Náhodný jev. Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy.
|
|
- Bohumír Špringl
- před 8 lety
- Počet zobrazení:
Transkript
1 Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že je výsledek pokusu závislý na dalších nám neznámých podmínkách, které můžeme označit jako náhodné činitele. Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka S náhodnými jevy můžeme pracovat jako s množinami a využít množinových operací
2 Množinová symbolika Symbolem Ω označíme celý množinový prostor (ve statistice jev jistý). Symbolem A označíme množinu (část prostoru, jev. aje prvkem množiny A, zapíšeme: a єa a ; a 2 ;a jsou prvky množiny A zapíšeme jako A є{a ; a 2 ; a } Symbolem {ø} nebo ø označíme prázdnou množinu (jev nemožný) Pokud vždy, když nastane jev A, nastane i jev B, pak říkáme, že: jev A implikuje jevb, resp. jev Amá za následek jev B: A >B znamená to také, že A je podmnožinou B: A B Pokud nastane alespoň jeden z jevů A, B, jedná se o sjednocení jevů: A UB Pokud nastanou jevy A, Bsoučasně, mluvíme o průniku jevů: A B Jev A nazveme opačný (komlementární, doplňkový) k jevu B, když platí: A UB Ω a současně A B ø Doplněkk jevu A značíme A nebo Ā
3 Příklad O náhodných jevech A a B jsou známy následující skutečnosti: (a) Pravděpodobnost, že nastane alespoň jeden z jevů A a B, je /4. (b) Pravděpodobnost, že oba jevy A a B nastanou současně, je /4. (c) Pravděpodobnost, že nenastane jev A, je 2/. Určete pravděpodobnosti obou jevů A a B. Jaká je pravděpodobnost, že nastane jev A a přitom nenastane jev B? A B ¼ 2 ) ( 4 ) ( 4 ) ( A P B A P B A P ) ( 2 4 )) ( ( 2 ) ( B P B A A P A P Zadání: Řešení: ¼ /2 2/
4 Definice pravděpodobnosti Elementární jevy jsou takové jevy, které už dále nemůžeme rozložit. Složené jevy se skládají alespoň ze dvou jevů elementárních. KLASICKÁ DEFINICE PRAVDĚPODOBNOSTI Mějme pokus, který může vykázat n-různých stejně možných výsledků. Mluvíme o nich jako o elementárních jevech. Pokud m z n výsledků má za následek jev A a zbylých n - m výsledků jevavylučuje,pakpravděpodobnostjevuajerovna: P(m/n STATISTICKÁ DEFINICE PRAVDĚPODOBNOSTI Při dostatečně velkém opakování téhož náhodného pokusu se podíl sledovaného jevu ustaluje kolem nějaké konstanty. Tuto konstantu nazveme pravděpodobností sledovaného jevua výrok za jednu z mnoha formulací ZÁKONA VELKÝCH ČÍSEL.
5 ZÁKON VELKÝCH ČÍSEL Jestliže jsou pokusné řady dosti dlouhé a dostatečně často se opakují, lze dosáhnout vypočítané pravděpodobnosti v průměru těchto pokusů s libovolnou přesností. Pravděpodobnost, že v ruletě padne červenáje 0,5 a černáje také 0,5. Společně dávají jev jistý není možné, aby padla jiná barva. V tomto případě pravděpodobnosti sčítáme: 0,5 + 0,5,0 Pokud padne x po sobě červená, pravděpodobnost tohoto jevu vypočteme násobením: 0,5*0,5*0,5 0,5 0,25 Pravděpodobnost, že opět hodíme v dalším hodu červenou, se s každým dalším hodem zmenšuje: pravděpodobnost, že hodíme 5x po sobě červenouje asi 0,0, 0x po sobě červenou je už méně než 0,00,... Tento zákon přesto neříká nic o tom, že jestliže desetkrát po sobě padla červená, musí co nejdříve padnout černá, protože je zralá, ba dokonce přezrálá. Ani karty ani ruleta ani hrací automaty nemají paměť, každý pokus je nezávislý na předchozím.
6 Pravidla pro počítání s pravděpodobnostmi PRAVDĚPODOBNOSTÍ nazveme reálnou funkci, která každému náhodnému jevu přiřadí nezáporné reálné číslo z intervalu < 0, > a platí pro ni: pravděpodobnost jistého jevu je pravděpodobnost nemožného jevu je 0 pravděpodobnost opačného jevu k jevu A je jsou-li A a B neslučitelné jevy, pak jsou-li A a B dva libovolné jevy, pak je-li A B, pak P( P( P ( A P( + P( mluvíme v tomto případě také o implikaci: A implikuje B zapisujemejakoa>b aznamenáto,žeamusíbýtpodmnožinab opačně: B>Abyznamenalo,žeBjepodmnožinaA P( A ) P( P( A P( + P( P( A P( B P( P( A
7 Podmíněná pravděpodobnost Mějme dva jevy A ab takové, že P( > 0. Jev A nastává za podmínky, že nastane jev B. Podmíněná pravděpodobnost, že nastane jev A se definuje jako P( A P( A P( Nezávislost jevů Mějme dva jevy A ab takové, že P( > 0 a P( > 0. Nechť platí a zároveň, pak jevy A ab jsou na sobě nezávislé. Jinak vyjádříme, když dosadíme např. za P(B a vynásobíme P(: P ( A P( P ( B P( P( A P( P( P( A P( P(
8 Příklad: Nezávislost jevů V květinářství začali prodávat sezónní truhlíkové květiny a první den prodali 70 pelargonií a fuchsií 50. Červených pelargonií prodali 0 a červených fuchsií 20. Pokud náhodně vybereme jednu z prodaných květin, jaká je pravděpodobnost, že to bude červená fuchsie? Určete, zda jev A: náhodně vybraná květina je fuchsie a jev B: náhodně vybraná květina je červená, jsou nezávislé. Řešení : prodaných pelargónií: 70 prodaných fuchsií: 50 Celkem květin: 20 Jevy A a B jsou nezávislé, když platí: P( A P( P( Jev A: p( 50/20 5/2... pravděpod., že prodaná květina je fuchsie Jev B: p( (0+20)/20 5/2... pravděp., že prodaná květina je červená pravděpodobnost vybrání červené fuchsie: p(a 20/20 /6 0,67 p( * p( 5/2 * 5/2 25/44 0,74 Jevy A ab nejsou nezávislé
9 Příklad: Nezávislost jevů Řešení 2: prodaných pelargónií: 70 z toho 0 červených prodaných fuchsií: 50 z toho 20 červených Celkem květin: 20 jev A: náhodně vybraná květina je fuchsie jev B: náhodně vybraná květina je červená Jevy jsou nezávislé, když platí 20 P(A 20 2 P(A 0,4 P( P( 0, Jevy A a B nejsou nezávislé P ( A P( a zároveň P ( B P( 20 P(B 20 2 P(B 0,4 P( P( 0,466 2
10 Násobení pravděpodobností Uvažujme jevy A, A 2,, A n takové, že P(A A 2 A n- ) > 0. Pak lze vypočítat pravděpodobnost, se kterou nastanou všechny jevy současně jako P(A A 2 A n ) P(A )P(A 2 A )P(A A 2 A ) P(A n A A 2 A n- ) Příklad: Paní Smithová se přepravuje za dcerou postupně třemi leteckými společnostmi.. letecká společnost garantuje riziko max. %, že ztratí její zavazadlo. 2. letecká společnost garantuje riziko max. 2%, a. letecká společnost maximálně %, že ztratí její zavazadlo.. Vypočtěte, jak velké je riziko, že se její kufr ztratí. 2. Vypočtěte s jakou pravděpodobností kufr ztratila. letecká společnost za předpokladu, že se kufr ztratil. Vypočtěte, s jakou pravděpodobností by jej ztratila 2. a. letecká spol. 4. Zkontrolujte bod 2 a pomocí jevu jistého
11 ZÁKONY PRAVDĚPODOBNOSTI Zákony pravděpodobnosti jsou zcela zvláštního druhu snášenlivé pružné nezavrhující zcela pošetilé krajnosti dlouhodobě spolehlivé důvěryhodné Příklad: házení mincí pravděpodobnost, že padne hlava nebo orel je stejná p 0,5 jistotu, že padne jeden z těchto jevů vyjádříme p házíme-li víckrát, jedná se o nezávislé pokusy, pravděpodobnost výsledných kombinací se násobí: pravděpodobnost, že padne třikrát po sobě hlava: 0,5 * 0,5 * 0,5 0,25 celkem 8 kombinací: HHH, HHO, HOH, OHH, HOO, OHO, OOH, OOO x 0,25
12 POČET PRAVDĚPODOBNOSTI Pravděpodobnost, že nastane určitá kombinace, závisí na poměru četností dané kombinace a všech kombinací, které mohou nastat. Názorným zobrazením je model římské kašny, kde voda odtékající do další kašny je rovnoměrně rozdělena vpravo a vlevo Pravděpodobnost se dělí analogicky jako teče voda na polovinu, na čtvrtiny, osminy, šestnáctiny,... zlomek mocnin čísla 2 / 2 / 2 / 4 2 / 4 / 4 / 8 / 8 / 8 / 8 / 6 4 / 6 6 / 6 4 / 6 / 6 Je to dodnes princip hracích automatů: kuličky padají do prostředních přihrádek častěji než do krajních
13 POČET PRAVDĚPODOBNOSTI - binomické koeficienty Podobně odvodíme Binomické KOEFICIENTY někdy neprávem nazývané Pascalův trojúhelník jedničky po obvodu, uvnitř součet čísel vpravo a vlevo z horního řádku: Ze školní matematiky známe vzorec: (a+b) 2 a 2 +2ab + b 2 analogicky pro (a+b) a + a 2 b + ab 2 + b Odpovídá kombinačním číslům (a+b) 5 a 5 + 5a 4 b + 0a b 2 + 0a 2 b + 5ab 4 + b
14 POČET PRAVDĚPODOBNOSTI - binomické koeficienty Matematické vyjádření pravděpodobnosti, že při 5tazích z karet s vracením vytáhneme srdcovou kartu (jev a) nebo naopak některou z ostatních karet (b) (a+b) 5 a 5 + 5a 4 b+ 0a b 2 + 0a 2 b + 5ab 4 + b 5 Co představují jednotlivé části vzorce? Rozložíme na elementární jevy: a pravděpodobnost, že táhneme srdcovou kartu b jev doplňkový (opačný) - netáhneme srdcovou kartu (a+b).. jev jistý (P) 5. mocnina pokus provedeme v pěti tazích za rovnítkem a 5 5 srdcových karet (táhli jsme srdcovou při každém z pěti tahů) 5a 4 b 5x může nastat kombinace, kdy srdcovou kartu táhneme ve čtyřech tazích (a 4 ), v jednom tahu jsme táhli jinou než srdcovou kartu (b) 0x... 0x dvě kombinace: srdcové + 2 jiné nebo 2 srdcové a jiné 5x... srdcová a 4 jiné x... žádná vytažená karta nebude srdcová
15 POČET PRAVDĚPODOBNOSTI - binomické koeficienty pravděpodobnost jevu a 0,25(srdce) a jevub 0,75 (piky, kara, listy) Výpočet levé strany vzorce: a 5 +5a 4 b+0a b 2 + 0a 2 b + 5ab 4 + b 5 a 5 (0,25) 5 0, , ,00 5a 4 b 5*(0,25) 4 *0,75 0,0465 0, ,05 0a b 2 0*(0,25) *(0,75) 2 0, , ,088 0a 2 b 0*(0,25) 2 *(0,75) 0,2667 0, ,264 5ab 4 5*0,25*(0,75) 4 0,955 0, ,96 b 5 (0,75) 5 0,27 0,2705 0, ,0000,00000,00 Součet všech možných jevů je jev jistý - nastane s pravděpodobností Červeně - chyba zaokrouhlení. Podle zaokrouhlení rozvoje výsledků za desetinnou čárkou dostaneme také součet pravděpodobností všech možných jevů(jev jistý) s přesností na příslušný počet desetinných míst.
16 POČET PRAVDĚPODOBNOSTI - binomické koeficienty Binomické koeficienty v podobě kombinačního čísla udávají počet kombinací, které mohou nastat: Podrobněji se s tímto vzorcem seznámíme v Kombinatorice )! (!! k n k n k n
Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka
Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že
VíceIntuitivní pojem pravděpodobnosti
Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost
VíceTeorie pravěpodobnosti 1
Teorie pravěpodobnosti 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodný jev a pravděpodobnost Každou zákonitost sledovanou v přírodě lze zjednodušeně charakterizovat jako
Více2. přednáška - PRAVDĚPODOBNOST
2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.
VícePravděpodobnost a její vlastnosti
Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale
Více5.1. Klasická pravděpodobnst
5. Pravděpodobnost Uvažujme množinu Ω všech možných výsledků náhodného pokusu, například hodu mincí, hodu kostkou, výběru karty z balíčku a podobně. Tato množina se nazývá základní prostor a její prvky
Vícepravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.
3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.
VíceIB112 Základy matematiky
IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez
VícePravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
VícePravděpodobnost a statistika
Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,
VíceTEORIE PRAVDĚPODOBNOSTI. 2. cvičení
TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není
VíceInženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.
Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je
VíceZáklady teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika
VíceMatematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. září 2018 Teorie pravděpodobnosti Teorie pravděpodobnosti je odvětvím matematiky, které studuje matematické modely náhodných pokusu, tedy zabývá se
VíceNáhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy
Teorie pravděpodobnosti Náhodný pokus skončí jedním z řady možných výsledků předem nevíme, jak skončí (náhoda) příklad: hod kostkou, zítřejší počasí,... Pravděpodobnost zkoumá náhodné jevy (mohou, ale
VíceNáhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel.
Základy teorie pravděpodobnosti Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Poznámka: Výsledek pokusu není předem znám (výsledek
VícePRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev
RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 1. KAPITOLA - PRAVDĚPODOBNOST 2.10.2017 Kontakt Mgr. Jana Sekničková, Ph.D. jana.seknickova@vse.cz Katedra softwarového inženýrství Fakulta
VíceJiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Definice P(A/B) pravděpodobnost nastoupení jevu A za předpokladu, že nastal jev B (P(B) > 0) definujeme vztahem
VíceJevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého
8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění
VíceInformační a znalostní systémy
Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou
VíceDiskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
VíceMatematika I 2a Konečná pravděpodobnost
Matematika I 2a Konečná pravděpodobnost Jan Slovák Masarykova univerzita Fakulta informatiky 24. 9. 2012 Obsah přednášky 1 Pravděpodobnost 2 Nezávislé jevy 3 Geometrická pravděpodobnost Viděli jsme už
VíceLékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
VíceDiskrétní matematika. DiM /01, zimní semestr 2016/2017
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
VíceMatematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
VíceBinomické rozdělení zobrazené pomocí modelu římské kašny nádržky se naplní podle Pascalova trojúhelníku: 1:4:6:4:1
Binomické rozdělení Někdy se říká, že statistika je užitý počet pravděpodobnosti, a na tomto tvrzení je nepochybně něco pravdy, pokud se nevezme doslovně. Připomeňme si, že statistiku lze rozdělit na statistiku
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceCvičení ze statistiky - 5. Filip Děchtěrenko
Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost
VíceKOMBINATORIKA. 1. cvičení
KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU
VíceÚvod do teorie pravděpodobnosti
Úvod do teorie pravděpodobnosti Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 33 Obsah 1 Náhodné jevy 2 Pravděpodobnost 3 Podmíněná
VícePravděpodobnost a statistika (BI-PST) Cvičení č. 2
Pravděpodobnost a statistika (BI-PST) Cvičení č. 2 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015
VícePRAVDĚPODOBNOST A JEJÍ UŽITÍ
PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují
VíceNáhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.
Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení
Více( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204
9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými
VícePravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Pravděpodobnost je Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM, 24. 1. 2017 Čím se zabývá teorie pravděpodobnosti? Pokus děj, který probíhá, resp. nastává opakovaně
VíceUNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Sbírka řešených příkladů z pravděpodobnosti: náhodný jev Vedoucí bakalářské práce:
Více(iv) D - vybíráme 2 koule a ty mají různou barvu.
2 cvičení - pravděpodobnost 2102018 18cv2tex Definice pojmů a záladní vzorce Vlastnosti pravděpodobnosti Pravděpodobnost P splňuje pro libovolné jevy A a B následující vlastnosti: 1 0, 1 2 P (0) = 0, P
VíceNáhodný jev a definice pravděpodobnosti
Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle
VíceMETODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Práce s
VíceNMAI059 Pravděpodobnost a statistika
NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )
VíceTeorie pravděpodobnosti
Teorie pravděpodobnosti Petra Schreiberová, Viktor Dubovský Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2018 OBSAH 1 Jevy 3 1.1 Základní pojmy...................................
VícePoznámky k předmětu Aplikovaná statistika, 1. téma
Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Více(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Více1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
VíceMotivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma
Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.
Vícea) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika
Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin
VíceKomplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
VíceŠkola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN
Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VícePravděpodobnost (pracovní verze)
Pravděpodobnost (pracovní verze) 1. Definice pojmů Jednoduchý/náhodný pokus (simple experiment) Akt vedoucí k jednomu výsledku - např. hod kostkou, zatočení ruletou, vytažení karty z balíčku, výběr osoby
Vícepravděpodobnosti a Bayesova věta
NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,
Více2. Definice pravděpodobnosti
2. Definice pravděpodobnosti 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematických struktur a algoritmů procesy dvojího druhu. Jednodušší jsou deterministické procesy,
VíceObsah. Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Pravděpodobnost. Pravděpodobnost. Děj pokus jev
Obsah Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Definice pojmů Náhodný jev Pravděpodobnost Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi;-) roman.biskup(at)email.cz
VíceStatistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení šesté aneb Podmíněná pravděpodobnost Statistika (KMI/PSTAT) 1 / 13 Pravděpodobnost náhodných jevů Po dnešní hodině byste měli být schopni: rozumět pojmu podmíněná pravděpodobnost
VíceUrčeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti
PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová
VíceVektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Vícenáhodný jev je podmnožinou
Pravděpodobnost Dovednosti a cíle - Chápat jev A jako podmnožinu množiny, která značí množinu všech výsledků náhodného děje. - Umět zapsat jevy pomocí množinových operací a obráceně umět z množinového
VíceMaticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
VíceKombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
Více3. Podmíněná pravděpodobnost a Bayesův vzorec
3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka
VíceIII/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor016 Vypracoval(a),
VíceMatematika I (KMI/5MAT1)
Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny
VíceANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
Více( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209
9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve
VíceNěkdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
Víceletní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra i a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1 1 Založeno na materiálech doc. Michala Kulicha Organizační pokyny k přednášce přednáškové
Více5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?
0. Kombinatorika, pravděpodobnost, statistika Kombinatorika ) V restauraci mají na jídelním lístku 3 druhy polévek, 7 možností výběru hlavního jídla, druhy moučníku. K pití si lze objednat kávu, limonádu
VíceLineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Více( ) ( ) Binomické rozdělení. Předpoklady: 9209
9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů b) dá alespoň jeden koš c) dá nejdříve
Více1 Pravděpodobnostní prostor
PaS 1.-10. přednáška 1 Pravděpodobnostní prostor Náhodný pokus je takový pokus, jehož výsledek nelze s jistotou předpovědět. Pokud jsme schopni pokus za stále stejných podmínek opakovat (například házíme
Více4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek
cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická
Více1. Statistická analýza dat Jak vznikají informace Rozložení dat
1. Statistická analýza dat Jak vznikají informace Rozložení dat J. Jarkovský, L. Dušek, S. Littnerová, J. Kalina Význam statistické analýzy dat Sběr a vyhodnocování dat je způsobem k uchopení a pochopení
VíceTeoretická rozdělení
Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické
VícePodmíněná pravděpodobnost
odmíněná pravděpodobnost 5. odmíněná pravděpodobnost 5.. Motivace: Opakovaně nezávisle provádíme týž náhodný pokus a sledujeme nastoupení jevu A v těch pokusech, v nichž nastoupil jev H. odmíněnou relativní
VíceFunkce. Definiční obor a obor hodnot
Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné
Více5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy
Typické příklady pro zápočtové písemky DiM 70-30 (Kovář, Kovářová, Kubesa) (verze: November 5, 08) 5 Pravděpodobnost 5.. Jiří má v šuplíku rozházených osm párů ponožek, dva páry jsou černé, dva páry modré,
Více5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.
5. Náhodná veličina Poznámka: Pro popis náhodného pokusu jsme zavedli pojem jevového pole S jako množiny všech možných výsledků a pravděpodobnost náhodných jevů P jako míru výskytů jednotlivých výsledků.
VícePopulace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr 2012 1
? Šárka Hudecová Katedra i a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1? Statistika = věda o získávání, zpracování a interpretaci informace obsažené v
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceIII/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor014 Vypracoval(a),
Více0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
VíceRozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce
Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života
VíceZákladní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.
Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak
VíceMatematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
VíceDeterminanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VícePravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015)
III Pravděpodobnost Pravděpodobnost Podmíněná p. Úplná p. Odkud se bere pravděpodobnost? 1. Pravděpodobnost, že z balíčku zamíchaných karet vytáhmene dvě esa je přibližně 0:012. Modely a teorie. 2. Pravděpodobnost,
VíceNerovnice a nerovnice v součinovém nebo v podílovém tvaru
Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz
VícePříklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 4
ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST Příklad 1 a) Jev spočívá v tom, že náhodně vybrané přirozené číslo je dělitelné pěti a jev v tom, že toto číslo náhodně vybrané přirozené číslo zapsané v desítkové soustavě má
VíceLimita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
VíceMotivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec
Pravděpodobnostn podobnostní charakteristiky diagnostických testů, Bayesův vzorec Prof.RND.Jana Zvárov rová,, DrSc. Motivace V medicíně má mnoho problémů pravěpodobnostní charakter prognóza diagnoza účinnost
VíceDiskrétní náhodná veličina. November 12, 2008
Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.
VíceDistribuční funkce je funkcí neklesající, tj. pro všechna
Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná
VíceIII/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),
VíceZÁKLADY TEORIE PRAVDĚPODOBNOSTI
ZÁKLDY TEORIE RVDĚODOBNOSTI 1 Vytvořeno s podporou projektu růřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
VícePRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]
PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické
VíceJaroslav Michálek A STATISTIKA
VUT BRNO FAKULTA STROJNÍHO INŽENÝRSTVÍ Jaroslav Michálek PRAVDĚPODOBNOST A STATISTIKA BRNO 2006 preprint Kapitola 1 Úvod Prudký rozvoj výpočetní techniky, jehož jsme v posledních desetiletích svědky, podstatně
Více