1.5.5 Potenciální energie

Rozměr: px
Začít zobrazení ze stránky:

Download "1.5.5 Potenciální energie"

Transkript

1 .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem odiny je tedy samostatná orientace studentů v dosazování srávnýc odnot. Potřebují na to jediné dostatek času. Není roto žádnou tragédií, okud nestinete oslední tři říklady, okud se studenti v ředcozím růběu odiny s dosazováním srávnýc odnot. Minulá odina: Jedním ze zůsobů, jak dodat kuličce energii, bylo její vyzvednutí nad stůl. Zvednutá kulička může sadnout, běem ádu na ní ůsobí gravitační síla, která koná ráci a zvětšuje kinetickou energii kuličky. Kinetická energie se nebere z ničeo kulička zvednutá nad stůl má dru energie, který souvisí s její oloou. Tento dru energie mají v gravitačním oli všecny zvednuté ředměty. Tento dru energie souvisí s oloou, nazývá se roto otenciální (oloová) energie. Udává se v Joulec. Př. : Představ si, jak Ti na lavu adají z výšky různé ředměty. Najdi veličiny, na kterýc závisí velikost otenciální energie těcto ředmětů řed začátkem ádu, a najdi vzorec ro velikost otenciální energie. Velikost otenciální energie závisí na: motnosti ředmětu m (těžší ředmět má více energie), výšce, ve které se ředmět nacází (ve větší výšce má více energie), síle gravitačnío ole (na Měsíci je gravitace slabší a roto nebudou zranění od adajícíc ředmětů tak vážná), sílu ole vyjadřujeme omocí gravitačnío zryclení g. vzorec E = mg. Pedagogická oznámka: Sílu gravitačnío ole je většinou třeba studentům nabídnout tím, že jim řiomenete, aby se ve svýc úvaác nezaměřovali ouze na Zemi. Vzorec vyadá velmi rozumně. Práce, kterou může díky ádu z výšky vykonat gravitační síla: W = Fs = Fg = mg = E. Př. : Stavební výta zvedl do výšky cily o motnosti 50 kg. Cily tak získaly otenciální energii 0000 J. Do jaké výšky výta cily zvedl? Jakou ráci výta ři zvedání ciel vykonal? Zvednuté cily mají otenciální energii: E E = mg = = m = 6,7 m mg 50 0 Práce, kterou výta vykonal běem zvedání, se musí rovnat získané otenciální energii W = E = 0000 J

2 Výta zvedl cily do výšky 6,7 m a vykonal ři tom ráci 0000 J. Př. 3: Ve třídě, jejíž odlaa se nacází 8 m nad zemí, zvedl učitel ze stolu vysokéo 80 cm míč o motnosti 350g do výšky 60 cm nad stůl. Urči otenciální energii míče. Záleží na tom, kam by necal učitel míč sadnout. Míč by adal na stůl: je výška nad stolem = 60 cm = 0, 6 m E = mg = 0,35 0 0,6 J =,J. Míč by adal na odlau: je výška nad odlaou = cm =, 4 m E = mg = 0,35 0, 4J = 4,9 J. Míč by adal na zem: je výška nad zemí = cm = 9, 4 m E = mg = 0,35 0 9, 4J = 3,9 J. Pedagogická oznámka: Většina studentů oužije rvní dosazení, ale najdou se i takoví, kteří oužijí dosazení drué nebo dokonce i třetí. Možnost diskuse je zaručena vždy. Většinou už ři řešení říkladu se studenti tají, kterou odnotu mají oužít. Odovídám, že mají řešit říklad dle svéo nejlešío svědomí. Který z výsledků je srávný? Všecny výsledky jsou srávné. Při výočtu kinetické energie jsme získali různé výsledky v závislosti na tom, ze které vztažné soustavy jsme ředmět sledovali (vyazování ivní lave z vlaku). Při výočtu otenciální energie získáme různé výsledky v závislosti na tom, ze kteréo místa měříme výšku, ve které se ředmět nacází. Místu, odkud výšku měříme, říkáme místo s nulovou ladinou otenciální energie. Tělesa nacázející se v gravitačním oli mají otenciální (oloovou) energii. Potenciální energie tělesa se vždy vztauje ke dvěma bodům: oloze tělesa, místu, kde bycom otenciální energii ovažovali za nulovou (místo s nulovou ladinou otenciální energie). Ve výšce nad nulovou ladinou otenciální energie je otenciální energie tělesa o motnosti m určena vztaem: E = mg. Vzta latí ouze, když můžeme zanedbat změny velikosti gravitačnío zryclení (na Zemi v malýc vzdálenostec od ovrcu). Př. 4: Učebna má stro ve výšce 350 cm. Učitel vysoký 8 cm zvedl do výšky 60 cm nad odlaou třídnici o motnosti 50 g. Urči otenciální energii třídnice, okud se ladina nulové otenciální energie nacází: a) na úrovni odlay, b) na stole vysokém 75 cm, c) ve výšce 8 cm nad odlaou, d) ve výšce strou. Vysvětli význam znamének u jednotlivýc výsledků. a) Hladina nulové otenciální energie se nacází na úrovni odlay. Třídnice je 60 cm nad odlaou =,6m E = mg = 0,5 0,6J =,4J b) Hladina nulové otenciální energie se nacází na stole vysokém 75 cm.

3 Třídnice je 85 cm nad stolem = 0,85m E = mg = 0,5 0 0,85J =,3J c) Hladina nulové otenciální energie se nacází ve výšce 8 cm nad odlaou. Třídnice je cm od zadanou výškou 0,m = E ( ) = mg = 0,5 0 0, J = 0,3J d) Hladina nulové otenciální energie se nacází ve výšce strou. Třídnice je 90 cm od stroem,9 m E = mg = 0,5 0,9 J =,9 J = ( ) Záorné znaménko u odnoty otenciální energie znamená, že ředmět má nižší energii, než by měl v nulové ladině, a museli bycom mu energii dodat, aby se na nulovou ladinu dostal. Př. 5: Z výšky 30 cm nad stolem vysokým 75 cm sadne na zem kulička o motnosti 00 g. Urči její otenciální energii na očátku a na konci ádu. Urči změnu její otenciální energie běem ádu. Za ladinu nulové otenciální energie ovažuj odlau. m = 00g, E =?, E =?, =? E Počáteční otenciální energie: kulička je 05cm nad odlaou =,05m E = mg = 0, 0,05J =,05J. Konečná otenciální energie: kulička je na zemi E = 0. E = E E = 0,05J =,05J Kulička měla očáteční otenciální energii,05 J, konečnou otenciální energii 0 J. Při ádu se její otenciální energie změnila o,05 J. Záorné znaménko změny otenciální energie ři ádu je srozumitelné. Při ádu se otenciální energie kuličky zmenšuje. Př. 6: Z výšky 30 cm nad stolem vysokým 75 cm sadne na zem kulička o motnosti 00 g. Urči její otenciální energii na očátku a na konci ádu. Urči změnu její otenciální energie běem ádu. Za ladinu nulové otenciální energie ovažuj desku stolu. m = 00g, E =?, E =?, =? E Počáteční otenciální energie: kulička je 30 cm nad stolem = 0,3m E = mg = 0, 0 0,3J = 0,3J. Konečná otenciální energie: kulička je 70 cm od stolem = 0,75m ( ) E = mg = 0, 0 0,75 J = 0,75J. E = E E = 0,75 0,3J =,05J Kulička měla očáteční otenciální energii 0,3 J, konečnou otenciální energii 0,75 J. Při ádu se její otenciální energie změnila o,05 J. 3

4 Z ředcozíc dvou říkladů je vidět, že změna otenciální energie je na rozdíl o samotné otenciální energie nezávislá na volbě nulové ladiny otenciální energie. Je to logické změna výšky nezáleží na tom, odkud měříme. Př. 7: Když se malé děti učí codit, velice často adají. Přesto se jim většinou nic vážnéo nestane a rozodně nejsou následky jejic ádů tak vážné, jako když sadne ři cůzi dosělý člověk. Vysvětli. Běem ádu se otenciální energie člověka řemění na energii oybovou. Kinetické energie se ak tělo zbaví nárazem do země nebo jinéo ředmětu. Množství energie (a tedy i následky ádu), kteréo se tělo nárazem zbavuje, je tedy závislé na množství otenciální energie stojícío člověka. Potřebné veličiny odadneme. Jako výšku odadujeme výšku těžiště člověka nad zemí. m = kg = 50cm = 0,5m m = 70 kg = 90cm = 0,9m E E d d = m g = 0 0,5J = 60J d d d = m g = ,9 = 630J D D D D Z výsledků je zřejmé, že energie, která zůsobuje náraz je ři ádu dosěléo člověka asi desetkrát větší než ři ádu dítěte. V odobném oměru jsou i následky ádu. Pedagogická oznámka: Rozdíl má i biologické říčiny, naříklad kostra dětí je daleko ružnější než kostra dosělýc. D Př. 8: Basketbalový míč musí odle ravidel slňovat následující odmínku: Pokud řádně nauštěný míč ustíme volně z výšky 70 cm, sám se odrazí do výšky minimálně 50 cm. Vyočtěte absolutní a rocentuální ztrátu mecanické energie míče ři skoku. Hmotnost míče o velikosti 7 se může oybovat v rozmezí g (ro jednodušší výočty zvol motnost 600 g). = 70cm =,7 m, = 50cm, m = 600g = 0,6 kg, E =? E = mg = 0,6 0,7 J = 0,J E = mg = 0,6 0,5J = 9 J E = E E = 9 0,J =, J Procentuální ztráta 00% 0, J x%, J x, x =, 00 =,8% 00 0, 0, Míč ztratil otenciální energii, J, což je,8% otenciální energie, kterou měl na začátku. Výočet úbytku otenciální energie si můžeme usnadnit, když osuneme nulovou ladinu otenciální energie do výšky 50 cm. Pro očáteční odnotu otenciální energie ak latí: = 0cm = 0, m E = mg = 0,6 0 0,J =,J. Protože konečná odnota otenciální energie je nulová, ined vidíme, že latí E = E E = 0,J =, J. Problém je s rocentuální ztrátou energie. Při tomto řístuu by byla storocentní, což evidentně neodovídá smyslu říkladu. Jde o dobrý říklad zadání, které sice není fyzikálně zcela korektní, ale obecně je vcelku srozumitelné. 4

5 Př. 9: Těleso o motnosti 0 kg je uštěno z výšky m a zaryje se do loubky,3 cm, Vyočtěte růměrný odor ůdy. m = 0 kg = m s =, 3cm = 0, 03m F =? V říkladu neuvažujeme odor vzducu. Poloová energie tělesa se řemění na oybovou a ta se ři zarývání do země řemění na ráci. E = W mg mg = Fs F = s mg 0 0 F = = = 8700 N s 0,03 Průměrný odor ůdy je 8700 N. Př. 0: Při skocíc do vody z výšky m ronikne skokan rukama do loubky m. Do jaké loubky roniknou jeo ruce, když bude skákat z dvojnásobné výšky? Odor vzducu zanedbej a ředokládej, že odor vody bude v obou říadec stejný. = x = 0,m x =? Před skokem má skokan otenciální energii, ta se běem letu řemění na kinetickou energii, která se ři rorážení vody řemění na ráci. Práce, kterou vykoná ři rorážení vody se tedy musí rovnat jeo otenciální energii řed skokem. F Při rvním skoku: E = W mg = Fx = x mg F Při druém skoku: E = W mg = Fx = x mg Pravé strany obou rovnic se rovnají, musejí se rovnat i levé. = x = x x x x = x m 4 m = = Při skoku z dvojnásobné výšky roniknou skokanovy ruce do dvojnásobné loubky. Poznámka: Výsledek říkladu je zřejmý z too, že otenciální energie je římo úměrná výšce tělesa. Ve dvojnásobné výšce má skokan dvojnásobnou energii, může ve vodě vykonat dvojnásobnou ráci a tím roniknout do dvojnásobné loubky. Př. : Jaká bude oravdová loubka, do které roniknou skokanovi ruce ve skutečnosti v orovnání s výsledkem vyočteným v ředcozím říkladě. Hloubka bude méně než dvojnásobná. Při ryclejším oybu brzdí skokana větší odor vzducu a ztratí větší část energie než ři skoku z menší výšky. Srnutí: Potenciální energie je určena výškou, motností a silou gravitačnío ole. Její velikost také ovlivňuje volba nulové ladiny otenciální energie. 5

1.5.7 Zákon zachování mechanické energie I

1.5.7 Zákon zachování mechanické energie I .5.7 Záon zacoání mecanicé energie I Předolady: 506 Oaoání: Síla ůsobící na dráze oná ráci W = Fs cosα. Předmět, terý se oybuje ryclostí má ineticou energii E = m. Předmět, terý se nacází e ýšce nad ladinou

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální

Více

1.5.2 Mechanická práce II

1.5.2 Mechanická práce II .5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a

Více

1.5.6 Zákon zachování mechanické energie I

1.5.6 Zákon zachování mechanické energie I 56 Záon zacoání mecanicé energie I Předolady: 505 Oaoání: Síla ůsobící na dráze oná ráci W = Fs cosα Předmět, terý se oybuje ryclostí má ineticou energii E = m Předmět, terý se nacází e ýšce nad ladinou

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

Nakloněná rovina III

Nakloněná rovina III 6 Nakloněná rovina III Předoklady: 4 Pedagogická oznáka: Následující říklady oět atří do kategorie vozíčků Je saozřejě otázkou, zda tyto říklady v takové nožství cvičit Osobně se i líbí, že se studenti

Více

1.5.9 Zákon zachování mechanické energie III Předpoklady: Dokonale pružný centrální ráz dvou koulí Pedagogická poznámka:

1.5.9 Zákon zachování mechanické energie III Předpoklady: Dokonale pružný centrální ráz dvou koulí Pedagogická poznámka: .5.9 Zákon zacování mecanické energie III Předpoklady: 58 Dokonale pružný centrální ráz dvou koulí v v m m Speciální typ srážky, situace známá z kulečníku: dokonale pružný: při srážce se neztrácí energie,

Více

Hledání parabol

Hledání parabol 7.5.1 Hledání arabol Předoklad: 751, 7513 Pedagogická oznámka: Studenti jsou o řekonání očátečních roblémů s aměti vcelku úsěšní, všichni většinou zvládnou alesoň rvních ět říkladů. Hodinu organizuji tak,

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

7.5.13 Rovnice paraboly

7.5.13 Rovnice paraboly 7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,

Více

3.1.8 Přeměny energie v mechanickém oscilátoru

3.1.8 Přeměny energie v mechanickém oscilátoru 3..8 Přeěny energie v echanické oscilátoru Předoklady: 0050, 03007 Pedagogická oznáka: Odvození zákona zachování energie rovádí na vodorovné ružině, rotože je říočařejší. Pro zájece je uvedeno na konci

Více

1.2.4 Racionální čísla II

1.2.4 Racionální čísla II .2.4 Racionální číla II Předoklady: 20 Pedagogická oznámka: S říkladem 0 je třeba začít nejozději 0 minut řed koncem hodiny. Př. : Sečti. Znázorni vůj otu graficky. 2 2 = = 2 Sčítáme netejné čáti muíme

Více

Úvěr a úvěrové výpočty 1

Úvěr a úvěrové výpočty 1 Modely analýzy a syntézy lánů MAF/KIV) Přednáška 8 Úvěr a úvěrové výočty 1 1 Rovnice úvěru V minulých řednáškách byla ro stav dluhu oužívána rovnice 1), kde ředokládáme, že N > : d = a b + = k > N. d./

Více

Model tenisového utkání

Model tenisového utkání Model tenisového utkání Jan Šustek Semestrální rojekt do ředmětu Náhodné rocesy 2005 V této ráci se budu zabývat modelem tenisového utkání. Vstuními hodnotami budou úsěšnosti odání jednotlivých hráčů,

Více

Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ

Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ Univerzita Pardubice FAKULA CHEMICKO ECHNOLOGICKÁ MEODY S LAENNÍMI PROMĚNNÝMI A KLASIFIKAČNÍ MEODY SEMINÁRNÍ PRÁCE LICENČNÍHO SUDIA Statistické zracování dat ři kontrole jakosti Ing. Karel Dráela, CSc.

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

PRINCIP IZOSTÁZE TEORIE

PRINCIP IZOSTÁZE TEORIE GEOOGIE PRINIP IZOTÁZE TEORIE Princip izostáze spočívá v předpokladu, že existuje určitá ladina, na které je odnota všesměrnéo tlaku konstantní na celé Zemi. Tato ladina se nacází na ranici pevné litosféry

Více

F4 SÍLA, PRÁCE, ENERGIE A HYBNOST

F4 SÍLA, PRÁCE, ENERGIE A HYBNOST F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Prvními velmi důležitými ojmy jsou mechanická ráce a otenciální energie

Více

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava

Více

VEKTOROVÁ POLE VEKTOROVÁ POLE

VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s

Více

Laplaceova transformace.

Laplaceova transformace. Lalaceova transformace - studijní text ro cvičení v ředmětu Matematika -. Studijní materiál byl řiraven racovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za odory grantu IG ČVUT č. 300043 a v rámci

Více

Název DUM: Polohová energie v příkladech

Název DUM: Polohová energie v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Polohová energie

Více

KLUZNÁ LOŽISKA. p s. Maximální měrný tlak p Max (MPa) Střední měrný tlak p s (Mpa) Obvodová rychlost v (m/s) Součin p s a v. v 60

KLUZNÁ LOŽISKA. p s. Maximální měrný tlak p Max (MPa) Střední měrný tlak p s (Mpa) Obvodová rychlost v (m/s) Součin p s a v. v 60 KLUZNÁ LOŽIKA U PM oužití ro uložení ojnic, klikovýc a vačkovýc řídelů, vaadel a kol rovodů, Zde dnes výradně kluná ložiska s řívodem tlakovéo maacío oleje. Pro rvní návr se oužívá nejjednoduššíc metod

Více

Předpjatý beton Přednáška 6

Předpjatý beton Přednáška 6 Předjatý beton Přednáška 6 Obsah Změny ředětí Okamžitým ružným řetvořením betonu Relaxací ředínací výztuže Přetvořením oěrného zařízení Rozdílem telot ředínací výztuže a oěrného zařízení Otlačením betonu

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

5.1.8 Vzájemná poloha rovin

5.1.8 Vzájemná poloha rovin 5.1.8 Vzájemná oloha rovin Předoklady: 5107 Př. 1: Kolik solečných bodů mohou mít dvě roviny? Každou možnost dokumentuj omocí dvou rovin určených vrcholy krychle a urči vzájemnou olohu rovin. Mohou nastat

Více

Obvodové rovnice v časové oblasti a v operátorovém (i frekvenčním) tvaru

Obvodové rovnice v časové oblasti a v operátorovém (i frekvenčním) tvaru Obvodové rovnice v časové oblasti a v oerátorovém (i frekvenčním) tvaru EO Přednáška 5 Pavel Máša - 5. řednáška ÚVODEM V ředchozím semestru jsme se seznámili s obvodovými rovnicemi v SUS a HUS Jak se liší,

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

GONIOMETRICKÉ ROVNICE -

GONIOMETRICKÉ ROVNICE - 1 GONIOMETRICKÉ ROVNICE - Pois zůsobu oužití: teorie k samostudiu (i- learning) ro 3. ročník střední školy technického zaměření, teorie ke konzultacím dálkového studia Vyracovala: Ivana Klozová Datum vyracování:

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

Protokol o provedeném měření

Protokol o provedeném měření Fyzikální laboratoře FLM Protokol o rovedeném měření Název úlohy: Studium harmonického ohybu na ružině Číslo úlohy: A Datum měření: 8. 3. 2010 Jméno a říjmení: Viktor Dlouhý Fakulta mechatroniky TU, I.

Více

3.1.1 Přímka a její části

3.1.1 Přímka a její části 3.1.1 Přímka a její části Předoklady: Pedagogická oznámka: Úvod do geometrie atří z hlediska výuky mezi nejroblematičtější části středoškolské matematiky. Několik rvních hodin obsahuje oakování ojmů a

Více

Dynamické programování

Dynamické programování ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5

Více

PROCESNÍ INŽENÝRSTVÍ 7

PROCESNÍ INŽENÝRSTVÍ 7 UNIERZITA TOMÁŠE BATI E ZÍNĚ AKUTA APIKOANÉ INORMATIKY PROCENÍ INŽENÝRTÍ 7 ýočty sojené s filtrací Dagmar Janáčová Hana Carvátová Zlín 01 Tento studijní materiál vznikl za finanční odory Evroskéo sociálnío

Více

Nakloněná rovina I

Nakloněná rovina I 1.2.14 Nakloněná rovina I Předoklady: 1213 Pomůcky: kulička, sada na měření řecí síly. Až dosud jsme se u všech říkladů uvažovali ouze vodorovné lochy. Př. 1: Vysvěli, roč jsme u všech dosavadních říkladů

Více

II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV

II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV II. MOLEKLOÁ FYZIKA 1. Základy termodynamiky I 1 Obsah Princi maxima entroie. Minimum vnitřní energie. D otenciály vnitřní energie entalie volná energie a Gibbsova energie a jejich názorný význam ři některých

Více

Termodynamické základy ocelářských pochodů

Termodynamické základy ocelářských pochodů 29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických

Více

Kruhový děj s plynem

Kruhový děj s plynem .. Kruhový děj s lynem Předoklady: 0 Chceme využít skutečnost, že lyn koná ři rozínání ráci, na konstrukci motoru. Nejjednodušší možnost: Pustíme nafouknutý balónek. Balónek se vyfukuje, vytlačuje vzduch

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

3. Silové působení na hmotné objekty

3. Silové působení na hmotné objekty SÍL OENT SÍLY - 10-3. Silové ůsobení na hmotné objekty 3.1 Síla a její osuvné účinky V této kaitole si oíšeme vlastnosti silových účinků ůsobících na konstrukce a reálné mechanické soustavy. Zavedeme kvantitativní

Více

1.3.3 Přímky a polopřímky

1.3.3 Přímky a polopřímky 1.3.3 římky a olořímky ředoklady: 010302 edagogická oznámka: oslední říklad je oakování řeočtu řes jednotku. okud hodina robíhá dobře, dostanete se k němu řed koncem hodiny. edagogická oznámka: Nakreslím

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Systémové struktury - základní formy spojování systémů

Systémové struktury - základní formy spojování systémů Systémové struktury - základní formy sojování systémů Základní informace Při řešení ať již analytických nebo syntetických úloh se zravidla setkáváme s komlikovanými systémovými strukturami. Tato lekce

Více

Sbírka A - Př. 1.1.5.3

Sbírka A - Př. 1.1.5.3 ..5 Ronoměrný ohyb říklady nejnižší obtížnosti Sbírka A - ř...5. Kolik hodin normální chůze (rychlost 5 km/h) je od rahy zdálen Řím? Kolik dní by tuto zdálenost šel rekreační chodec, který je schoen ujít

Více

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, Liberec

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, Liberec TECHNICKÁ NIVERZITA V LIBERCI Katedrzik, Studentká, 46 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOŠKY Z FYZIKY Akademický rok: 03/04 Útav zdravotnických tudií Studijní obor: Biomedicínká technika Tématické okruh

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

Předpjatý beton Přednáška 12

Předpjatý beton Přednáška 12 Předjatý beton Přednáška 12 Obsah Mezní stavy oužitelnosti - omezení řetvoření Deformace ředjatých konstrukcí Předoklady, analýza, Stanovení řetvoření. Všeobecně - u ředjatých konstrukcí nejen růhyb od

Více

Konstrukce kladkostroje. Výpočet výkonu kladkostroje.

Konstrukce kladkostroje. Výpočet výkonu kladkostroje. Název: Konstrukce kladkostroje. Výpočet výkonu kladkostroje. Tematický celek: Mechanická práce a energie. Úkol: 1. Kladkostroj druhy a využití. 2. Navrhněte konstrukci robota - jeřábu s kladkostrojem.

Více

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210 Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími

Více

3.3.2 Brčko, pumpička, vývěva

3.3.2 Brčko, pumpička, vývěva 3.3.2 Brčko, umička, vývěva Předoklady: 030301 Pomůcky: vývěva, siloměr (nebo váha) do 250 N, umička, svrasklé jablko, zkumavky, kádinka s vodou Př. 1: Školní vývěva má zvon o růměru 0,4 m. Jak velký tlak

Více

Fyzikální chemie. 1.2 Termodynamika

Fyzikální chemie. 1.2 Termodynamika Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický

Více

1.5.4 Kinetická energie

1.5.4 Kinetická energie .5.4 Kineicá energie Předolady: 50 Energie je jeden z nejoužívanějších, ale aé nejhůře definovaelných ojmů ve sředošolsé fyzice. V běžném živoě: energie = něco, co ořebujeme vyonávání ráce. Vysyuje se

Více

7. Gravitační pole a pohyb těles v něm

7. Gravitační pole a pohyb těles v něm 7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain)

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain) Markovovy řetězce se soitým časem CTMC (Continuous time Markov Chain) 3 5 1 4 Markovovy rocesy X Diskrétní stavový rostor Soitý obor arametru t { } S e1, e,, en t R t 0 0 t 1 t t 3 t Proces e Markovův

Více

Nakloněná rovina II

Nakloněná rovina II 3 Nakloněná rovina II Předoklady: Pedagogická oznáka: Obsah hodiny se za norálních okolnosí saozřejě nedá sihnou, záleží na Vás, co si vyberee Pedagogická oznáka: Na začáku hodiny zadá sudenů říklad Nečeká

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko ro odoru jakosti Konzultační středisko statistických metod ři NIS-PJ Analýza zůsobilosti Ing. Vratislav Horálek, DrSc. ředseda TNK 4: Alikace statistických metod Ing. Josef

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

1. série. Různá čísla < 1 44.

1. série. Různá čísla < 1 44. série Téma: Termínodeslání: Různá čísla ½ º Ò ½ ½º ÐÓ je řirozené q9+9 q 6+ 9 9 6 ¾º ÐÓ `5+ 6 998 není řirozené º ÐÓ Nechť c je řirozené číslo Rozhodněte, které z čísel c+ c a c c je větší a své tvrzení

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná

Více

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles. 5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami

Více

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného lynu - statistické zracování dat Teorie Tam, kde se racuje se stlačenými lyny, je možné ozorovat zajímavý jev. Jestliže se do nádoby, kde je

Více

Difrakce elektronů v polykrystalické mřížce (Debye-Scherrerova difrakce)

Difrakce elektronů v polykrystalické mřížce (Debye-Scherrerova difrakce) ifrakce elektronů v polykrystalické mřížce (ebye-scerrerova difrakce) Teorie V roce 1924 Louis de Broglie navrl představu, že by částice moly mít kromě předpokládanýc částicovýc vlastností i vlnové vlastnosti.

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

můžeme toto číslo považovat za pravděpodobnost jevu A.

můžeme toto číslo považovat za pravděpodobnost jevu A. RAVDĚODOBNOST - matematická discilína, která se zabývá studiem zákonitostí, jimiž se řídí hromadné náhodné jevy - vytváří ravděodobnostní modely, omocí nichž se snaží ostihnout náhodné rocesy. Náhodné

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

Příklady z přednášek Statistické srovnávání

Příklady z přednášek Statistické srovnávání říklad z řednášek Statstcké srovnávání Jednoduché ndvduální ndex říklad V následující tabulce jsou uveden údaje o očtu závažných závad v areálu určté frm zjštěných a oravených v letech 9-998. Závažná závada

Více

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla. říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním

Více

h = J s 2

h = J s 2 PŘDNÁŠKA (viz lavaty SKM): De Broglieova yotéza, vlnová funkce, Scrödingerova rovnice, Bornova interretace vlnové funkce. Kvantová mecanika je fyzikální teorie, tedy návry vedoucí k ředovědím, jež musí

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Statistická analýza dat - Indexní analýza

Statistická analýza dat - Indexní analýza Statistiká analýza dat Indexní analýza Statistiká analýza dat - Indexní analýza Index mohou být:. Stejnorodýh ukazatelů. Nestejnorodýh ukazatelů Index se skládají ze dvou složek:... intenzita (úroveň znaku)...

Více

5.1.7 Vzájemná poloha přímky a roviny

5.1.7 Vzájemná poloha přímky a roviny 5..7 Vzájemná oloha římky a roviny Předoklady: 506 Pedagogická oznámka: Tato a následující hodina je obtížně řiditelná. ni jedna z těchto hodin neobsahuje nic zásadního, v říadě časového skluzu je možné

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

Řešený příklad: Spřažená stropní deska

Řešený příklad: Spřažená stropní deska Dokument: SX009a-CZ-EU Strana 1 z 1 Název Řešený říklad: Sřažená stroní deska Eurokód EN 1994-1-1, EN 199-1-, EN 199-1-1 & EN 199-1-1 Vyracoval Jonas Gozzi Datum březen 005 Kontroloval Bernt Johansson

Více

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova

Více

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou Konference ANSYS 2009 Numerické výočty roudění v kanále stálého růřezu ři ucání kanálu válcovou sondou L. Tajč, B. Rudas, a M. Hoznedl ŠKODA POWER a.s., Tylova 1/57, Plzeň, 301 28 michal.hoznedl@skoda.cz

Více

PROCESY V TECHNICE BUDOV cvičení 1, 2

PROCESY V TECHNICE BUDOV cvičení 1, 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AKULTA APLIKOVANÉ INORMATIKY PROCESY V TECHNICE BUDOV cvičení, část Hana Charvátová, Dagmar Janáčová Zlín 03 Tento studijní materiál vznikl za finanční odory Evroského sociálního

Více

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se

Více

Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4)

Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4) Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas 1,, ), V. Vícha 4) 1.a) Mezi spodní destičkou a podložkou působí proti vzájemnému pohybu síla tření o velikosti

Více

K141 HY3V (VM) Neustálené proudění v potrubích

K141 HY3V (VM) Neustálené proudění v potrubích Neustálené roudění v tlakových otrubích K4 HY3 (M) Neustálené roudění v otrubích 0 ÚOD Ustálené roudění ouze rostorové změny Neustálené roudění nejen rostorové, ale i časové změny vznik ři jakýchkoliv

Více

1. ÚVOD, ZÁKLADNÍ POJMY

1. ÚVOD, ZÁKLADNÍ POJMY . ÚVOD, ZÁKLADNÍ POJMY. OBAH, ČLENĚNÍ MECHANIKY TEKUTIN Hdromecanika je součástí mecanik tekutin zabývající se rovnováou kaalin (kaalin v klidu) obem kaalin vzájemným ůsobením kaalin a tuýc těles Mecanika

Více

Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné

Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné Přijímací zkouška do. ročníku OPF z matematiky (00) A Příklad. Určete definiční oboovnice a rovnici řešte. n + n =. + D : n N n = b b +

Více

Zákon zachování energie - příklady

Zákon zachování energie - příklady DUM Základy přírodních věd DUM III/2-T3-13 Téma: ZZE - příklady Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Zákon zachování energie - příklady 1.) Jakou má polohovou energii

Více

BH059 Tepelná technika budov Konzultace č. 2

BH059 Tepelná technika budov Konzultace č. 2 Vysoké učení technické v Brně Fakulta stavební Ústav ozemního stavitelství BH059 Teelná technika budov Konzultace č. 2 Zadání P6 zadáno na 2 konzultaci, P7 bude zadáno Průběh telot v konstrukci Kondenzace

Více

Popis tíhové síly a gravitace. Očekávaný výstup. Řešení základních příkladů. Datum vytvoření Druh učebního materiálu.

Popis tíhové síly a gravitace. Očekávaný výstup. Řešení základních příkladů. Datum vytvoření Druh učebního materiálu. Škola Autor Číslo Název Číslo projektu Téma hodiny Předmět Ročník/y/ Anotace Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Bc. Zdeněk Brokeš VY_32_INOVACE_10_F_2.10 Tíhová

Více

Popis Pohybu. Signální verze učebnice, Prodos 2006.

Popis Pohybu. Signální verze učebnice, Prodos 2006. Pás dopravníku na obrázku je v poybu. To naznačuje i šipka, kterou pan kreslíř namaloval k převodovému kolu. Zdá se, že v poybu jsou i kočka s myší, vždyť uánějí o sto šest. Proč by se ale na ně zedník

Více

Experimentální ověření modelu dvojčinného pneumomotoru

Experimentální ověření modelu dvojčinného pneumomotoru Exerientální ověření odelu dvojčinného neuootoru vořák, Lukáš Ing., Katedra hydroechaniky a hydraulických zařízení, Fakulta strojní, Vysoká škola báňská Technická univerzita Ostrava, 7. listoadu 5, Ostrava

Více

zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme.

zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme. Teorie řízení 004 str. / 30 PŘÍKLAD zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, naájen do kotvy, indukčnost zanedbáme. E ce ω a) Odvoďte řenosovou funkci F(): F( ) ω( )/ u( ) b)

Více

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas Řešení úlo celostátnío kola 59. ročníku fyzikální olympiády Úloy navrl J. Tomas 1.a) Rovnice rozpadu je 38 94Pu 4 He + 34 9U; Q E r [ m 38 94Pu ) m 4 He ) m 34 9U )] c 9,17 1 13 J 5,71 MeV. body b) K dosažení

Více

Směrová kalibrace pětiotvorové kuželové sondy

Směrová kalibrace pětiotvorové kuželové sondy Směrová kalibrace ětiotvorové kuželové sondy Matějka Milan Ing., Ústav mechaniky tekutin a energetiky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, milan.matejka@fs.cvut.cz Abstrakt: The

Více

3.2 Metody s latentními proměnnými a klasifikační metody

3.2 Metody s latentními proměnnými a klasifikační metody 3. Metody s latentními roměnnými a klasifikační metody Otázka č. Vyočtěte algoritmem IPALS. latentní roměnnou z matice A[řádek,slouec]: A[,]=, A[,]=, A[3,]=3, A[,]=, A[,]=, A[3,]=0, A[,3]=6, A[,3]=4, A[3,3]=.

Více

1.2.2 Síly II. Předpoklady: 1201

1.2.2 Síly II. Předpoklady: 1201 1.. Síly II Předoklady: 101 Oakování z minulé hodiny: Pohyb a jeho změny zůobují íly. Pro každou ravou ílu můžeme najít: ůvodce (těleo, které ji zůobuje), cíl (těleo, na které íla ůobí), artnerkou ílu

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Laplaceova transformace

Laplaceova transformace Lalaceova transformace EO2 Přednáška 3 Pavel Máša ÚVODEM Víme, že Fourierova transformace díky řísným odmínkám existence neexistuje ro řadu běžných signálů dokonce i funkce sin musela být zatlumena Jak

Více

Stabilita prutu, desky a válce vzpěr (osová síla)

Stabilita prutu, desky a válce vzpěr (osová síla) Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1

Více