ŘÍZENÍ POLOHY LEVITUJÍCÍ KULIČKY V MAGNETICKÉM POLI THE POSITION CONTROL OF LEVITATING BALL IN MAGNETIC FIELD. kde je u, - mezní hodnoty řízení,
|
|
- Leoš Prokop
- před 6 lety
- Počet zobrazení:
Transkript
1 Transfer inovácií 4/9 9 ŘÍZENÍ POLOHY LEVITUJÍCÍ KULIČKY V MAGNETICKÉM POLI THE POSITION CONTROL OF LEVITATING BALL IN MAGNETIC FIELD Doc. Ing. Renaa Wagnerová, Ph.D. Ing. Lkáš Richr VŠB Technická niverzia Osrava, Fakla sroní Kaedra aoaizační echniky a řízení, 7. lisopad 5, 78 Osrava-Porba Česká repblika e-ail: renaa.wagnerova@vsb.cz Absrak Příspěvek popise několik příspů k návrh robsních algoriů řízení vyžívaící klozavé ódy. Je zde popsán původní přísp k návrh klozavého řízení, keré spočívá v rozšíření nelineárního klozavého řízení o inegrační ožk. Poocí popsaných algoriů e řízená poloha leviící kličky v agneické poli. Správnos ěcho algoriů byla ověřena ak poocí číicové silace, ak i přío na laboraorní pracoviši. Všechny algoriy zaisili dosažení žádané polohy kličky. Klíčová ova Leviace, robsní řízení, klozavé ódy, laboraorní pracovišě Absrak The conribion describes several approaches o robs conrol design sing iding ode. There is descripion of he priary approach o iding conrol design, which consiss in he eension of non-linear iding conrol of an inegraion eleen. These conrol algorihs were sed for posiion conrol of leviaing ball in agneic field. They were verified wih help of coper silaion and also direcly on laboraory sand. All described algorihs ensre reaching he reqired ball posiion. Key words leviaion, robs conrol, iding odes, laboraory sand ÚVOD Probleaika aoaického řízení echnologických proces se veli rychle ění a rozvíí. Proo e řeba sále rozvíe nové a nové eody řízení. Nový a dynaický způsobe řízení se eví návrh robsních algori řízení. Robsní řízení předsave sad eod pro návrh řízení, keré se snaží važova nepřesnosi v odelování dynaických syséů, případně nesálos akových odelů v průběh saoného proces řízení. Do ohoo odvěví aké spadá synéza řízení v klozavé reži. NÁVRH KLOUZAVÉHO ŘÍZENÍ Návrh nerobsních algoriů řízení vyžade dobro znalos aeaického odel daného sysé. Teno problé věšino odsraňee vysoko hodnoo akční veličiny. Těo probléů se ůžee vyhno právě požií nespoiého řízení v klozavé reži. Jedná se o dvopolohové řízení, kde přepínáe ezi ezníi hodnoai a o na základě obecně nelineární přepínací fnkce []. Řízení e popsáno vzahe [,, ] T =, K () for > = () for < kde e, - ezní hodnoy řízení, - vekor klozavého řízení. V někerých případech e pořeba zěni ve vzah () nerovnosi na opačné. Při návrh přepínací fnkce vycházíe z eody agregace savových proěnných []. Algoris řízení v klozavé reži edy ůžee popsa vzahe ( ) = U sgn () τ ( e ) T D = D e ed (4) [,,, ] U = diag K (5) ( ) = [ ( ),sgn( ),, sgn( )] T sgn sgn K (6) kde e U diagonální aice, eíž prvky so ezní hodnoy řídicích proěnných, sgn znaénková fnkce, T aice časových konsan, D agregační aice, e vekor reglačních odchylek. Klozavé řízení () e ednodché a robsní, ale eho nevýhodo e vysoká akivia řízení. To akivi lze sníži spoio aproiací znaénkové fnkce např. fnkcí nasycení nebo hyperbolický angen. Jino ožnosí, ak sníži akivi řízení, e rozšíření klozavého řízní o inegrační člen. Důležio vlasnosí inegračního člen e, že lí vysoké frekvence. 45
2 Transfer inovácií 4/9 9 Lze o vidě i na výpoč inegrál haronické fnkce sin( ω) d = cos( ω) (7) ω Což analogicky plaí i pro fnkci cosins. Bdee važova neednodšší ožnos var klozavého řízení s inegrační člene a o lineární kobinací obo výrazů, akže v oo případě lze popsa klozavé řízení vzahe = U ( ) K sgn dτ (8) kde K, U diagonální aice s konsanníi prvky. Tvar přepínací fnkce bdee važova sený ako klozavého řízení. Prvky aice K sí í sené znaénko ako U, inak by byl výše popsaný algoris nesabilní. Akivia řízení se vždy sníží, pokd se edná o úloh sabilizace. V případě edování savové raekorie e akivia obo algoriů sená, pokd zěna žádané raekorie e rychlá. Obr. Laboraorní pracovišě leviace kličky v agneické poli LEVITACE V MAGNETICKÉM POLI Výše popsané algoriy řízení požiee pro návrh řízení polohy leviícího kličky v agneické poli. Laboraorní pracovišě leviace e vidě na obr.. Jedná se o ednooso leviaci a chování daného sysé lze popsa rovnicei [] ( ) L & = g i (9) d = Ri [ L( ) i] () d ( ) = Q L X L () [Ω], Q, L, X - paraery dané fyzikálníi charakerisikai viní, ádry a ocelové kličky [H., H, ]. Úpravo vzahů (9) () a zavedení savových proěnných =, = &, = & získáe aeaický odel leviace ve savové vyádření & = & = & = f ( ) g ( ) () kde f (), g () - nelineární fnkce savových proěnných popsané vzahy kde honos kličky [kg], X vzdálenos ezi kličko a cívko elekroagne [], I elekrický prod [A], U elekrické napěí [V], L() indkčnos cívky [H], R elekrický odpor 46
3 Transfer inovácií 4/9 9 f g R = Q ( X ) L X Q Q L X ( ) ( X ) ( ) = Q Q X ( g ) g L ( X ) Je zřeé, že se edná o silně nelineární sysé řeího řád, a proo agregační aice a aice časových konsan aí náedící var D ξ T = d =, T T T = T () kde T i časové konsany volené s ohlede na chování zavřeného sysé řízení. Pak přepínací fnkce á var ξ = e dτ T T T T T ξ ( e e ) e T T ( e e ) (4) kde e rozdíl ezi žádano a skečno poloho kličky, e = e&, e = e&. Pak algoriy řízení so popsány vzahy ( ) = sgn (5) = ( ) k sgn dτ (6) Správnos navržených algoriů řízení byla ověřena ak poocí číicové silace, ak i přío na eperienální pracoviši [4], [5]. Hodnoy paraerů přepínací fnkce byly sené pro oba algoriy (T =,5 s, T =,5 s, ξ =, =- 85, k=-85). Na obr. 7 so vidě průběhy polohy kličky a řízení ak pro úloh sabilizace, ak i pro edování savové raekorie. Na obrázcích s průběhy polohy so vždy vidě průběhy ří proěnných, proěnná předsave průběh polohy při požií klozavého řízení s fnkcí sign, w předsave žádaný průběh polohy a proěnná popise průběh polohy pro klozavé řízení s inegrační člene. Pod grafe s průběhe polohy so vždy vedeny dva průběhy řízení, horní graf zobraze průběh klozavého řízení s fnkcí sign popsané vzahe (5) a spodní graf zobraze průběh klozavého řízení s inegrační člene popsaný vzahe (6). - 9 w 8 () Obr. Průběh polohy leviící kličky pro úloh sabilizace 47
4 Transfer inovácií 4/ Obr. Průběhy řízení pro úloh sabilizace - 9 w 8 7 () Obr. 4 Průběh polohy leviící kličky pro úloh edování savové raekorie 48
5 Transfer inovácií 4/ Obr. Průběhy řízení pro úloh edování savové raekorie - 9 w 8 7 () Obr. 6 Průběh polohy leviící kličky pro úloh edování savové raekorie 49
6 Transfer inovácií 4/ Obr. Průběhy řízení pro úloh edování savové raekorie ZÁVER Příspěvek popise návrh klozavého řízení. Vlasně se edná o nespoié řízení, kde se ezi ezníi hodnoai akční veličiny přepíná na základě hodnoy přepínací fnkce. Výhodai ohoo algori řízení so velká robsnos, ednodchos, a že nevyžade znalos aeaického odel, poze e nné zná řád řízeného sysé a reglační odchylky sí bý ěřielné. Nevýhodo e vysoká akivia řízení, kerá není požielná pro všechny ypy akčních členů. Dále e zde popsána odifikace klozavého řízení, keré spočívá v rozšíření nespoiého klozavého řízení o inegrační člen (edná se o inegrál přepínací fnkce). Pokd se edná o úloh sabilizace, eno algoris výrazně sníží akivi akční veličiny při zachování robsnosi algori. V případě edování savové raekorie se akivia akční veličiny rovněž sníží, pokd zěna požadované raekorie není rychlá. Jinak bde akivia sená, en se sníží aplida kiání. LITERATURA [] YOUNG, D.K., UTKIN, V.I. & ÖZGÜNER, Ü. A Conrol Engineer s Gide o Sliding Mode Conrol. IEEE Transacions on Conrol Syses Technology. 999, VII, Nr, pp ISSN [] VÍTEČEK, A. & VÍTEČKOVÁ, M. Robs Conrol in Mining. In Proceedings of Inernaional Workshop on Inelligen Mining Syses. KYUSHU Universiy, Fkoka, April, p.-4, (Japonsko), ISBN [] LEE, S., H., SUNG, H. & K. & BIEN, L. Z. Self-rning conrol of elecroagneic leviaion syses. Conrol Engineering Pracice,, VIII, pp ISSN [4] FOJTÍK, D.& BABIUCH, M. Real-ie conrol ipleenaion for MS windows /XP operaing syses. In Proceedings of he 7 h WSEAS Inernaional Conference on AUTOMATIC CONTROL, MODELING AND SIMULATION ACMOS 5. Prage, Czech Repblic: WSEAS, March -5, 5, pp ISBN [5] ŠKUTA J., & BABIUCH, M. Usage of Serial Inerface for Conicaion wih MEMS Coponens. In Proceedings of 8 h Inernaional Carpahian Conrol Conference ICCC 7. Šrbské Pleso: TU Košice, May 4-7, 7, pp ISBN Teno příspěvek za podpory granového proek Fond rozvoe VŠ 6/9. 5
Využití programového systému MATLAB pro řízení laboratorního modelu
Využií programového sysému MATLAB pro řízení laboraorního modelu WAGNEROVÁ, Renaa 1, KLANER, Per 2 1 Ing., Kaedra ATŘ-352, VŠB-TU Osrava, 17. lisopadu, Osrava - Poruba, 78 33, renaa.wagnerova@vsb.cz, 2
VíceKatedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY
Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných
VíceIMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie
VíceTlumené kmity. Obr
1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující
VícePasivní tvarovací obvody RC
Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :
VícePOUŽITÍ PROGRAMU MATLAB SIMULINK A VIRTUAL REALITY TOOLBOXU PŘI NÁVRHU A EXPERIMENTÁLNÍM OVĚŘENÍ ŘÍZENÍ JEŘÁBOVÉ KOČKY. petr.noskievic@vsb.
POUŽITÍ PROGRAMU MATAB SIMUIN A VIRTUA REAITY TOOBOXU PŘI NÁVRHU A EXPERIMENTÁNÍM OVĚŘENÍ ŘÍZENÍ JEŘÁBOVÉ OČY Doc.Ing.Per Nosievič,CSc., Ing.Milan VANĚ, Ing.arel STRNAD VŠB-TU Osrava, aula srojní, aedra
VíceŘešení: uvolnění - volba reakcí, vnitřní síly řešené z levého tělesa: Ekvivalentní varianty prutu: Deformační podmínka: ΔL=0
Cvičení 4 k procvičení označeno vlevo červeno čaro P/4 až P4/4 osaní D/4 až D4/4, ožný doácí úkol P/4 Dána je soosá příá yč konsanních průřezů =00 s ěžiši T složená z ěděného úsek délky =00 a ocelového
VíceUniverzita Tomáše Bati ve Zlíně
Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,
Vícetransformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.
finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární
VíceVŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenkostěnné tlakové nádoby
VŠB- Technická univerzia Osrava Fakula srojní Kaedra pružnosi a pevnosi Úvod do MKP Auor: Michal Šofer Verze 0 Osrava 2011 Zadání: Proveďe napěťovou analýzu lakové nádoby v ísě D (v polovině válcové čási),
Více10. Charakteristiky pohonů ve vlastní spotřebě elektrárny
0. Charakeriiky pohonů ve vlaní pořebě elekrárny pořebiče ve V.. ají yo charakeriické vlanoi: Příkon Záběrný oen Doba rvání rozběhu Hlavní okruhy pořebičů klaické konvenční epelné elekrárny jou:. Zauhlování
VíceLaplaceova transformace Modelování systémů a procesů (11MSP)
aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála
VíceHydrostatické váhy. HANA MALINOVÁ Katedra didaktiky fyziky, MFF UK. Princip hydrostatického vážení. Veletrh nápadů učitelů fyziky 14
Velerh nápadů učielů fyziky 4 Hydrosaické váhy HANA MALINOVÁ Kaedra didakiky fyziky, MFF UK V příspěvku bude prezenována eoda hydrosaického vážení, kerá se používá na určování husoy různých aeriálů. Žáci
VíceFYZIKA I. Pohyb těles po podložce
VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
STŘÍDAVÝ POUD N V E S T E D O O Z V O J E V Z D Ě L Á V Á N Í. Sřídavý prod a jeho efekvní hodnoy sejnosěrný prod (d. c.) prod eče poze v jedno sěr sřídavý prod (a. c.) elekrcký prod, jehož časový průběhe
VíceNA POMOC FO. Pád vodivého rámečku v magnetickém poli
NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním
Více9 Viskoelastické modely
9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály
Více= 0 C. Led nejdříve roztaje při spotřebě skupenského tepla Lt
Měření ěrného skupenského epla ání ledu a varu vody Měření ěrného skupenského epla ání ledu a varu vody Úkol č : Zěře ěrné skupenské eplo ání ledu Poůcky Sěšovací kalorier s íchačkou, laboraorní váhy,
VícePřibližná linearizace modelu kyvadla
Přibližná linearizace model kyvadla 4..08 9:47 - verze 4.0 08 Obsah Oakování kalkl - Taylorův rozvoj fnkce... Nelineární savový model a jeho řibližná linearizace... 4 Nelineární model vs-výs a jeho řibližná
VíceSeznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.
4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci
VíceAplikace analýzy citlivosti při finačním rozhodování
7 mezinárodní konference Finanční řízení podniků a finančních insiucí Osrava VŠB-U Osrava Ekonomická fakula kaedra Financí 8 9 září 00 plikace analýzy cilivosi při finačním rozhodování Dana Dluhošová Dagmar
VíceVliv funkce příslušnosti na průběh fuzzy regulace
XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,
VíceKlíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru
Asabilní obvod s reálnými operačními zesilovači Josef PUNČOCHÁŘ Kaedra eoreické elekroechniky Fakula elekroechnicky a informaiky Vysoká škola báňská - Technická universia Osrava ř. 17 lisopadu 15, 708
VícePráce a výkon při rekuperaci
Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava
VíceInovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs
N V E S T C E D O R O Z V O J E V Z D Ě L Á V Á N Í Operační progra: Název oblas podpory: Název projek: Vzdělávání pro konkrenceschopnos Zvyšování kvaly ve vzdělávání novace a vyvoření odborných exů pro
VíceKOMPLEXNÍ DVOJBRANY - PŘENOSOVÉ VLASTNOSTI
Koplexní dvobrany http://www.sweb.cz/oryst/elt/stranky/elt7.ht Page o 8 8. 6. 8 KOMPEXNÍ DVOJBNY - PŘENOSOVÉ VSTNOSTI Intergrační a derivační článek patří ezi koplexní dvobrany. Integrační článek á vlastnost
VíceREGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ
REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém
VíceOBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI
OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka
VíceMATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická
VíceLineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()
Vícex udává hodnotu směrnice tečny grafu
Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je
VíceNávrh kombinovaného řízení
Poceedis o Ieaioal Scieiic Coeece o FME Sessio 4: Aoaio Cool ad Applied Ioaics Pape 44 Návh kobiovaého říeí VÍTEČEK Aoí Po I CSc kaeda ATŘ FS VŠB-Techická iveia Osava 7 lisopad 5 78 33 Osava-Poba e-ail:
VíceMaxwellovy a vlnová rovnice v obecném prostředí
Maxwellovy a vlnová rovnie v obeném prosředí Ing. B. Mihal Malík, Ing. B. Jiří rimas TCHNICKÁ UNIVRZITA V LIBRCI Fakula meharoniky, informaiky a mezioborovýh sudií Teno maeriál vznikl v rámi proeku SF
Víceecosyn -plast Šroub pro termoplasty
ecosyn -plas Šroub pro ermoplasy Bossard ecosyn -plas Šroub pro ermoplasy Velká únosnos Velká procesní únosnos Vysoká bezpečnos při spojování I v rámci každodenního živoa: Všude je zapořebí závi vhodný
VíceHlavní body. Úvod do nauky o kmitech Harmonické kmity
Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice
Více5 GRAFIKON VLAKOVÉ DOPRAVY
5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos
VíceFinanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Přímka kapitálového trhu
Finanční anageent Příka kapitálového trhu, odel CAPM, systeatické a nesysteatické riziko Příka kapitálového trhu Čí vyšší e sklon křivky, tí vyšší e nechuť investora riskovat. očekávaný výnos Množina všech
VíceStatika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.
Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní
Více7.4.1 Parametrické vyjádření přímky I
741 Paramerické vyjádření přímky I Předpoklady: 7303 Jak jsme vyjadřovali přímky v rovině? X = + D Ke všem bodů z roviny se z bod dosaneme posním C o vekor Pokd je bod na přímce, posováme se o vekor, E
Více4. Přechodné děje. 4.1 Zapínání střídavého obvodu
4. Přhoné ě Exisí-li v lkriké obvo rvky shoné aklova nrgii, noho v obvo robíha ě, ři nihž by vznikaly skokové zěny éo aklované nrgi. To ovš znaná, ž o ob, ky ohází k zěně nrioiké fory nrgi nahroaěné v
VíceAnalýza citlivosti NPV projektu na bázi ukazatele EVA
3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 2006 Analýza cilivosi NPV projeku na bázi ukazaele EVA Dagmar Richarová
VíceDiferenciální rovnice 1. řádu
Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou
Více1.3.4 Rovnoměrně zrychlený pohyb po kružnici
34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb
VíceKatedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava
Kaedra obecné eleroechniy Faula eleroechniy a inforaiy, VŠB - U Osrava ELEKRIKÉ SROJE - rozdělení, druhy provedení, vlasnosi, dienzování. Rozdělení elericých srojů (přehled). Označování elericých srojů
Víceá Í č ě ž áť í á ž á áží ě í á í č š í á í š é é ě ž é č ě č í š í é í á á ž á ě í ě í ě í í í ě í í á á á ě í á é í á Ťí á á ě í í í í é Ťí ě č ě ž á
ž Ť č š í č é í ě č ě šč í ť Í Á Č É Ě Č š í ě í ší ě ž á í ě é ě ž ž ě á ž áž í ž ě é ž í ž á á š ž č í é č é é ě é í š ěť č ě á Ťí á ž é é á í ž í í é ě é ě í é š ž žá é ě š í č ěšéá é íší č á á Ť ž
Více7. CVIČENÍ - 1 - Témata:
České vsoké čení echnické v Praze Fakla informačních echnologií Kaedra číslicového návrh Doc.Ing. Kaeřina Hniová, CSc. Kaeřina Hniová POZNÁMKY 7. CVIČENÍ Témaa: 7. Nespojié regláor 7.1Nespojié regláor
Více1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.
Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,
Více4. KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolují pohyb 2. pružně poddajné vazby - dovolují pohyb
4. MITÁNÍ VOLNÉ 4. Lineární kiání (haronický osciláor ve fyzice) Veli časný pohye honého odu je kiavý pohy. iání ude lineární, jesliže síla, kerá při výchylce x vrací honý od do rovnovážné polohy, je úěrná
Víceednáška Fakulta informačních technologií
7. přednp ednáška Doc. Ing. Kaeřina niová,, CSc. Kaedra číslicového návrhn Fakla informačních echnologií Ceské vsoké čení echnické v Praze 2011 1 7. Nespojié regláor PODLE ČINNOSTI PODLE PŘÍVODU P ENERGIE
VíceÍ í Ó Ť á í íě Ť ě á í Ť Ť é á í ší á í š ě í ě é Ť Č š Ť á í š á é á ě Ť á Ž ě ě š áťů á á á ě á Ž ě á ší á Ž í ž í á é Íí š í á ě ž Ž ě ší éí Ž í í
é é á é Ííž é ž ě Ů ž é Ťí ě é é ě á á á á é í é á í í á ě é ší ě á é í í ě é á ě ě í é Ť é ě í ší ší á Ťí í é ě ě š ě ší Ť Ííž í Ť é í á é í ě éá ě á í é í á Ž á é í ŤíŽ í é ě ě ší é ť š Ť á í š ť Ž ě
Více10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY
- 54-10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY (V.LYSENKO) Základní princip analogově - číslicového převodu Analogové (spojié) y se v nich ransformují (převádí) do číslicové formy. Vsupní spojiý (analogový) doby
VíceNové indikátory hodnocení bank
5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 2010 Nové indikáory hodnocení bank Josef Novoný 1 Absrak Příspěvek je
VíceDerivace funkce více proměnných
Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme
VíceROBUSTNÍ ŘÍZENÍ DVOUROZMĚROVÉ SOUSTAVY ROBUST CONTROL OF TWO INPUTS -TWO OUTPUTS SYSTEM
ROBUTNÍ ŘÍZENÍ DVOUROZMĚROVÉ OUTAVY ROBUT CONTROL OF TWO INPUT -TWO OUTPUT YTEM Jiří Macháček Anotace: Návrh decentralizovaných regulátorů je založen na podínkách robustní stability a robustní kvality
VíceAnalýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA
4 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 11-12 září 2008 Analýza rizikových fakorů při hodnocení invesičních projeků dle kriéria
VíceTeorie obnovy. Obnova
Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi
VíceSTATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ
STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují
VícePOPIS OBVODŮ U2402B, U2405B
Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody
VíceModel dvanáctipulzního usměrňovače
Ladislav Mlynařík 1 Model dvanáctipulzního usměrňovače Klíčová slova: primární proud trakčního usměrňovače, vyšší harmonická, usměrňovač, dvanáctipulzní zapojení usměrňovače, model transformátoru 1 Úvod
VíceÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
VíceMODELOVÁNÍ SOUPROUDÉHO VÝMĚNÍKU TEPLA V SIMULINKU S VYUŽITÍM S-FUNKCÍ
MDELVÁNÍ UPRUDÉH VÝMĚNÍKU EPLA V IMULINKU VYUŽIÍM -FUNKCÍ M. Pieš Š. žana Kaedra měřií a řídií eniky Fakla elekroeniky a informaiky VŠB-U srava Absrak eno článek se zabývá vyvořením a implemenaí maemaikéo
Více3B Přechodné děje v obvodech RC a RLC
3B Přechodné děje v obvodech a íl úlohy Prohloubi eoreické znalosi o přechodných dějích na a obvodu. Ukáza možnos měření paramerů přechodných dějů v ěcho obvodech. U obvodu 2. řádu () demonsrova vliv lumicího
Vícež á ž íí á í í á á é í á é ší ě Ž č á á ší š á í í í ě ě ň ě ť á ť ě š é á Ž Ťí ě á ě Í Ť í ž í é ě á ž í š Ó Č íž í á á ž íž Ž é č ě á ě é á é é ě í
š í á é á ě á é á á ě ě Ž í é í Í í é á Ťí Š í Ó Ťí í ě í Ť í ž š ž é ě é ě á ě ž á í á č ě ě ěď ě č ě í ě ě í é á Ó ě ž é í ší é Ž ž ň áš é Ťí ě á č ě é í í Ž á Ť ší ě é í éť č á é ě í ě č é č é č ě í
VíceSIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07
Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení
VíceKmitání tělesa s danou budicí frekvencí
EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů
VíceVěstník ČNB částka 16/2004 ze dne 25. srpna 2004
Třídící znak 1 0 6 0 4 6 1 0 ŘEDITEL SEKCE BANKOVNÍCH OBCHODŮ VYHLAŠUJE Ú P L N É Z N Ě N Í OPATŘENÍ ČESKÉ NÁRODNÍ BANKY Č. 2/2003 VĚST. ČNB, KTERÝM SE STANOVÍ MINIMÁLNÍ VÝŠE LIKVIDNÍCH PROSTŘEDKŮ A PODMÍNKY
VíceNakloněná rovina II
3 Nakloněná rovina II Předoklady: Pedagogická oznáka: Obsah hodiny se za norálních okolnosí saozřejě nedá sihnou, záleží na Vás, co si vyberee Pedagogická oznáka: Na začáku hodiny zadá sudenů říklad Nečeká
VícePJS Přednáška číslo 2
PJS Přednáška číslo Jednoduché elekromagnecké přechodné děje Předpoklady: onsanní rychlos všech očvých srojů (časové konsany delší než u el.-mg. dějů a v důsledku oho frekvence elekrckých velčn. Pops sysému
VícePříloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY
říloha: Elekrická práce, příkon, výkon říklad: 4 variana: onorné čerpadlo vyčerpá axiálně 22 lirů za inuu do axiální výšky 1,5 erů Jaká je jeho účinnos, když jeho příkon je 9 Husoa vody je 1 ř 4 var: BEZ
Více5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav
5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických
Více5. Modifikovaný exponenciální trend
5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α
Více7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU
Indexy základní, řeězové a empo přírůsku Aleš Drobník srana 1 7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU V kapiole Indexy při časovém srovnání jsme si řekli: Časové srovnání vzniká, srovnáme-li jednu
Více( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.
21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC
Více10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI
0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci
VíceSpektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský
Jan Malinsý V omo doumenu bude odvozeno sperum vysenuého sinusového signálu pomocí onvoluce ve frevenční oblasi. V časové oblasi e možno eno vysenuý signál vyvoři násobením obdélníového ( V a sinusového
VíceTéma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité
Pružnos a plasicia, 2.ročník bakalářského sudia Téma 5 Kroucení Základní principy a vzahy Smykové napěí a převoření Úlohy saicky určié a saicky neurčié Kaedra savební mechaniky Fakula savební, VŠB - Technická
Víceč Ó š í é í é í ž íč é Í é Ť č ž é Ž ě Š š é é čí í í ě í Óč é í Ó íč č í í ě ší íč í š í í í č ě í í č ě í ň ě í ě í ě ší í š í Š Í í é Í ě Ó Ťí ěě ě
í Š ě čž ť č í í é ž í č í íč í č ě Ž í ě č Ž Ž š é ě ší Ží č íž š ěží é Ží č ě č é Í ňí é č é é Č Í Í Ž Ů Ž í Ť ň í č Ť Ťí Í í ž č í í š Š ň ě í í Ťí č č Ž Ť š š í č ř í íž í Ž í Ó í í í č í í í ě í Ť
VíceMetodika zpracování finanční analýzy a Finanční udržitelnost projektů
OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA
VíceParciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
VíceNUMERICKÉ ŘEŠENÍ VIBROIZOLACE STROJE
NUMERICKÉ ŘEŠENÍ VIBROIZOLACE STROJE Jiří Vondřich., Radek Havlíček. Katedra mechaniky a materiálů, Fakulta elektrotechnická, ČVUT Praha Abstract Vibrace stroje způsobují nevyvážené rotující části stroje,
VíceÚloha V.E... Vypař se!
Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee
VíceTabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin.
Tabulky únosnosi varovaných / rapézových plechů z hliníku a jeho sliin. Obsah: Úvod Základní pojmy Příklad použií abulek Vysvělivky 4 5 6 Tvarovaný plech KOB 00 7 Trapézové plechy z Al a jeho sliin KOB
VíceJAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2
STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:
VíceStřídavý proud v životě (energetika)
Střídavý prod v životě (energetika) Přeměna energie se sktečňje v elektrárnách. Zde pracjí výkonné generátory střídavého napětí alternátory. V energetice se vyžívá střídavé napětí o frekvenci 50 Hz, které
VíceŘešený příklad: Návrh za studena tvarovaného ocelového nosníku
Dokuen: SX06a-CZ-EU Lis 1 z 7 Řešený příklad: Návrh za sudena varovaného ocelového Teno příklad se zabývá návrhe prosě uloženého sropního C proilu. Předpokládá se že horní i dolní pásnice je spojiě příčně
VíceNumerická integrace. b a. sin 100 t dt
Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě
Více10 Lineární elasticita
1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí
VíceČ Í Á Ě ť ň Š Í Ď ť ť Š Ě Í Í Í ň ň É É Ý Ě Í Ú Č Č Č ť Š Ď ň ř Č Č Č Ú ň ť Í ť Ú ú Í Č ť Č Č Č Č Č ň Č Š Š ď ň Č Á Í ú ň Í ň ť ň ú ŘÍ Š Ě Ý Č Í ď Í ňť ň Č Ú Á Ý Á Á Ó ť Í Í Í ť ú Ú Č ň ň Č Í ú ť ň Í ú
Víceé é ž í Ž ě ší ě é ší é š ě í í č é ě í í í Ž é Ť é š ě í č í í š č í íť íť ší Ť č í č é ú š ě í í ě Í í Ž š Ť í ě ě č í č ě í Ťí é í Ž ě ší ší ě é Ťí
Í Ž í ě é č í í í č é ě Ž ě ě ě ě í í ž ž Ťí š í ť Ť í ší ě í í š Ťí í Ť í ě ší ě é é ť íč é í é í é š ě Í ě ě Ť Ť Ó Íí š Ťí Š Š Š Ť Ť ň í ž š í Š ě Ť í é í í šíč í í ě í Íí ě ě ě č é š Ťí ě Š í í č í
VíceFREQUENCY SPECTRUM ESTIMATION BY AUTOREGRESSIVE MODELING
FEQUENCY SPECU ESIAION BY AUOEGESSIVE ODELING J.ůma * Summary: he paper deals wih mehods for frequency specrum esimaion by auoregressive modeling. Esimae of he auoregressive model parameers is he firs
Víceí é é ě š é á á š é í ř ž ě š ří ě ů é á š ě č á í é ě ě ě č ř é í š ě í ý á í í í š ě ě ší ň í š ě í ž é ž č áčá š ý ý í á á ší ý á č é í í á č ý á í
í é é ě š é á á š é í ř ž ě š ří ě ů é á š ě č á í é ě ě ě č ř é í š ě í ý á í í í š ě ě ší ň í š ě í ž é ž č áčá š ý ý í á á ší ý á č é í í á č ý á í í é í ě ší í ř ěž ě é ě ě ší á í č ř č í í ý č ě ě
VíceÚloha IV.E... už to bublá!
Úloha IV.E... už o bublá! 8 bodů; průměr 5,55; řešilo 42 udenů Změře účinno rychlovarné konvice. Údaj o příkonu naleznee obvykle na amolepce zepodu konvice. Výkon určíe ak, že zjiíe, o kolik upňů Celia
Víceú í í ů í í ů í ů ě ě ú ú Ú Ú ž í š í ě í ú í Š Ú ě í í ů ů í ň ě í ě í í ň í í í
ú Č í ěž í ú í ú ů ě í Č í ú š ú í ě Č í ú í ť ť ť Ě Á ť ú í í ů í í ů í ů ě ě ú ú Ú Ú ž í š í ě í ú í Š Ú ě í í ů ů í ň ě í ě í í ň í í í í ěž í í í ů ú ž Ž í ů í í ž í í í ů ž ší ě ž ší ě í í í ě í ě
Vícer Co se stane se spektrem signá lu z obr.1.12, dojde-li k zvětšení jeho opakovací frekvence na 500Hz? Ř ešení: Viz obr.1.15
r.5. Co se sane se spere signá lu z obr.., dojde-li zvěšení jeho opaovací frevence na 5Hz? Viz obr..5 u( )[ V] u( )[ V] 3 5 6 [ s] 3 5 6 [ s] s s U i, U [ V] U i,5 U [ V],,5,,,5,5 ϕ [ rad] π ϕ [ rad] π
VíceOTÁZKY MODELOVÁNÍ PRŮNIKU CHLORIDŮ BETONEM ISSUES OF CHLORIDE INGRESS IN CONCRETE MODELLING
OTÁZKY MODELOVÁNÍ PRŮNIKU CHLORIDŮ BETONEM ISSUES OF CHLORIDE INGRESS IN CONCRETE MODELLING Břeislav Teplý, Dia Vořechovská, Per Konečný, Marina Šoodíková Jako nejčasější příčina degradace železobeonových
VíceŽ í í úř ý í š ě í í ě ří Ž ří š í ý Ž ý ý í úř ů Ý ý í ýš ší í í ř ýš ř ý í Ýš í ř í ř ú í ú ó í í í ý ří ě í í í ří ě í í ě í ů ř ř í š ě ú í š ů ú
í ý úř š ě í í í ý úř í š ě í ěř ý í ě í ě ě í ří í ě ř ý í í ě ě ě ř Č Š ř Ž í ě ýš š í í ó í š ř ř í í ř Ž í í ř Ž š Ž í í ý í ř ě í ř í ě ř ý Ž í ě í í í í ě Ž ě í í ě ší í ř í í ě í ě í ě ě ší í Ž
Více3. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1
3. MĚŘCÍ PŘEVODNÍKY ELEKTCKÝCH VELČN měřicí zesilovače: požadavy na měřicí zesilovače, záporná zpěná vazba, ideální operační zesilovač, záladní zapojení měřicích zesilovačů s OZ měření malých napěí a prodů
VíceÍ ď íš á í ě á á ž á Í á Á ě ě č á Á í ží í Í á í á í ě ň Ťá Í á áš Ť Š áč á ž č č ňí ě ě á á ďí á ď Í á č čí ě ě í čí á á ď ď Ó í í á ě í č ě ž áž ě
á í áž ě Ť ž á í ž ž ě ší ě Ť č í á Ťí ě Í á í í í í š č á í č í č Ť á ž Í ě ě č Í á á á č á á í ě á í ě ť č í č ť Ý č á ť á Ý Č ší á ě č Ý í ě ě á á á í í Ž ě í í í Ť í íč áť á ú í á Í ě á ú č í Ů ě č
VíceÁ Ý Á Ť ĚŽ Í Ý Ť ŘÍ Ť Š Í ť Č Ž Č Č Ý Á Í Ž Š Á Ž ň Á Í Í Í Á Č Ř Á ÁČ Á Ž ť ť Í ť Ť ť Ť Ť Ť Ť Í ŘÍ Š Ť Ť Ž ŠŽ ň Ť Ť ň Š ň Ť ú Í Ý Á ď Š Ř ď Ť Í ď ň Ť ň ň Ď Ž Ž ň ň ň Š Ť Š ň Í ň Í ň Ť ň ť Č ň Š Š ň Í
VíceSkupinová obnova. Postup při skupinové obnově
Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi
Více