinai, což jsou pružně poddajné podpory Rozlišujee:. nepoddajné vazy - nedovolují pohy. pružně poddajné vazy - dovolují pohy koule (jako od) yč veknuí Skuečný kiavý pohy nahrazujee vhodný zjednodušený odele, např.: a) yč dokonale uhá - sousava neá supeň volnosi ) yč poddajná, nehoná - sousava á v rovině supeň volnosi, v prosoru supně volnosi (výchylka vodorovná v rovině a vodorovná
2 kolo k rovině) 4. iání volné neluené Nasane při vychýlení honého odu z jeho rovnovážného savu a ponechání v pohyu ez dalšího uzení vnějšíi silai. iání sousavy s supně volnosi - honý od podepřený pružinou. Neřešíe naáhání pružiny. Řešíe průěh výchylky: Vychýlíe-li od do polohy ve sěru osy z, půsoí proi: a servačná síla odpor pružiny - pérová konsana N- Podínka rovnováhy:
3 Zavedee veličinu: vlasní (úhlová) kruhová frekvence a dosanee hoogenní lineární diferenciální rovnici. řádu s konsanníi koeficieny: Řešení hledáe ve varu e a vede na charakerisickou rovnici a pro kořeny dosanee řešení neo i, i i Ce Ce v ooru koplexních čísel C C cos v ooru reálných čísel C, C jsou inegrační konsany, keré se určí z počáečních podínek. Volíe-li inegrační konsany ve varu: C Acos C A
4 přejde řešení na var: Acos A cos Acos cos A kde: A - apliuda (nejvěší výchylka), - fázový posun Ze znáé výchylky ůžee urči rychlos pohyu a zrychlení: v A cos a A unkce popisující řešení rovnice jsou periodické, poo definujee: T - perioda (doa kiu) doa, kerá je pořená k proěhnuí dráhy jednou dokola f - frekvence (kioče) Hz=s- udává, kolikrá za sekundu se celý pohy opakuje Plaí T f Pro řešení hledáe inegrační konsany: A - apliuda, - fázový posun v oecné řešení: A v A cos a A
5 Počáeční podínky cos A v v A přičež, v jsou konkréní hodnoy pro =. Upravíe:. arcg an cos v v A A v cos cos v A A v A v A
6 () A (apliuda) A T (perioda) Graf závislosi výchylky () na čase
7 Mohou nasa případy, že pružiny jsou řazeny do sousavy a jejich účinek ůžee nahradi ekvivalenní pérovou konsanou: a) paralelně Síly v pružinách i = i n i i e n i i e n i n i i i e ) sériově e e n e n i i e n i i e n i i e n n
8 4.3 iání volné luené v Při výchylce půsoí na honý od: a ) síla od pera ) servačná síla a 3) odpor prosředí úěrný rychlosi v Odpor prosředí je reprezenován vazký článke. Síla vyjadřující vliv ohoo článku půsoí proi pohyu a její velikos je úěrná rychlosi. onsanu úěrnosi označujee jako konsanu (lineárního) viskózního luení (např. luiče u au). Sesavení podínek rovnováhy podle D'Aleerova principu a v Zavedee veličiny: - vlasní kruhová frekvence pro kiání volné neluené s
9 - konsana charakerizující odpor prosředí - kruhová frekvence úluu s Poo úpravou pohyové rovnice dosanee lineární hoogenní diferenciální rovnici II. řádu s konsanníi koeficieny. Řešení hledáe ve varu e. Charakerisická rovnice á var a její kořeny, Analýza řešení. kriický a nadkriický úlu - jedná se o silné luení, je reálné, pohy není periodický, rovnovážnou polohou ůže projí od nejvýše jednou. Proo nezajíavé!. podkriický úlu V oo případě á charakerisická rovnice řešení v ooru koplexních čísel i, i,
10 zavedee Oecné řešení v ooru koplexních čísel i i i i C e Ce e C e Ce Reálné řešení je poo Ae kde A, jsou inegrační konsany. Rychlos honého odu vyjádříe d v A e e cos d Inegrační konsany A, určíe z počáečních podínek: Pro čas =. A Pro čas = v A cos. Dělení získáe:
11 v A cos A cos Z oho plyne: v cos v cos v g z oho: g v Poo: A Plaí-li, že usíe použí. podínku pro v v A cos
12 Graf závislosi výchylky na čase a význa inegračních konsan A, gv() Ae () A φ -A Ae T (perioda) T Apliuda se zenšuje, doa kiu zůsává sejná T Ze vzahu plyne, že a proo se doa kiu při luené kiání prodlužuje oproi neluenéu
13 T nelu T ioče (frekvence) f T lu onsany luení neo jsou svázány vzahe, nelze je přío zěři, ale ůžee zěři po soě jdoucí axiální výchylky, zn. výchylky s časový odsupe T (doa kiu). Věa 4.3. Přirozený logarius poěru po soě jdoucích ax. výchylek je konsanní. Nazývá se logariický dekreen úluu ln T T Jsou-li znáy výchylky, ezi niiž proěhne n kiů, plaí vzorec: ln n n
14 Důkaz: T e Ae Ae T Ae Ae T T ln ln Zkráíe výraze Ae a dosadíe T : T T T e e e ln ln ln T e e T T ln ln (součin dvou konsan) Vzorec pro výpoče T dosadíe T pak
15 z oho I kruhová frekvence úluu, konsana luení 4 r a v Př Břeeno o honosi = 4 kg je zavěšeno na laně podle or. ladka á honos = 4 kg. Honos lana se zanedává, ale udee uvažova proažení lana na pravé sraně kladky vlive osové síly. Síla kn prodlouží lano o 4 c. Určee rovnici pohyu při počáeční výchylce () = c a počáeční rychlosi v() =. Při další kiu je výchylka =,6 c. Dále určee dou kiu a kioče.
16 Při výchylce se kladka pooočí o úhel a lano se proáhne o. r a Zrychlení řeene a je ve vzahu k úhlovéu zrychlení kladky přiližně. r 3 4 -,5 N 4 V laně ude ěhe kiání síla. Podle d'aleerova principu oenová výinka ke sředu kladky. a I kr vr Dosazení dv d a d a d d r r d I r (hoový oen servačnosi k ose kladky) dosanee rovnici ve varu: r r kr r r
17 ráíe r: k resp. k Po dosazení zadaných hodno resp. 59,5 4 Srovnání s rovnicí volného lueného kiání: - Vlasní kruhová frekvence 59,5 7,7 s onsanu luení určíe poocí logariického dekreenu :, ln ln,34,6 7,7 -,74s 4 4,34 Doa kiu - 7,7,74 7,75s T 7,75 -,84 s
18 Inegrační konsany 7,75 / g 8, ,5345 v,74,,, A, / 8758, f,7 s T,85 Rovnici pohyu při volné luené kiání dosanee dosazení:,74,e 7,75,5345 rad
19 Př Nárazy věru na sožár elevizního vysílače se opakují po 3 inuách. Doa kiu je 6 sekund, úlu je určen logariický dekreene =,4. Určee jak velká je apliuda (výchylka) při příchodu nového nárazu věru vzhlede k počáeční výchylce. Mezi nárazy věru uplyne s N 3 kiů ezi nárazy 6 N ln N ln e N N N apliuda (výchylka) N e Poo,43, N e e, 3 N N
20 5. MITÁNÍ VYNUCENÉ 5.. iání vynucené neluené a Budící síla kde je kruhová frekvence haronicky proěnné síly. Příklade ohou ý rázy od vozidla, věru, účinky nevycenrované roující čási sroje apod. Podínka rovnováhy á var a lze upravi Řešení nehoogenní diferenciální rovnice. řádu získáe, když k oecnéu řešení rovnice (4..3) přidáe parikulární inegrál
21 C C cos oecné řešení parikulární řešení Poznáka: Je-li jedná se o případ rezonance, zn., že výchylka rose nad všechny eze; nepřípusné! Řešení hoogenní rovnice: C C cos oecný var. Parikulární řešení rovnice (5..) p p po dosazení Zkráíe
22 p Výraz dále upravíe: Označíe-li: saickou výchylku s a dynaický součiniel vynuceného usáleného kiání kde, poo apliuda vynuceného kiání s Výsledný var pro výchylku při vynucené usálené kiání je
23 A Je-li j. frekvence udící síly je rovna vlasní frekvenci sousavy, neoť f f, dochází k jevu rezonance. Rovnici výchylky ůžee vyjádři ve varu A a pro počáeční podínky a v pak ve varu. Pro není výchylka definována. Hledáe proo liiu podle l Hospialova pravidla
24 Průěh výchylky při rezonanci je znázorněn na orázku pro ezrozěrné veličiny. Za každou periodu vzrose apliuda o s v. s s s cos cos cos li li li 3 5 s 4 f
25 Rezonance iání vynucené, keré je způsoeno haronickou proěnnou silou á pro řešení nehoogenní rovnice oecný inegrál: A W, kde: W Při podroné rozoru se ukáže, že člen se v prakických případech rzy uluí (řešení volného kiání). Proo pro analýzu vynuceného kiání je rozhodující. člen - kerý je vyuzen vnější silou, nepřesává účinke úluu, rvá ak dlouho, pokud půsoí
26 udící síla. Takový sav se nazývá kiání usálené. rekvence ohoo pohyu je sejná jako u vnější síly. Apliuda usáleného kiání záleží: a) na velikosi udící síly ) hlavně na poěru frekvence udící síly a vlasní frekvence sousavy Výraz W není definován pro, j. apliuda usáleného kiání jde k. Too je případ rezonance. Vzah f nazýváe naladění či poěrnou frekvencí. f s Závislos ezi naladění a apliudou je rezonanční křivka.
27 Např. při: 3 je apliuda 8 při je 4 3 s Rezonanční křivka (Plaí pro vynucené neluené kiání s. supně volnosi). Při rezonanci nenasává ve skuečnosi výchylka nekonečně velká, nýrž účinke prakického úluu (ve výpoču zanedán) pouze výchylka zvěšená. Při kiání konsrukcí se usíe rezonanci vyhnou, aycho zaránili porušení konsrukce velkýi výchylkai.
28 5. iání vynucené luené Honý od je rozkiáván pulsující silou, např. rázy vozidla, nevycenrování roující čási sroje. Účinky nevycenrovaného rooru (lze urči přesněji) a Těžišě rooru se při oáčení pohyuje po kružnici o poloěru e, kerý nazvee excenriciou rooru. Odsředivá síla je: e - úhlová rychlos rooru se definuje ovykle poocí oáček n (j. je zadán kioče a frekvence f ), poče oáček rooru za časovou jednoku n[o s - ] f n - honos rooru v Složka odsředivé síly do sěru výchylky pera je, čas se ěří od okažiku, kdy je ěžišě rooru kolo ke sěru výchylky pera. D'Aleerův princip:
29 vlasní kruhová frekvence kiání volného nelueného charakerizuje luení Řešení rovnice pro výchylku dosanee jako oecné řešení rovnice hoogenní doplněné parikulární inegrále. p Levá srana rovnice se shoduje s řešení volného lueného kiání, proo její oecné řešení je: Ae Pravá srana rovnice je periodická funkce se ový průěhe a proo lze vzí parikulární inegrál ve varu: A p neo p A cos cos Derivací
30 p A cos cos cos cos p A Dosadíe do rovnice: A cos A A cos A A cos A cos Rovnice ůže ý splněna pro liovolné je ehdy plaí-li rovnos koeficienů u funkcí a cos, edy: A cos A cos cos. rovnice je pro A splněna pro cos z oho g cos Porovnání čiaelů a jenovaelů zloku usí ý:
31 B B cos onsana B se určí z podínky: cos B po zpěné dosazení: cos Dosadíe A A Oecné řešení nehoogenní rovnice je:. čás A Ae ve keré jsou : A, inegrační konsany, keré se určí z počáečních podínek.
32 neo 4 (pro podkriický úlu) Analýza vzahu pro ().čás se s rosoucí čase veli rychle líží nule, neoť vliv luení je v exponenu exponenciální funkce e. Po její vyizení ude í výchylka honého odu podle.čási usový průěh s konsanní axiální výchylkou A dle vzahu se sejnou úhlovou rychlosí (frekvencí) jako udící síla, ale s fázový posune. Poo Věa: Poěr axiální dynaické výchylky ke saické výchylce (výchylka odu za klidu) je roven poěru axiální dynaické síly ke saické síle v peru (síla v klidu) a nazývá
33 se dynaický součiniel d d s s Důkaz V rovnovážné poloze ax A s ax.dynaická výchylka Saická výchylka je způsoena sálý nepohylivý zaížení např. íhou s s Pro určení dynaického součiniele ěříe saické a dynaické výchylky. Nora povoluje počía se zaížení saický násoený dynaický součiniele, kerý se uvádí pro jednolivé ypy konsrukcí. Dynaický součiniel se ění dle úhlové rychlosi udící síly a jeho axiální hodnoa je při "kriické úhlové rychlosi". Vezee-li nezávisle na ude A axiální pro iniální, hledáe edy exré ohoo výrazu.
34 Podínka exréu: a) Vzah je splněn pro, což odpovídá A a s s d ) kri kde kri je kriická úhlová rychlos udící síly, pro kerou jsou výchylky a í síly axiální. riický kioče udící síly: f dosadíe kri do A 4 ax A Dosazeno
35 ax A Odvozený vzah plaí za předpokladu, že nezávisí na, např. pulsující síla od vozidla na osě, od věru ap. Při haronické síle vzniklé odsředivou silou nevyváženého rooru závisí na úhlové rychlosi rooru a poo exréní apliuda A je sejná, ale pro kriické oáčky: f
Tlumené kmity. Obr
1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující
FYZIKA I. Pohyb těles po podložce
VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projek realizovaný na SPŠ Nové Měso nad Meují s finanční podporou v Operační prograu Vzdělávání pro konkurenceschopnos Královéhradeckého kraje Modul 3 - Technické předěy ng. Jan Jeelík 4. Pohybová energie
Příklad 4 Ohýbaný nosník - napětí
Příklad 4 Oýaný nosník - napěí Teorie Prosý o, rovinný o Při prosé ou je průře naáán oový oene oáčející kole jedné lavníc os servačnosi průřeu, ovkle os. oen se načí neo jeno. Běžněji je ožné se seka s
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie
EKONOMETRIE 6. přednáška Modely národního důchodu
EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,
Pasivní tvarovací obvody RC
Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :
1.3.4 Rovnoměrně zrychlený pohyb po kružnici
34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb
Řešení: uvolnění - volba reakcí, vnitřní síly řešené z levého tělesa: Ekvivalentní varianty prutu: Deformační podmínka: ΔL=0
Cvičení 4 k procvičení označeno vlevo červeno čaro P/4 až P4/4 osaní D/4 až D4/4, ožný doácí úkol P/4 Dána je soosá příá yč konsanních průřezů =00 s ěžiši T složená z ěděného úsek délky =00 a ocelového
3.2.2 Rovnice postupného vlnění
3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny
Dynamika hmotného bodu. Petr Šidlof
Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení
Nakloněná rovina II
3 Nakloněná rovina II Předoklady: Pedagogická oznáka: Obsah hodiny se za norálních okolnosí saozřejě nedá sihnou, záleží na Vás, co si vyberee Pedagogická oznáka: Na začáku hodiny zadá sudenů říklad Nečeká
4. Střední radiační teplota; poměr osálání,
Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění
Kmitání tělesa s danou budicí frekvencí
EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů
NA POMOC FO. Pád vodivého rámečku v magnetickém poli
NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním
ÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
3.1.2 Harmonický pohyb
3.1.2 Haronický pohyb Předpoklady: 3101 Graf závislosti výchylky koštěte na čase: Poloha na čase 200 10 100 poloha [c] 0 0 0 10 20 30 40 0 60 70 80 90 100-0 -100-10 -200 čas [s] U některých periodických
Matematika v automatizaci - pro řešení regulačních obvodů:
. Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.
Numerická integrace. b a. sin 100 t dt
Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě
3.2.2 Rovnice postupného vlnění
3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny
4.KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolující pohyb 2. pružně poddajné vazby - dovolují pohyb
4.MITÁNÍ VOLNÉ 4. Lárí ktáí (harocký osclátor v fyzc) Vl časý pohy hotého odu j ktavý pohy. táí ud lárí, jstlž síla, ktrá př výchylc x vrací hotý od do rovovážé polohy, j úěrá výchylc F x (4..) kostata
I. část - úvod. Iva Petríková
Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,
Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.
Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní
Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()
9 Viskoelastické modely
9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály
Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8
Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická
Základy elektrotechniky
Základy elektrotechniky 3. přednáška Řešení obvodů napájených haronický napětí v ustálené stavu ZÁKADNÍ POJMY Časový průběh haronického napětí: kde: U u U. sin( t ϕ ) - axiální hodnota [V] - úhlový kitočet
Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu
Sýskala, 22 L e k c e z e l e k r o e c h n i k y Víězslav Sýskala TÉA 6 Oddíl 1-2 Sylabus k émau 1. Definice elekrického pohonu 2. Terminologie 3. Výkonové dohody 4. Vyjádření pohybové rovnice 5. Pracovní
STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ
STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují
OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI
OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka
5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav
5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických
Kmitání vynucené. kmitání při působení konstantní síly, harmonicky buzené kmitání amplitudová a fázová charakteristika.
Kiání vynucené Osh přednášy : iání při půsoení onsnní síly, hronicy uzené iání pliudová fázová chrerisi Do sudi : si,5 hodiny Cíl přednášy : seznái sudeny se záoniosi vynuceného iání Kiání vynucené D =
(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení
(). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí
Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité
Pružnos a plasicia, 2.ročník bakalářského sudia Téma 5 Kroucení Základní principy a vzahy Smykové napěí a převoření Úlohy saicky určié a saicky neurčié Kaedra savební mechaniky Fakula savební, VŠB - Technická
Digitální učební materiál
Číso projeu Název projeu Číso a název šabon íčové aivi Digiání učební aeriá CZ..7/.5./3.8 Zvainění výu prosřednicví ICT III/ Inovace a zvainění výu prosřednicví ICT Příjece podpor Gnáziu, Jevíčo, A. K.
EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g =
NB.3 NB.3.1 Rosah planosi Pružný kriický momen π I µ cr 1 + κ w + ζ k 诲诲쩎睃睅 睅 a s 5 s ( + ) I A 1 ψ f )I (hf / ) (1) Posup uvedený v éo příloe je vhodný pro výpoče kriického momenu nosníků konsanního dvojose
I. Soustavy s jedním stupněm volnosti
Jiří Máca - aedra mechaniy - B325 - el. 2 2435 45 maca@fsv.cvu.cz 1. Záladní úlohy dynamiy 2. Dynamicá zaížení 3. Pohybová rovnice 4. Volné nelumené miání 5. Vynucené nelumené miání 6. Přílady 7. Oáčivé
I. MECHANIKA 6. Kmity a vlnění I
I. MECHNIK 6. Ky a vlnění I Obsah Haroncé y význačná fora pohybu, přílady, výchyla, peroda, frevence, ruhová frevence. Haroncý oscláor. Neluené haroncé y aeacý pops, oplení noace, fázor. Tluené y, aperodcý
Vznik a vlastnosti střídavých proudů
3. Střídavé proudy. Naučit se odvození vztahu pro okažitý a průěrný výkon střídavého proudu, znát fyzikální význa účiníku.. ět použít fázorový diagra na vysvětlení vztahu ezi napětí a proude u jednoduchých
3.1.3 Rychlost a zrychlení harmonického pohybu
3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická
ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS
ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY
Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných
Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky
Statika staveních konstrukcí II., 3.ročník akalářského studia Téma 3, Úvod do dynamiky staveních konstrukcí dynamiky Úvod Vlastní kmitání Vynucené kmitání Tlumené kmitání Podmínky dynamické rovnováhy konstrukcí
MECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTRSKÉHO PROGRAMU STAVBNÍ INŽNÝRSTVÍ -GOTCHNIKA A PODZMNÍ STAVITLSTVÍ MCHANIKA PODZMNÍCH KONSTRUKCÍ Základní vzahy z reologie a reologického
MECHANICKÉ KMITÁNÍ TLUMENÉ
MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava
KOMPLEXNÍ DVOJBRANY - PŘENOSOVÉ VLASTNOSTI
Koplexní dvobrany http://www.sweb.cz/oryst/elt/stranky/elt7.ht Page o 8 8. 6. 8 KOMPEXNÍ DVOJBNY - PŘENOSOVÉ VSTNOSTI Intergrační a derivační článek patří ezi koplexní dvobrany. Integrační článek á vlastnost
= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08
Kroucení NB. Vniřní síl od kroucení Výsledk jednodušené analý pruů oevřeného průřeu se anedbáním účinku prosého kroucení ve smslu 6..7.(7) le upřesni na ákladě následující modifikované analogie ohbu a
x udává hodnotu směrnice tečny grafu
Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je
Univerzita Tomáše Bati ve Zlíně
Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí
Skupinová obnova. Postup při skupinové obnově
Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi
VY_32_INOVACE_06_III./1._OBVOD STŘÍDAVÉHO PROUDU
VY_32_INOVACE_06_III./1._OBVOD STŘÍDAVÉHO PROUDU Střídavý proud Vznik střídavého napětí a proudu Fyzikální veličiny popisující jevy v obvodu se střídavý proude Střídavý obvod, paraetry obvodu Střídavý
Laplaceova transformace Modelování systémů a procesů (11MSP)
aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála
MECHANICKÉ KMITÁNÍ NETLUMENÉ
MECHANICKÉ KMITÁNÍ NETLUMENÉ Kitání je PERIODICKÝ pohyb hotného bodu (tělesa). Pohybuje se z jedné rajní polohy KP do druhé rajní polohy KP a zpět. Jaýoliv itající objet se nazývá OSCILÁTOR. A je aplituda
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné
10 Lineární elasticita
1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí
frekvence f (Hz) perioda T = 1/f (s)
1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu
Diferenciální rovnice 1. řádu
Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou
Příklad 4 Ohýbaný nosník napětí
Příklad 4 Oýaný nosník napěí Zadání Nosník s převislým koncem je aížen spojiým aížení q = 4 kn/m a osamělou silou F = 40 kn. Průře nosníku je ocelový svařovaný proil. Roměr nosníku jsou: L =,6 m L =, m
Úloha VI.3... pracovní pohovor
Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro
transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.
finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava
Kaedra obecné eleroechniy Faula eleroechniy a inforaiy, VŠB - U Osrava ELEKRIKÉ SROJE - rozdělení, druhy provedení, vlasnosi, dienzování. Rozdělení elericých srojů (přehled). Označování elericých srojů
5. Modifikovaný exponenciální trend
5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α
Práce a výkon při rekuperaci
Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava
Řešený příklad: Návrh za studena tvarovaného ocelového nosníku
Dokuen: SX06a-CZ-EU Lis 1 z 7 Řešený příklad: Návrh za sudena varovaného ocelového Teno příklad se zabývá návrhe prosě uloženého sropního C proilu. Předpokládá se že horní i dolní pásnice je spojiě příčně
1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.
Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,
1. Pohyby nabitých částic
1. Pohyby nabitých částic 16 Pohyby nabitých částic V celé první kapitole budee počítat pohyby částic ve vnějších přede znáých (zadaných) polích. Předpokládáe že 1. částice vzájeně neinteragují. vlastní
3B Přechodné děje v obvodech RC a RLC
3B Přechodné děje v obvodech a íl úlohy Prohloubi eoreické znalosi o přechodných dějích na a obvodu. Ukáza možnos měření paramerů přechodných dějů v ěcho obvodech. U obvodu 2. řádu () demonsrova vliv lumicího
Řešení: Odmocninu lze vždy vyjádřit jako mocninu se zlomkovým exponentem. A pro práci s mocninami = = = 2 0 = 1.
Varianta A Př.. Zloek 3 3 je roven číslu: a), b) 3, c), d), e) žádná z předchozích odpovědí není Řešení: Odocninu lze vždy vyjádřit jako ocninu se zlokový exponente. A pro práci s ocninai již áe jednoduchá
MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A
MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující
Parciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
Univerzita Tomáše Bati ve Zlíně
Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,
P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE
P Ř Í K L A D Č. OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE Projek : FRVŠ 0 - Analýza meod výpoču železobeonových lokálně podepřených desek Řešielský kolekiv : Ing. Marin Tipka Ing. Josef
OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE
OBECNÁ LOÁLNĚ PODEPŘENÁ ŽELEZOBETONOÁ STROPNÍ ONSTRUCE Je dán železobeonový monoliický skele (viz schéma konsrukce). Sousední desková pole jsou zaížena rozdílným užiným zaížením. Meodou součových momenů
Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
Hydrostatické váhy. HANA MALINOVÁ Katedra didaktiky fyziky, MFF UK. Princip hydrostatického vážení. Veletrh nápadů učitelů fyziky 14
Velerh nápadů učielů fyziky 4 Hydrosaické váhy HANA MALINOVÁ Kaedra didakiky fyziky, MFF UK V příspěvku bude prezenována eoda hydrosaického vážení, kerá se používá na určování husoy různých aeriálů. Žáci
2.2.2 Měrná tepelná kapacita
.. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro
Testovací příklady MEC2
Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování
ZMĚNY SKUPENSTVÍ LÁTEK
ZMĚNY SUPENSTÍ LÁTE evné láky ání uhnuí kaalné láky desublimace sublimace vyařování kaalnění (kondenzace) lynné láky 1. Tání a uhnuí amorfní láky nemají bod ání ají osuně X krysalické láky ají ři určiém
Studijní texty FYZIKA I. Fakulta strojní Šumperk
Sudijní exy FYZIKA I Fakula srojní Šumperk RNdr Eva Janurová, PhD Kaedra fyziky, VŠB-TU Osrava 6 OBSAH ÚVOD, ZÁKLADNÍ POJMY 3 FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY 3 ROZDĚLENÍ FYZIKÁLNÍCH VELIČIN 4 KINEMATIKA
Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9
Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů
5 GRAFIKON VLAKOVÉ DOPRAVY
5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos
Hodnoty pro trubkový vazník předpokládají styčníky s průniky trubek, v jiných případech budou vzpěrné délky stejné jako pro úhelníkové vazníky.
5. Vazník posuek pruů 5. Vzpěrné élky Tab.: Vzpěrné élky pruů příhraových vazníků Úhelníkový vazník v rovině vzálenos uzlů Horní pás z roviny vzálenos vaznic vzálenos svislého zužení Dolní pás z roviny
Diferenciální počet funkcí více reálných proměnných SLOŽENÉ FUNKCE. PŘÍKLAD 1 t, kde = =
Diferenciální poče funkcí více reálných proměnných -- SLOŽENÉ FUNKCE PŘÍKLAD Určee derivaci funkce h ( = f( g( g( kde g ( = + g ( = f ( / = e Podle pravidla o derivování složených funkcí více proměnných
Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury.
2. přednáška N + M + M Jádro průřeu Šikmý ohb M + N M + N M + M + N Jádro průřeu Ecenrický lak a vloučeného ahu Konrolní oák Miroslav Vokáč miroslav.vokac@cvu.c ČVUT v Prae, Fakula archiekur 19. října
(test version, not revised) 9. prosince 2009
Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie
Příloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY
říloha: Elekrická práce, příkon, výkon říklad: 4 variana: onorné čerpadlo vyčerpá axiálně 22 lirů za inuu do axiální výšky 1,5 erů Jaká je jeho účinnos, když jeho příkon je 9 Husoa vody je 1 ř 4 var: BEZ
FINANČNÍ MATEMATIKA- ÚVĚRY
Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-
JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2
STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:
LABORATORNÍ CVIČENÍ Z FYZIKY
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY ABORATORNÍ CVIČENÍ Z FYZIKY Jéno: Petr Česák Datu ěření: 7.. Studijní rok: 999-, Ročník: Datu odevzdání:.5. Studijní skupina: 5 aboratorní skupina: Klasifikace:
MĚŘENÍ NA ASYNCHRONNÍM MOTORU
MĚŘENÍ NA ASYNCHRONNÍM MOTORU Základní úkole ěření je seznáit posluchače s vlastnosti asynchronního otoru v různých provozních stavech a s ožnosti využití provozu otoru v generátorické chodu a v režiu
PJS Přednáška číslo 2
PJS Přednáška číslo Jednoduché elekromagnecké přechodné děje Předpoklady: onsanní rychlos všech očvých srojů (časové konsany delší než u el.-mg. dějů a v důsledku oho frekvence elekrckých velčn. Pops sysému
SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07
Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení
Pohyb soustavy hmotných bodů
Pohyb soustavy hotných bodů Tato kapitola se zabývá úlohai, kdy není ožné těleso nahradit jední hotný bode, předevší při otáčení tělesa. Těžiště soustavy hotných bodů a tělesa Při hodu nějaký složitější
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B
Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:
3.1.8 Přeměny energie v mechanickém oscilátoru
3..8 Přeěny energie v echanické oscilátoru Předoklady: 0050, 03007 Pedagogická oznáka: Odvození zákona zachování energie rovádí na vodorovné ružině, rotože je říočařejší. Pro zájece je uvedeno na konci
4 SÁLÁNÍ TEPLA RADIACE
SÁLÁNÍ TEPLA RADIACE Vyzařovaná energie tělese se přenáší elektroagnetický vlnění o různé délce vlny. Podle toho se rozlišuje záření rentgenové, ultrafialové, světelné, infračervené a elektroagnetické
10. Charakteristiky pohonů ve vlastní spotřebě elektrárny
0. Charakeriiky pohonů ve vlaní pořebě elekrárny pořebiče ve V.. ají yo charakeriické vlanoi: Příkon Záběrný oen Doba rvání rozběhu Hlavní okruhy pořebičů klaické konvenční epelné elekrárny jou:. Zauhlování