h = J s 2
|
|
- Vendula Janečková
- před 6 lety
- Počet zobrazení:
Transkript
1 PŘDNÁŠKA (viz lavaty SKM): De Broglieova yotéza, vlnová funkce, Scrödingerova rovnice, Bornova interretace vlnové funkce. Kvantová mecanika je fyzikální teorie, tedy návry vedoucí k ředovědím, jež musí být ověřeny exerimentálně. I Newton klasickou mecniku neodvodil, nýbrž ostuloval. (Zákon setrvačnosti, zákon síly a zákon akce a reakce) I v kvantové mecanice uvidíme několik ostulátů, které rostě někoo naadly. Tyto ostuláty nemůžeme odvodit, vycázejí z výsledků exerimentů. Kvantová teorie založená na těcto ostulátec nejen že funguje, ale funguje extrémě dobře. Přesné ředovědi kvantové teorie oskytují nejleší důkaz latnosti ostulátů, na kterýc je stavena. De Broglieova yotéza Z vysvětlení exerimentálníc fakt v ředcozíc kaitolác lyne, že ři zkoumání atomárníc jevů záření řestává mít čistě vlnový carakter a cová se v některýc asektec jako soubor částic. Zdá se tedy užitečné zavést nový fyzikální ojem kvantové částice oisující fyzikální objekty vyskytující se na atomárníc a nižšíc úrovníc. Pod vlivem oznatků o duálním částicově vlnovém carakteru světla De Broglie v roce 9 usoudil, že tento dualismus je vlastností všec mikroskoickýc objektů a že nejen elektromagnetické záření, ale i motné objekty (nař. elektrony) se moou covat buď jako vlna nebo jako částice, odle too jaké jevy, v nicž se účastní, zkoumáme. Vyslovil yotézu, že ro ois jevů na atomární úrovni je třeba řiřadit volným (částice, na kterou neůsobí síly) kvantovým částicím s ybností a energií nikoliv bod fázovéo rostoru nýbrž rovinou monocromatickou vlnu,, jejíž frekvence je (stejně jako ro foton) úměrná energii a jejíž vlnová délka je neřímo úměrná ybnosti částice, řesněji funkci, x, t = A e i x t () kde A je zatím neurčená konstanta. ħ= = J s () V té době nebyly známy žádné okusy dokazující vlnové vlastnosti motnýc částic jako je
2 oyb, či interference! Ty se objevily až o několik let ozději, ři zkoumání roztylu elektronů na krystalec. De Broglie za tuto yotézu dostal Nobelovu cenu v roce 99. ; =m v ). Prozkoumejme trocu odrobněji tuto rovnici (využíváme vztay = m Obrázek rovinná vlna. Čas t=0. Směr vlny je určen vektorem. Kolmo na tento vektor je vlnová funkce () konstantní. Čas t=0. Vlnová délka (tzv. debrogliovská vlnová délka) = kde =. Časově závislá rovnice (s jakou frekvencí kmitají jednotlivé body?): = f =,z too lyne f =, což je insteinův vzta získaný interretací fotoefektu ro foton. S jakou ryclostí se osunuje bod se stejnou fází (naříklad maximum reálné části vlny)? vzdálenost / = = = Fázová ryclost: v f =. Všiměme si, že fázová ryclost je čas / m odlišná od ryclosti částice: v =! m Není řekvaení, že () latí ro nemotný foton (elektromagnetické záření) Platí to však i ro motnou volnou částici! Vzta () se týká volné částice. Pro částici jakkoli omezenou (v otenciálu V(x)) to nelatí. Každému fyzikálnímu objektu je řiřazena vlnová rovnice. Proč tedy neozorujeme vlnové cování motnýc objektů? Vysvětlení je v tom, že Plancova konstanta je extrémně malá a tedy vlnová délka motnýc objektů = je malá. Aby nastala interference na dvojštěrbině, musí být štěrbiny zruba stejně vzdálené jako je vlnová délka vlny/objektu. Vlnové vlastností motné částice, elektronu, byly exerimentálně ověřeny Tomsonem až v roce 97, Nobelova cena v roce 97. Použity elektrony s kinetickou energií kin=54 ev H =6.7 nm (=54x.60x0-9 J ). DeBrogliův vzta ředovídá vlnovou délku = = me kin. V exerimentu bylo z úlu rvnío maxima ředovězeno =6.5 nm (.47.48, QMCA, s. 9.). To je erfektní soda. Odvození vlnové délky elektronu. SM (0kV) 0% seed of ligt relativistic effects are negligible TM (00kV) 70% seed of ligt relativistic effects must be taken into account Stanford linear acceleromenter (5GeV)??% seed of ligt. Důsledky: lektronový mikrosko. Vlnová délka může být mnoem menší než vlnová délka viditelnéo světla (rozlišovací sconost mikroskou je řibližně rovna vlnové délce). lmag: záření: 0nm 0.0nm je X-ray, ještě louběji je Gamma záření. Scrödingerova rovnice
3 Abycom moli ředovídat vývoj částice, tedy její vlnové funkce (v analogii na vývoj částice ve fázovém rostoru omocí Newtonovýc rovnic v klasické mecanice nebo vývoj elektromagnetickéo ole omocí Maxwellovýc rovnic), cceme znát jakými zákony se kvantová částice osaná de Broglieovou funkcí řídí. Problém je že de Broglieova vlna neslňuje vlnovou rovnici lynoucí z teorie u =c u ). Otázkou tedy je, zda a jakou rovnici slňuje.. elektromagnetickéo ole ( t Scrödinger ostuloval latnost rovnice: = i t () i ro kvantovou částici, která není volná, a která se oybuje od vlivem sil danýc otenciálem V(x). Platí zákon zacování energie, celková energie je rovna = kin V x. Hybnost: =mv. Z Newtonovýc zákonů kin = m v. Budeme tedy dále sát = V x m Diferenciální rovnice ro vlnovou funkci takovéto kvantové částice se roto obvykle íše ve tvaru i = V x t m (4) Tuto rovnici navrl v roce 95. Scrödinger a nese jeo jméno. Náznak odvození rovnice (Hlavatý, SKM s. 6) skrz debroglieův vzta mezi ybností a vlnovou délkou. Ricard Feynman: were did we get tat equation () from? Nowere. It is not ossible to derive it from anyting you know. It came out of te mind of Scrödinger. Tato rovnice má v kvantové Mecanice stejný význam jako Newtonovy zákony v klasické fyzice. Pozor, (na rozdíl od vlnové rovnice elektromagnetickéo ole nebo. Newtonova zákona) je Scrödingerova rovnice rvnío řádu v čase, ro časový vývoj stačí roto znát jak vyadá funkce v čase nula. Oerátor na ravé straně Scrödingerovy rovnice se nazývá amiltonián. H = V x m (5) Oerátory jsou označeny stříškou, to je v kvantové mecanice konvence. Nová ředstava tedy vyadá takto: stav v klasické fyzice je určen bodem ve fázovém rostoru a v kvantové fyzice řiřazenou vlnovou funkcí. Postulát [P] Stav systému. Stav jakéokoli fyzikálnío systému je určený v čase t stavovým vektorem ψ(t) v Hilbertově rostoru H; ψ(t) obsauje (a slouží k určení) všec informací o systému. Jakékoli složení stavovýc vektorů je také stavový v ektor. (QMCA
4 .58) Postulát [P5] Časový vývoj systému. Časový vývoj stavovéo vektoru ψ(t) systému je určen je tzv. Hamiltonián, oerátor energie časově závislou Scrödingerovou rovnicí, kde H systému. (QMCA.58) Born interretation of wave function (SKM) Řešením Scrödingerovy rovnice bezesoru je debroglieova vlna. Tak byla ta rovnice vymyšlena. Scrödingerova rovnice ale řiouští i mnoo jinýc řešení, než ouze debroligovu vlnu. Scrödingerova rovnice je totiž lineární, je-li nějaká funkce jejím řešením, je tím řešením také lineární suerozice řešení. Řešením je i lineární suerozice debroglieovýc vln odovídajícíc různým ybnostem. i x t m (6) R To je velmi důležité, neboť monocromatická vlna () má jenom některé vlastnosti odovídající volné částici, totiž rovnoměrnou a římočarou ryclost šíření, ale nedává žádnou informaci o její oloze. Cceme-li do vlnovéo oisu částice zarnout i další její vlastnosti, nař. lokalizovatelnost v určité části rostoru, ak musíme oužít jiný ty řešení než je čistá de Broglieova vlna. Ve vztau (6) íšeme =, což odovídá situaci volné částice, kde V x =0. m v ředcozím vzorci moou být Srovnej (6) vzta s definicí Fourierovy transformace. interretovány jako Fouriervy koeficienty. Mou tak zkonstruovat libovolnou funkci. Především mou zkonstruovat lokalizovaný vlnový balík. Jakmile se objevila Scrödingerova rovnice, která vedle debrogliovy vlny řiouští i mnoo dalšíc řešení, vznikla řirozeně otázka, jaký je jejic význam, neboli roblém fyzikální interretace řešení Scrödingerovy rovnice. Zatímco řešení oybovýc rovnic klasické mecaniky jsou snadno a řirozeně interretovatelná jako dráy motnýc bodů v rostoru, fyzikální význam řešení Scrödingerovy rovnice je na rvní oled nejasný. Problém interretace ještě navíc komlikuje fakt, že Scrödingerova rovnice je rovnicí v komlexním oboru, takže její řešení jsou komlexní funkce. Podotázkou tooto roblému ak je, zda všecna řešení jsou fyzikálně uotřebitelná. Max Born navrl v roce 96 statistická interretaci Scrödingerovy rovnice: Řešení Scrödingerovy rovnice udává časový vývoj ravděodobnosti nalezení částice v různýc oblastec rostoru: Je-li ψ(x, y, z, t) řešení Scrödingerovy rovnice oisující kvantovou částici, ak kvadrát její absolutní odnoty x, y, z, t je úměrný ustotě ravděodobnosti nalezení částice v okamžiku t v místě s kartézskými souřadnicemi (x, y, z). (Bornův ostulát) Tedy, stav kvantové částice je určen komlexní funkcí tří roměnnýc. Jaká omezení klade Bornův ostulát na řešení Scrödingerovy rovnice? Pravděodobnost nalezení částice v oblasti O R je úměrná e x,t = 4 d
5 x, t d x O (7) Koeficient úměrnosti je možno nalézt z ožadavku, aby ravděodobnost nalezení částice kdekoliv se rovnala jedné. Tuto odmínku lze snadno slnit, oložíme-li ustotu ravděodobnosti rovnou, kde (8) w x,t = A x, t A = R x, t d x (9) Fyzikálně snadno interretovatelná jsou tedy taková řešení Scrödingerovy rovnice, která slňují (40) R Pouze těmito funkcemi se budeme zabývat. Je to řesně odmínka kvadratické integrability! De Brogliovy vlny se tímto zůsobem interretují těžko, rotože jejic norma je nekonečná. x,t d x Jaká je ravděodobnost nalezení částici v intervalu (+a,-a)? (QMCA,. 40, okračování říkladu PŘ z minulé řednášky): a/ a/ x /a z / P= 0 x dx= dx= e dz= e a a/ a/ (4) Ukažme si na říkladu jak taková suerozice debrogliovýc vln vyadá (KM0, s ). Pozor, latí že k =, tedy Fourierův/reciroký rostor je ekvivalentní s rostorem ybností, tzv. imulzovým rostorem. 5
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.7/1.5./34.82 Zkvalitnění výuky prostřednitvím ICT III/2 Inovae a zkvalitnění výuky prostřednitvím ICT
Difrakce elektronů v polykrystalické mřížce (Debye-Scherrerova difrakce)
ifrakce elektronů v polykrystalické mřížce (ebye-scerrerova difrakce) Teorie V roce 1924 Louis de Broglie navrl představu, že by částice moly mít kromě předpokládanýc částicovýc vlastností i vlnové vlastnosti.
TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny
TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se
Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na
4 Matematická vsuvka: Operátory na Hilbertově prostoru. Popis vlastností kvantové částice. Operátory rychlosti a polohy kvantové částice. Princip korespondence. Vlastních stavy a spektra operátorů, jejich
1.5.5 Potenciální energie
.5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem
DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE
DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální
6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti.
6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných Operátor momentu hybnosti a kvadrátu momentu hybnosti Víme už tedy téměř vše o operátorech Jsou to vlastně měřící přístroje v kvantové
Určení Planckovy konstanty pomocí fotoelektrického jevu
Určení Planckovy konstanty pomocí fotoelektrickéo jevu Související témata: Externí fotoelektrický jev, výstupní práce elektronu z kovu, absorpce, energie fotonu Princip a úkol: Fotocitlivý prvek - fotonka
Dualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz
MĚŘENÍ PLANCKOVY KONSTANTY
MĚŘENÍ PLANCKOVY KONSTANTY Pomůcky: voltmetr DVP-BTA, amérmetr DCP-BTA, sektrometr SectroVis Plus s otickým vláknem SectroVis Otical Fiber, několik různých LED, zdroj naětí, reostat, sojovací vodiče, LabQuest,
Přednáška 4: Derivace
4 / / 7, :5 Přednáška 4: Derivace Pojem derivace ormuloval v 7. století Isaac Newton při výpočtec poybu planet sluneční soustavy. Potřeboval spočítat úlovou ryclost planet. Její směr je dán tečnou ke dráze
FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)
Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
1.5.9 Zákon zachování mechanické energie III Předpoklady: Dokonale pružný centrální ráz dvou koulí Pedagogická poznámka:
.5.9 Zákon zacování mecanické energie III Předpoklady: 58 Dokonale pružný centrální ráz dvou koulí v v m m Speciální typ srážky, situace známá z kulečníku: dokonale pružný: při srážce se neztrácí energie,
Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace
Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním
Vybrané podivnosti kvantové mechaniky
Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:
Termodynamika ideálního plynu
Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu
7.5.13 Rovnice paraboly
7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,
VEKTOROVÁ POLE VEKTOROVÁ POLE
Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického
Kinetická teorie ideálního plynu
Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na
Oddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE
ÚSTV NORGNIKÉ THNOLOGI Oddělení technické elektrochemie, 037 LBORTORNÍ PRÁ č.9 YKLIKÁ VOLTMTRI yklická voltametrie yklická voltametrie atří do skuiny otenciodynamických exerimentálních metod. Ty doznaly
Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace
Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním
GONIOMETRICKÉ ROVNICE -
1 GONIOMETRICKÉ ROVNICE - Pois zůsobu oužití: teorie k samostudiu (i- learning) ro 3. ročník střední školy technického zaměření, teorie ke konzultacím dálkového studia Vyracovala: Ivana Klozová Datum vyracování:
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
kopci a tuto představu přetavit do náčrtku celé situace, viz. obr.1. Aby však tento náčrt nebyl
Určete rovnici tečny ke grafu funkce f x x x v bodě dotyku [,?] Řešení: Protože máme zadánu složenou funkci, může být docela obtížné popsat její vlastnosti či nakreslit si její graf Nicméně vlastnosti
2.3.6 Práce plynu. Předpoklady: 2305
.3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram
Analytická metoda aneb Využití vektorů v geometrii
KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor
Energie větru Síla větru
Energie větru Vítr je vzduc proudící v přírodě, jeož směr a ryclost se obvykle neustále mění. Příčinou energie větru je rotace Země a sluneční energie. Například nad zemským povrcem ořátým sluncem vzrůstá
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
Úvěr a úvěrové výpočty 1
Modely analýzy a syntézy lánů MAF/KIV) Přednáška 8 Úvěr a úvěrové výočty 1 1 Rovnice úvěru V minulých řednáškách byla ro stav dluhu oužívána rovnice 1), kde ředokládáme, že N > : d = a b + = k > N. d./
Řešení diferenciálních rovnic 1. řádu (lineárních, s konstantními koeficienty)
Exonenciální funkce - jejic "vužití" ři řešení diferenciálníc rovnic (Tto dolňková omůck nemůže v žádném řídě nrdit sstemtickou mtemtickou řírvu.) Vlstností exonenciální funkce lze výodně oužít ři řešení
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, 255676, Jaro 2008 Úloha 1: Jaká je vzdálenost sousedních atomů v hexagonální struktuře grafenové roviny? Kolik atomů je v jedné rovině
Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými
1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte
Nástin formální stavby kvantové mechaniky
Nástin formální stavby kvantové mechaniky Karel Smolek Ústav technické a experimentální fyziky, ČVUT Komplexní čísla Pro každé reálné číslo platí, že jeho druhá mocnina je nezáporné číslo. Např. 3 2 =
[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka
10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.
Cvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.
8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S
Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné
Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné Přijímací zkouška do. ročníku OPF z matematiky (00) A Příklad. Určete definiční oboovnice a rovnici řešte. n + n =. + D : n N n = b b +
Rotačně symetrická deska
Rotačně symetrická deska je tenkostěnné těleso, jeož střednicová ploca je v nedeformovaném stavu rovinná, kruová nebo mezikruová. Zatížení působí kolmo ke střednicové rovině, takže při deformaci se střednicová
Od kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
Cyklické kódy. Alena Gollová, TIK Cyklické kódy 1/23
Cyklické kódy 5. řednáška z algebraického kódování Alena Gollová, TIK Cyklické kódy 1/23 Obsah 1 Cyklické kódy Generující olynom - kódování Kontrolní olynom - objevování chyb Alena Gollová, TIK Cyklické
Počátky kvantové mechaniky. Petr Beneš ÚTEF
Počátky kvantové mechaniky Petr Beneš ÚTEF Úvod Stav fyziky k 1. 1. 1900 Hypotéza atomu velmi rozšířená, ne vždy však přijatá. Atomy bodové, není jasné, jak se liší atomy jednotlivých prvků. Elektron byl
Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat
Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného lynu - statistické zracování dat Teorie Tam, kde se racuje se stlačenými lyny, je možné ozorovat zajímavý jev. Jestliže se do nádoby, kde je
Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas
Řešení úlo celostátnío kola 59. ročníku fyzikální olympiády Úloy navrl J. Tomas 1.a) Rovnice rozpadu je 38 94Pu 4 He + 34 9U; Q E r [ m 38 94Pu ) m 4 He ) m 34 9U )] c 9,17 1 13 J 5,71 MeV. body b) K dosažení
6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207
6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.
Obvodové rovnice v časové oblasti a v operátorovém (i frekvenčním) tvaru
Obvodové rovnice v časové oblasti a v oerátorovém (i frekvenčním) tvaru EO Přednáška 5 Pavel Máša - 5. řednáška ÚVODEM V ředchozím semestru jsme se seznámili s obvodovými rovnicemi v SUS a HUS Jak se liší,
1.5.2 Mechanická práce II
.5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a
Elektronový obal atomu
Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
STRUKTURA A VLASTNOSTI PLYNŮ
I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly
Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast
Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast zdrojů pro harmonický časový průběh veličin Laplaceův
7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.
75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,
Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx
1 Příklad 1: Komutační relace [d/, x] Mějme na dva operátory: ˆ d/ a ˆ 5 D X x, například na prvek x působí takto Určeme jejich komutátor ˆ 5 d 5 4 ˆ 5 5 6 D x x 5 x, X x xx x ˆ ˆ ˆ ˆ ˆ ˆ d d [ DX, ] f
Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA
Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic
1. série. Různá čísla < 1 44.
série Téma: Termínodeslání: Různá čísla ½ º Ò ½ ½º ÐÓ je řirozené q9+9 q 6+ 9 9 6 ¾º ÐÓ `5+ 6 998 není řirozené º ÐÓ Nechť c je řirozené číslo Rozhodněte, které z čísel c+ c a c c je větší a své tvrzení
Kvantová mechanika - model téměř volných elektronů. model těsné vazby
Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme
Vznik a šíření elektromagnetických vln
Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův
Spojitá náhodná veličina
Lekce 3 Sojitá náhodná veličina Příad sojité náhodné veličiny je komlikovanější, než je tomu u veličiny diskrétní Je to dáno ředevším tím, že jednotková ravděodobnost jistého jevu se rozkládá mezi nekonečně
Laplaceova transformace.
Lalaceova transformace - studijní text ro cvičení v ředmětu Matematika -. Studijní materiál byl řiraven racovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za odory grantu IG ČVUT č. 300043 a v rámci
ρ = 0 (nepřítomnost volných nábojů)
Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika
zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme.
Teorie řízení 004 str. / 30 PŘÍKLAD zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, naájen do kotvy, indukčnost zanedbáme. E ce ω a) Odvoďte řenosovou funkci F(): F( ) ω( )/ u( ) b)
3.1.1 Přímka a její části
3.1.1 Přímka a její části Předoklady: Pedagogická oznámka: Úvod do geometrie atří z hlediska výuky mezi nejroblematičtější části středoškolské matematiky. Několik rvních hodin obsahuje oakování ojmů a
R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika
Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární
Diferencovatelné funkce
Přednáška 5 Diferencovatelné funkce Jak jsme se zmínili v minulé přednášce, je lavní myšlenkou diferenciálnío počtu naradit danou funkci y = f) v okolí bodu a polynomem V této přednášce se budeme podrobně
Model tenisového utkání
Model tenisového utkání Jan Šustek Semestrální rojekt do ředmětu Náhodné rocesy 2005 V této ráci se budu zabývat modelem tenisového utkání. Vstuními hodnotami budou úsěšnosti odání jednotlivých hráčů,
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Kvantová molekulová dynamika Pavel Jungwirth
Kvantová molekulová dynamika Pavel Jungwirth Ústav organické chemie a biochemie AV ČR a Centrum pro komplexní molekulové systémy a biomolekuly, Flemingovo nám. 2, 166 10 Praha 6 tel.: 220 410 314 FAX:
Řešení úloh celostátního kola 55. ročníku fyzikální olympiády.
Řešení úlo celostátnío kola 55 ročníku fyzikální olympiády AutořiJTomas(134)aMJarešová() 1a) Pro určení poloy těžiště umístíme jelan do poloy podle obr R1 Obsa příčnéo řezu jelanem ve vzdálenosti od vrcolu
3. Silové působení na hmotné objekty
SÍL OENT SÍLY - 10-3. Silové ůsobení na hmotné objekty 3.1 Síla a její osuvné účinky V této kaitole si oíšeme vlastnosti silových účinků ůsobících na konstrukce a reálné mechanické soustavy. Zavedeme kvantitativní
Lehký úvod do kvantové teorie II
1 Lehký úvod do kvantové teorie II 5 Harmonický oscilátor Na příkladu harmonického oscilátoru, jehož klasické řešení známe z Fyziky 1, si ukážeme typické postupy při hledání vlastních hodnot operátoru
1. 2 Z Á K L A D Y K V A N T O V É T E O R I E
1. Atomová fyzika 33 1. Z Á K L A D Y K V A N T O V É T E O R I E V této kapitole se dozvíte: o vzniku kvantové teorie a jejích zákonitostech. Budete schopni: odůvodnit na základě známých experimentálních
(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.
Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností
II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV
II. MOLEKLOÁ FYZIKA 1. Základy termodynamiky I 1 Obsah Princi maxima entroie. Minimum vnitřní energie. D otenciály vnitřní energie entalie volná energie a Gibbsova energie a jejich názorný význam ři některých
Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)
Kvantová a statistická fyzika 2 (ermodynamika a statistická fyzika) ermodynamika ermodynamika se zabývá zkoumáním obecných vlastností makroskoických systémů v rovnováze, zákonitostmi makroskoických rocesů,
plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
Termodynamické základy ocelářských pochodů
29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických
F4 SÍLA, PRÁCE, ENERGIE A HYBNOST
F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Prvními velmi důležitými ojmy jsou mechanická ráce a otenciální energie
MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA
MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
Okruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
CVIČENÍ Z ELEKTRONIKY
Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97
Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné
Národní informační středisko pro podporu jakosti
Národní informační středisko ro odoru jakosti Konzultační středisko statistických metod ři NIS-PJ Analýza zůsobilosti Ing. Vratislav Horálek, DrSc. ředseda TNK 4: Alikace statistických metod Ing. Josef
. Maximální rychlost lze určit z brzdného napětí V. je náboj elektronu.
Učební text k přednášce UFY8 Vnější fotoefekt a Entenovo pojetí fotonu Fotoelektrcký jev (fotoefekt) byl objeven na základě zjštění, že e znek po ovětlení ultrafalovým zářením nabíjí kladně. Čaem e ukázalo,
PRŮTOK PLYNU OTVOREM
PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy
Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ
Univerzita Pardubice FAKULA CHEMICKO ECHNOLOGICKÁ MEODY S LAENNÍMI PROMĚNNÝMI A KLASIFIKAČNÍ MEODY SEMINÁRNÍ PRÁCE LICENČNÍHO SUDIA Statistické zracování dat ři kontrole jakosti Ing. Karel Dráela, CSc.
Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny
U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně
Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model
Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle
Funkce dvou a více proměnných
Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:
SHANNONOVY VĚTY A JEJICH DŮKAZ
SHANNONOVY VĚTY A JEJICH DŮKAZ JAN ŠŤOVÍČEK Abstrakt. Důkaz Shannonových vět ro binární symetrický kanál tak, jak měl být robrán na řednášce. Číslování vět odovídá řednášce. 1. Značení a obecné ředoklady
Vlnové vlastnosti světla. Člověk a příroda Fyzika
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
MATEMATIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ VERONIKA CHRASTINOVÁ MODUL 3 VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ VERONIKA CHRASTINOVÁ MATEMATIKA MODUL 3 VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA c Veronika
Funkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
Téma 7: Přímý Optimalizovaný Pravděpodobnostní Výpočet POPV
Téma 7: Přímý Otimalizovaný Pravděodobnostní Výočet POPV Přednáška z ředmětu: Pravděodobnostní osuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
PROCESNÍ INŽENÝRSTVÍ 7
UNIERZITA TOMÁŠE BATI E ZÍNĚ AKUTA APIKOANÉ INORMATIKY PROCENÍ INŽENÝRTÍ 7 ýočty sojené s filtrací Dagmar Janáčová Hana Carvátová Zlín 01 Tento studijní materiál vznikl za finanční odory Evroskéo sociálnío
můžeme toto číslo považovat za pravděpodobnost jevu A.
RAVDĚODOBNOST - matematická discilína, která se zabývá studiem zákonitostí, jimiž se řídí hromadné náhodné jevy - vytváří ravděodobnostní modely, omocí nichž se snaží ostihnout náhodné rocesy. Náhodné
SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické