Deskriptivní geometrie 1

Rozměr: px
Začít zobrazení ze stránky:

Download "Deskriptivní geometrie 1"

Transkript

1 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 22. září 2009 verze 3.0

2 Předmluva Tento pomocný text vznikl pro potřeby předmětu Deskriptivní geometrie I. Některé části jsou shodné s kapitolami ve skriptech pro strojní fakultu, které jsme vytvořili společně s doc. RNDr. Františkem Ježkem CSc. Chybí zde ještě pojednání o kótovaném promítání, řešení terénu a kartografických projekcích. Pokud najdete v textu nedopatření, resp. pokud je text někde nesrozumitelný, prosím o sdělení takových poznatků. Ideální cestou je použití u a adresy svetlana@kma.zcu.cz. Autorka 2

3 Obsah 1 Opakování stereometrie Axiómy Určování odchylek Odchylka mimoběžek Odchylka dvou rovin Kritéria rovnoběžnosti Kritéria kolmosti Otáčení v prostoru Dělící poměr Kontrolní otázky Nevlastní elementy Úvodní úvaha Nevlastní bod, přímka a rovina Kontrolní otázky Kuželosečky Úvod Elipsa Rovnice elipsy Proužková konstrukce elipsy Oskulační kružnice elipsy Rytzova konstrukce Tečna a ohniskové vlastnosti elipsy Hyperbola Tečna a ohniskové vlastnosti hyperboly Parabola Tečna a ohniskové vlastnosti paraboly Pascalova a Brianchonova věta Kontrolní otázky Elementární plochy a tělesa Základní pojmy Jehlanová plocha, jehlan Hranolová plocha, hranol

4 Obsah Kuželová plocha, kužel Válcová plocha, válec Kulová plocha, koule Kontrolní otázky Základy promítání Úvod Středové promítání Rovnoběžné promítání Pravoúhlé promítání Středová kolineace Osová afinita Kružnice v osové afinitě a středové kolineaci Kontrolní otázky Mongeovo promítání Úvod Obraz bodu Obraz přímky Obraz roviny Polohové úlohy Přímka v rovině (základní úloha Z1) Bod v rovině (základní úloha Z2) Rovnoběžné roviny (základní úloha Z3) Průsečík přímky s rovinou (základní úloha Z4) Průsečnice dvou rovin (základní úloha Z5) Metrické úlohy Skutečná velikost úsečky (základní úloha Z6) Nanesení úsečky na přímku (základní úloha Z7) Přímka kolmá k rovině (základní úloha Z8) Rovina kolmá k přímce (základní úloha Z9) Otočení roviny do polohy rovnoběžné s průmětnou (základní úloha Z10) Obraz kružnice (základní úloha Z11) Transformace průměten (základní úloha Z12) Kontrolní otázky Axonometrie Úvod Klasifikace axonometrií Zobrazení bodu Zobrazení přímky Zobrazení roviny Úlohy v axonometrii Vzájemná poloha přímek Přímka v rovině

5 Obsah Průsečík přímky s rovinou Průsečnice rovin Kružnice v souřadnicové rovině Pravoúhlá axonometrie Metrické úlohy v rovinách xy, yz, zx Obraz kružnice ležící v některé souřadnicové rovině Kontrolní otázky

6 Kapitola 1 Opakování stereometrie Na úvod připomeneme základní pojmy a věty z prostorové geometrie, které budeme používat v dalších kapitolách. 1.1 Axiómy Axiómy jsou jednoduchá tvrzení, která nemůžeme dokázat. Z nich se potom odvozují další věty. Tento systém axiómů použil před více než 2000 lety slavný řecký geometr Euklides k vybudování prostorové geometrie. Geometrii vybudované na tomto systému axiómů říkáme Euklidovská geometrie. Uvedeme si pět základních axiómů prostorové geometrie: 1. axióm: Dva různé body A, B určují právě jednu přímku p. Symbolicky tuto větu zapíšeme: A, B; A B! p = AB. 2. axióm: Přímka p a bod A, který neleží na přímce p, určují právě jednu rovinu α. Symbolicky: A, p; A / p! α = (A, p). 3. axióm: Leží-li bod A na přímce p a přímka p v rovině α, leží i bod A v rovině α. Symbolicky: A, p, α; A p p α A α. 4. axióm: Mají-li dvě různé roviny α, β společný bod P, pak mají i společnou přímku p a P leží na p. Symbolicky: α, β, α β : P α β! p : P p α β = p. 5. axióm: Ke každé přímce p lze bodem P, který na ní neleží, vést jedinou přímku p rovnoběžnou s p. Symbolicky: P, p : P / p! p : p p P p. Uvedených pět axiómů tvoří základ, ale museli bychom je doplnit o další axiómy, aby systém dovoloval vybudování klasické geometrie. Není však cílem tohoto textu uvést úplný přehled axiómů a vět prostorové geometrie. Zaměříme se jen na takové vztahy, které budeme přímo využívat v dalším výkladu. 1.2 Určování odchylek V rovině umíme určit odchylku přímek, které jsou různoběžné. Protože se zabýváme prostorovými vztahy, nadefinujeme si i odchylku dvou mimoběžek a ukážeme si, jak lze určit odchylku dvou rovin. 6

7 1.3. Kritéria rovnoběžnosti Odchylka mimoběžek 1. V prostoru jsou dány dvě mimoběžky a, b. 2. Libovolným bodem M vedeme přímku a rovnoběžnou s přímkou a a přímku b rovnoběžnou s přímkou b. 3. Odchylka mimoběžek a, b je rovna odchylce přímek a, b. Obrázek 1.1: Odchylka dvou rovin Uvedeme dva způsoby, jak určit odchylku dvou různoběžných rovin α a β. 1. způsob - obr. 1.2 Obrázek 1.2: Obrázek 1.3: 1. Sestrojíme průsečnici p rovin α a β. 2. Sestrojíme rovinu γ kolmou na p. 3. Sestrojíme průsečnici a rovin α a γ a průsečnici b rovin β a γ. 4. Odchylka ϕ přímek a, b je odchylkou rovin α a β. 2. způsob - obr Libovolným bodem M vedeme kolmici n k rovině α. 2. Stejným bodem M vedeme kolmici n k rovině β. 3. Odchylka přímek n, n je odchylkou rovin α a β. 1.3 Kritéria rovnoběžnosti Věta 1.1 Kritérium rovnoběžnosti přímky s rovinou. Přímka p je rovnoběžná s rovinou α, právě když existuje přímka p ležící v rovině α, rovnoběžná s přímkou p obr. 1.4.

8 1.4. Kritéria kolmosti 8 Věta 1.2 Kritérium rovnoběžnosti dvou rovin. Rovina α je rovnoběžná s rovinou β, právě když existují různoběžky a, b ležící v rovině α a rovnoběžné s rovinou β obr Obrázek 1.4: Obrázek 1.5: 1.4 Kritéria kolmosti Věta 1.3 Kritérium kolmosti přímky a roviny. Přímka p je kolmá k rovině α, jestliže je kolmá ke dvěma různoběžkám a, b ležícím v rovině α obr Věta 1.4 Kritérium kolmosti dvou rovin. Rovina α je kolmá k rovině β, jestliže v rovině α existuje přímka p kolmá k rovině β (tj. kolmá ke dvěma různoběžkám a, b ležícím v rovině β) obr Obrázek 1.6: Obrázek 1.7: 1.5 Otáčení v prostoru Transformacím bude věnována celá kapitola. Nyní si pouze připomeneme základní vlastnosti otáčení (rotace), protože otáčení budeme potřebovat při studiu zobrazovacích metod.

9 1.6. DělÍcÍ poměr 9 Popíšeme otáčení v prostoru okolo osy o o úhel ϕ. Body osy otáčení jsou samodružné (zobrazí se samy na sebe). Bod A se otáčí po kružnici k. Určíme střed S kružnice k, poloměr r a rovinu ρ, ve které kružnice k leží - obr Rovina otáčení ρ prochází bodem A a je kolmá k ose otáčení o. Střed otáčení S je průsečíkem osy o s rovinou ρ. Poloměr otáčení r je velikost úsečky AS, píšeme r = AS. Obrázek 1.8: Obrázek 1.9: Příklad 1.1 Jsou dány různoběžné roviny α a π, v rovině α je dán bod A. Napíšeme postup pro otočení bodu A do roviny π - obr Řešení: 1. Osou otáčení o je průsečnice rovin α a π (o = α π). 2. Rovina otáčení ρ je kolmá k ose o a prochází bodem A (ρ o A ρ). 3. Střed otáčení S získáme jako průsečík osy o a roviny ρ (S = o ρ). 4. Velikost úsečky SA je poloměr otáčení (r = SA ). 1.6 Dělící poměr Na orientované přímce p jsou dány dva různé body A, B. Bod C B je libovolný bod přímky p. Dělící poměr bodu C vzhledem k bodům A, B je číslo λ = (A, B, C) = d( AC) : d( BC), kde d( AC), d( BC) jsou orientované délky příslušných úseček. Například je-li bod C středem úsečky AB, jeho dělící poměr vzhledem k bodům A, B je λ = 1, což plyne ze vztahu d( AC) = d( BC). Obráceně ke každému číslu λ 1 můžeme sestrojit na dané orientované přímce AB bod, jehož dělící poměr vůči bodům A, B je dané číslo λ.

10 1.7. KontrolnÍ otázky Kontrolní otázky 1.1 Popište, jak lze určit odchylku dvou rovin. 1.2 Uved te kritérium rovnoběžnosti přímky a roviny a kritérium rovnoběžnosti dvou rovin. 1.3 Uved te kritérium kolmosti přímky a roviny a kritérium kolmosti dvou rovin. 1.4 Proč nemůže dělící poměr podle uvedené definice nabývat hodnoty 1?

11 Kapitola 2 Nevlastní elementy 2.1 Úvodní úvaha Je dána přímka q a bod P, který na této přímce neleží. Bodem P prochází přímka p (obr.2.1). Otáčíme přímkou p kolem bodu P a sestrojujeme průsečíky přímky p s přímkou q. Obrázek 2.1: V určitém okamžiku se přímka p dostane do speciální polohy (p q), kdy průsečík neexistuje. Nyní nastávají dvě možnosti: bud ve svých úvahách budeme uvádět tento případ zvlášt, nebo si pomůžeme tím, že i pro tuto situaci zavedeme průsečík a budeme rovnoběžky považovat za přímky, které mají společný bod. Tento průsečík, který ovšem nemůžeme zobrazit, nazveme nevlastním bodem. 2.2 Nevlastní bod, přímka a rovina Definice 2.1 Všechny navzájem rovnoběžné přímky v prostoru mají společný právě jeden bod, který nazýváme nevlastním bodem. (Někdy říkáme, že rovnoběžné přímky mají stejný směr - nahradili jsme tedy pojem směr pojmem nevlastní bod.) - obr. 2.2 Podobnou úvahu jako v obr. 2.1 můžeme provést pro dvě roviny a vyslovíme další definice: 11

12 2.3. KontrolnÍ otázky 12 Obrázek 2.2: Obrázek 2.3: Definice 2.2 Všechny navzájem rovnoběžné roviny v prostoru mají společnou právě jednu přímku, kterou nazýváme nevlastní přímkou - obr Definice 2.3 Nevlastní rovina je množina všech nevlastních bodů a nevlastních přímek. Nevlastní útvary označujeme stejně jako vlastní, pouze připojujeme index. Tedy např. A je nevlastní bod, p je nevlastní přímka apod. Euklidovský prostor obsahuje pouze vlastní útvary. Jestliže k němu přidáme právě zavedené nevlastní body, přímky a roviny, dostaneme nový prostor, který nazýváme projektivně rozšířený euklidovský prostor (nebo zkráceně rozšířený euklidovský prostor). V rozšířeném euklidovském prostoru platí pro vlastní útvary všechny axiomy a věty, které platily v euklidovském prostoru. Pro nevlastní útvary musíme předpokládat platnost dalších tvrzení o incidenci vlastních a nevlastních útvarů: Na každé vlastní přímce leží právě jeden nevlastní bod. V každé vlastní rovině leží právě jedna nevlastní přímka. Nevlastní body všech vlastních přímek jedné roviny leží na nevlastní přímce této roviny. Poznámka 2.1 Nevlastní bod na vlastní přímce značíme A a někdy připojujeme k příslušné přímce šipku, což ale nesmí vést k domněnce, že na vlastní přímce existují dva různé nevlastní body. Vlastní přímka má jediný nevlastní bod, nebot patří jednomu systému navzájem rovnoběžných přímek. Dvě rovnoběžné přímky mají jeden společný nevlastní bod. 2.3 Kontrolní otázky 2.1 Definujte nevlastní bod přímky. 2.2 Kolik nevlastních bodů leží na jedné přímce (rozlište přímku vlastní a nevlastní)? 2.3 Je pravdivé tvrzení, že v rozšířené euklidovské rovině mají dvě různé přímky právě jeden společný bod? Je toto trvzení pravdivé i pro rozšířený euklidovský prostor?

13 Kapitola 3 Kuželosečky 3.1 Úvod Kuželosečka je rovinná křivka, kterou získáme jako průnik rotační kuželové plochy a roviny. Kuželosečky můžeme rozdělit na singulární, pokud rovina řezu prochází vrcholem rotační kuželové plochy (bod, přímka, dvě přímky) a regulární, jestliže rovina řezu vrcholem neprochází (elipsa, hyperbola, parabola). V dalším textu nejprve uvedeme definice a tzv. ohniskové vlastnosti kuželoseček, přičemž se nejvíce zaměříme na elipsu, protože elipsa je afinním obrazem kružnice, a tedy se s ní často setkáme v rovnoběžném promítání. Protože ohniska kuželoseček nejsou invariantem (nezobrazují se do ohnisek) afinních zobrazení, zaměříme se v další části na dvě věty, které nevyužívají ohniskových vlastností, ale pracují pouze s body, tečnami a incidencí. Poznámka 3.1 Sečna kuželosečky (resp. jiné křivky) je spojnice dvou bodů kuželosečky. Tečnu lze definovat jako limitní případ sečny, pokud tyto dva body splynou. 3.2 Elipsa Definice 3.1 Elipsa je množina všech bodů, které mají od dvou daných vlastních bodů F, G stálý součet vzdáleností 2a, větší než vzdálenost daných bodů (obr. 3.1). Body F, G se nazývají ohniska, spojnice bodů elipsy s ohnisky jsou průvodiče, střed úsečky F G je střed elipsy. Přímka F, G je osou souměrnosti elipsy a nazýváme ji hlavní osa, stejným názvem označujeme i vzdálenost bodů A, B elipsy ležících na této ose, polovině této vzdálenosti říkáme hlavní poloosa a značíme a. Osu úsečky F, G nazýváme vedlejší osa, stejným názvem označujeme i vzdálenost bodů C, D elipsy ležících na této ose, polovině této vzdálenosti říkáme vedlejší poloosa a značíme b. Vzdálenost ohniska od středu elipsy se nazývá lineární výstřednost neboli excentricita a značíme ji e. Pro poloosy a excentricitu platí vztah a 2 = b 2 + e 2. 13

14 3.2. Elipsa 14 Obrázek 3.1: Rovnice elipsy V této podkapitole používáme pojmový aparát z kapitoly Analytická geometrie (viz.??), je možné tuto část vynechat a vrátit se k ní později. Pokud umístíme elipsu tak, aby její osy ležely na souřadnicových osách (střed je v počátku souřadnicové soustavy), potom ohniska mají souřadnice F = [ e, 0], G = [e, 0] a bod elipsy M = [x, y]. Z definice elipsy platí, že F M + GM = 2a tj. (x + e) 2 + y 2 + (x e) 2 + y 2 = 2a. Po úpravě získáme kanonickou rovnici x 2 a + y2 2 b = 1. 2 Jestliže umístíme střed elipsy do bodu S = [s 1, s 2 ] (a osy zůstanou rovnoběžné se souřadnicovými osami), pak má elipsa rovnici (x s 1 ) 2 + (y s 2) 2 = 1. a 2 b 2 Parametrické vyjádření vyjádření lze odvodit z tzv. trojúhelníkové konstrukce elipsy (viz obr. 3.2). Jsou dány dvě soustředné kružnice se společným středem v bodě S = [0, 0] a poloměry a, b (a > b). Bodem S vedeme polopřímku r, která protíná kružnice v bodech A, B. Bodem A vedeme rovnoběžku s osou y a bodem B rovnoběžku s osou x. Průsečík těchto rovnoběžek označíme X = [x, y] a odvodíme jeho souřadnice. Odvození ukážeme pro první kvadrant t (0; π/2), v ostatních kvadrantech bude situace analogická. Souřadnice bodu A resp. B jsou [x a, y a ] = [a cos t, a sin t], resp. [x b, y b ] = [b cos t, b sin t]. Z pravoúhlého trojúhelníku ABX lze vyjádřit velikosti odvěsen v = AX = (a b) sin t, u = BX = (a b) cos t. Souřadnice bodu X = [x, y] můžeme vyjádřit pomocí souřadnic bodů A, B a velikostí u, v: x = x b + u = b cos t + (a b) cos t = a cos t y = y a v = a sin t (a b) sin t = b sin t. Bod X je bodem elipsy, protože jeho souřadnice vyhovují kanonické rovnici uvedené výše a x = a cos t, b sin t, t (0; 2π)

15 3.2. Elipsa 15 je parametrickým vyjádřením elipsy. Obrázek 3.2: Obrázek 3.3: Proužková konstrukce elipsy Bodem X vedeme rovnoběžku q s polopřímkou r. Přímka q protne hlavní a vedlejší osu elipsy v bodech P a R. Protože r q, BX SP a AX SR, platí také, že RX = SA = a a XP = SB = b. Příklad 3.1 Elipsa je určena hlavní osou AB a bodem M, který je bodem elipsy. Určete velikost vedlejší poloosy elipsy - obr Řešení: (obr. 3.5) 1. Sestrojíme osu o úsečky AB. 2. Sestrojíme kružnici f (M, a), velikost hlavní poloosy a je rovna polovině vzdálenosti bodů A, B. 3. Sestrojíme bod R jako průsečík kružnice f s osou o (ze dvou možností vybereme bod, který leží v opačné polorovině k polorovině určené osou AB a bodem M). 4. Sestrojíme průsečík P úsečky RM s osou AB. 5. Velikost b vedlejší poloosy je vzdálenost bodů P M Oskulační kružnice elipsy Pokud jsme nuceni sestrojit elipsu pomocí kružítka a pravítka, můžeme ji ve vrcholech nahradit oblouky tzv. oskulačních kružnic. Příklad 3.2 Sestrojte libovolný bod a oskulační kružnice elipsy určené hlavní a vedlejší osou - obr Řešení: (obr. 3.7)

16 3.2. Elipsa 16 Obrázek 3.4: Obrázek 3.5: 1. Sestrojíme úsečku UW velikosti 2a = AB a zvolíme bod V na úsečce UW. 2. Určíme ohniska F, G. Bod X je průsečíkem kružnic u 1 (F, UV ) a u 2 (G, V W ). 3. Sestrojíme bodem C rovnoběžku s hlavní osou a bodem B rovnoběžku s vedlejší osou (tečny ve vrcholech). 4. Průsečíkem rovnoběžek vedeme kolmici r k přímce CB. 5. Průsečíky přímky r s hlavní a vedlejší osou jsou středy S 1, S 2 oskulačních kružnic k 1 (S 1, S 1 B ), k 2 (S 2, S 2 C ). Obrázek 3.6: Obrázek 3.7: Rytzova konstrukce Průměr elipsy je úsečka, která prochází středem elipsy a její krajní body leží na elipse. Na rozdíl od kružnice není elipsa svým průměrem určena. Jednoznačně je určena tzv. sdruženými průměry, pro které platí, že tečny v krajních bodech jednoho průměru jsou rovnoběžné s průměrem sdruženým.

17 3.2. Elipsa 17 Obrázek 3.8: Příklad 3.3 Sestrojte hlavní a vedlejší osu elipsy určené sdruženými průměry - obr Řešení: (Rytzova konstrukce - obr. 3.10) 1. K průměru KL vedeme bodem S kolmici u. 2. Na kolmici sestrojíme bod Q tak, že na u naneseme od bodu S délku QS = KS. Bod Q leží ve stejné polorovině určené hraniční přímkou KL jako bod M. 3. Sestrojíme přímku QM. 4. O je střed úsečky QM. 5. Sestrojíme kružnici r (O, OS ). 6. QM r = {R, P }. 7. Přímky RS a P S udávají polohu hlavní a vedlejší osy elipsy. Hlavní osa prochází ostrým úhlem sdružených průměrů. 8. Velikost hlavní osy elipsy a = P M. Velikost vedlejší osy elipsy b = RM. Obrázek 3.9: Obrázek 3.10: Tečna a ohniskové vlastnosti elipsy Tečna elipsy je přímka, která má s elipsou společný právě jeden bod. Při sestrojování obrysu některých těles (kužel) budeme hledat tečny z bodu (nebo v bodě) k elipse. Následující tři věty poskytují potřebný návod k těmto konstrukcím.

18 3.2. Elipsa 18 Věta 3.1 Tečna elipsy půlí vnější úhly průvodičů dotykového bodu (viz obr. 3.1). Obrázek 3.11: Obrázek 3.12: Věta 3.2 Množina všech bodů, které jsou souměrně sdružené s jedním ohniskem elipsy podle jejích tečen, je kružnice se středem v druhém ohnisku o poloměru rovném velikosti hlavní osy elipsy. Tato kružnice se nazývá řídící kružnice (viz obr. 3.11). Věta 3.3 Množina všech pat kolmic, které jsou spuštěny z ohnisek elipsy na její tečny, je kružnice opsaná okolo středu elipsy poloměrem rovným velikosti hlavní poloosy. Tato kružnice se nazývá vrcholová kružnice (viz obr. 3.12). Příklad 3.4 Elipsa je určena hlavní a vedlejší osou. Z bodu M ved te tečny k zadané elipse - obr Řešení: (pomocí vrcholové kružnice - obr. 3.14) 1. Sestrojíme vrcholovou kružnici r (S, a). 2. Sestrojíme Thaletovu kružnici k nad úsečkou GM. 3. Sestrojíme průsečíky U 1, U 2 kružnic k, r. 4. Tečny t 1 resp. t 2 jsou určeny body U 1 M resp. U 2 M. 5. Pokud chceme nalézt dotykový bod T, sestrojíme bod G souměrně sdružený k ohnisku G podle tečny t 2. Bod T je průsečíkem přímek F G a t 2. Druhý dotykový bod bychom našli analogicky. Řešení: (pomocí řídící kružnice - obr. 3.15) 1. Sestrojíme řídící kružnici d (F, 2a). 2. Sestrojíme kružnici k (M, MG ). 3. Bod G (bod souměrně sdružený k ohnisku podle tečny) je průsečík kružnic k, r. 4. Tečna t 2 je kolmá k úsečce GG. (Tečnu t 1 najdeme pomocí druhého průsečíku kružnic k, r - konstrukce není v obrázku znázorněna.) 5. Dotykový bod T je průsečíkem přímek F G a t 2.

19 3.3. Hyperbola 19 Obrázek 3.13: Obrázek 3.14: Obrázek 3.15: 3.3 Hyperbola Definice 3.2 Hyperbola je množina všech bodů, které mají od dvou daných pevných bodů F, G stálý rozdíl vzdáleností 2a, menší než vzdálenost daných bodů (obr. 3.16). Body F, G se nazývají ohniska, spojnice bodů hyperboly s ohnisky jsou průvodiče, střed úsečky F G je střed hyperboly. Vzdálenost ohniska od středu elipsy se nazývá lineární výstřednost neboli excentricita a značíme ji e. Přímka F, G je osou souměrnosti hyperboly a nazýváme ji hlavní osa, stejným názvem označujeme i vzdálenost bodů A, B hyperboly ležících na této ose, polovině této vzdálenosti říkáme hlavní poloosa a značíme a. Osu úsečky F, G nazýváme vedlejší osa, vedlejší poloosa nazýváme velikost b, pro kterou platí vztah. e 2 = a 2 + b 2

20 3.4. Parabola 20 Obrázek 3.16: Tečna a ohniskové vlastnosti hyperboly Pro hyperbolu platí podobné věty jako pro elipsu a lze je využít při hledání tečny hyperboly. Pro tečny v nevlastních bodech používáme označení asymptoty. Věta 3.4 Tečna hyperboly půlí vnější úhly průvodičů dotykového bodu. (viz obr. 3.16). Věta 3.5 Množina všech bodů, které jsou souměrně sdružené s jedním ohniskem hyperboly podle jejích tečen, je kružnice se středem v druhém ohnisku o poloměru rovném velikosti hlavní osy hyperboly. Tato kružnice se nazývá řídící kružnice (viz obr. 3.17). Věta 3.6 Věta 3: Množina všech pat kolmic, které jsou spuštěny z ohnisek hyperboly na její tečny, je kružnice opsaná okolo středu hyperboly poloměrem rovným velikosti hlavní poloosy. Tato kružnice se nazývá vrcholová kružnice (viz obr. 3.18). 3.4 Parabola Definice 3.3 Parabola je množina všech bodů, které mají od pevného bodu F a pevné přímky d, která tímto bodem neprochází, stejné vzdálenosti (obr. 3.19). Bod F se nazývá ohnisko, přímka d řídící přímka, spojnice bodů paraboly s ohniskem a kolmice daným bodem k řídící přímce jsou průvodiče. Přímka procházející ohniskem F a kolmá na řídící přímku je osou souměrnosti paraboly a nazýváme ji osa paraboly. Průsečík V osy s parabolou je vrchol paraboly. Vzdálenost ohniska od řídící přímky se nazývá parametr a značí se p. Oskulační kružnice v hlavním vrcholu paraboly má střed S na ose paraboly ve vzdálenosti p od vrcholu V (viz obr. 3.19).

21 3.4. Parabola 21 Obrázek 3.17: Obrázek 3.18: Obrázek 3.19: Tečna a ohniskové vlastnosti paraboly Pro parabolu platí podobné věty jako pro elipsu a hyperbolu, pouze místo řídící a vrcholové kružnice dostáváme řídící a vrcholovou přímku. Tyto věty lze opět využít při hledání tečny paraboly. Věta 3.7 Tečna paraboly půlí vnější úhly průvodičů dotykového bodu (viz obr. 3.19). Věta 3.8 Množina všech bodů, které jsou souměrně sdružené s ohniskem paraboly podle jejích tečen, je její řídící přímka. (viz obr. 3.20). Věta 3.9 Množina všech pat kolmic, které jsou spuštěny z ohniska na tečny paraboly, je vrcholová tečna paraboly. (viz obr. 3.21).

22 3.5. Pascalova a Brianchonova věta 22 Obrázek 3.20: Obrázek 3.21: 3.5 Pascalova a Brianchonova věta Věta 3.10 (Pascalova věta) Průsečíky tří dvojic protějších stran šestiúhelníka vepsaného do kuželosečky leží na jedné přímce tzv. Pascalově přímce (obr. 3.22). Obrázek 3.22: P = Q = R = Příklad 3.5 Sestrojte další bod kuželosečky k(a, B, C, D, E) určené pěti body - obr Řešení: (volba přímky, na které leží hledaný bod - obr. 3.24) 1. Očíslujeme body např. A = 1, B = 4, C = 2, D = 5, E = 3 a hledáme bod F = Protože hledáme libovolný bod, můžeme přímku, na které budeme bod 6 hledat, vhodně zvolit. Volíme přímku procházející bodem 1 a označíme ji 16 (spojnice bodů 1 a 6) 3. Sestrojíme bod P, který je průsečíkem spojnic 12 a Sestrojíme bod R, který je průsečíkem spojnic 34 a 16.

23 3.5. Pascalova a Brianchonova věta Sestrojíme Pascalovu přímku p = P R. 6. Sestrojíme bod Q, který je průsečíkem Pascalovy přímky p a přímky Sestrojíme přímku 56, která je spojnicí bodů Q a Bod F = 6 je průsečíkem přímek 16 a 56. Obrázek 3.23: Obrázek 3.24: Poznámka 3.2 Pokud dva body kuželosečky splynou, pak jejich spojnice přejde v tečnu (viz obr. 3.25). Pokud splynou dvě tečny, pak jejich průsečík přejde v dotykový bod (viz obr. 3.26). Techto úvah využijeme v následujících příkladech. Obrázek 3.25: Obrázek 3.26: Příklad 3.6 Kuželosečka k(a, B, C, D, E) je určena pěti body. Sestrojte tečnu k této kuželosečce v bodě A - obr Řešení: (obr. 3.28)

24 3.5. Pascalova a Brianchonova věta Protože hledáme tečnu v bodě A, označíme tento bod jako dva body, které splynuly (a v Pascalově větě je využívána jejich spojnice) A = 1 = Očíslujeme ostatní body např. B = 2, C = 5, D = 3, E = 4 a hledáme spojnici Sestrojíme bod P, který je průsečíkem spojnic 12 a Sestrojíme bod Q, který je průsečíkem spojnic 23 a Sestrojíme Pascalovu přímku p = P Q. 6. Sestrojíme bod R jako průsečík Pascalovy přímky p a přímky Sestrojíme přímku 16, která je spojnicí bodů R a 1 = Přímka t A = 16 je tečnou kuželosečky v bodě 1 = 6. Obrázek 3.27: Obrázek 3.28: Příklad 3.7 Kuželosečka k(a, B, b, D, E) je určena pěti body a tečnou v jednom z nich. Sestrojte tečnu k této kuželosečce v bodě A - obr Řešení: (obr. 3.30) 1. Protože hledáme tečnu v bodě A, označíme tento bod jako dva body, které splynuly (a v Pascalově větě je využívána jejich spojnice) A = 1 = Protože přímka b je tečnou v bodě B, označíme i bod B jako dva body, které splynuly (a v Pascalově větě je využívána jejich spojnice) B = 3 = 4 a přímku b jako spojnici Očíslujeme ostatní body např. D = 5, E = 6 a hledáme spojnici Sestrojíme bod Q, který je průsečíkem spojnic 23 a Sestrojíme bod R, který je průsečíkem spojnic 34 a Sestrojíme Pascalovu přímku p = QR. 7. Sestrojíme bod P jako průsečík Pascalovy přímky p a přímky Sestrojíme přímku 12, která je spojnicí bodů P a 1 = Přímka t A = 12 je tečnou kuželosečky v bodě 1 = 2.

25 3.5. Pascalova a Brianchonova věta 25 Obrázek 3.29: Obrázek 3.30: Obrázek 3.31: p = (1 2)(4 5) q = (2 3)(5 6) r = (3 4)(6 1) Věta 3.11 (Brianchonova věta) Spojnice tří dvojic protějších vrcholů šestiúhelníka opsaného kuželosečce procházejí jedním bodem tzv. Brianchonovým bodem (obr. 3.31). Příklad 3.8 Kuželosečka k(a, b, c, d, e) je určena pěti tečnami. Sestrojte další tečnu této kuželosečky - obr Řešení: (obr. 3.33) 1. Očíslujeme přímky např. a = 1, b = 2, c = 3, d = 4, e = 5 a hledáme přímku f = Protože hledáme libovolnou přímku, můžeme zvolit bod, kterým přímka bude procházet. Volíme bod na přímce 1 a označíme ho 16 (průsečík přímek 1 a 6) 3. Sestrojíme přímku p, která je spojnicí průsečíků 12 a Sestrojíme přímku r, která je spojnicí průsečíků 34 a Sestrojíme Brianchonův bod B, který je průsečíkem přímek p a r. 6. Sestrojíme přímku q, která je spojnicí Brianchonova bodu B a průsečíku 23.

26 3.6. KontrolnÍ otázky Sestrojíme bod 56, který je průsečíkem přímek q a Tečna f = 6 je spojnicí bodů 16 a 56. Obrázek 3.32: Obrázek 3.33: Příklad 3.9 Kuželosečka k(a, b, c, d, D) je určena pěti tečnami a jedním bodem dotyku (bod D na tečně d). Sestrojte dotykový bod A na tečně a - obr Řešení: (obr. 3.35) 1. Protože na tečně d známe dotykový bod, označíme ji jako dvě tečny, které splynuly d = 5 = 6 a dotykový bod jako jejich průsečík D = Přímku a, na které hledáme dotykový bod, také označíme jako dvě přímky, které splynuly a = 1 = 2 a hledáme jejich průsečík A = Očíslujeme ostatní přímky např. b = 3, c = Sestrojíme přímku q, která je spojnicí průsečíků 23 a Sestrojíme přímku r, která je spojnicí průsečíků 34 a Sestrojíme Brianchonův bod B, který je průsečíkem přímek q a r. 7. Sestrojíme přímku p, která je spojnicí Brianchonova bodu B a průsečíku Sestrojíme bod 12, který je průsečíkem přímek p a 1 = Bod 12 je dotykovým bodem na tečně a. 3.6 Kontrolní otázky 3.1 Kolika obecnými body je kuželosečka jednoznačně určena. 3.2 Co jsou to sdružené průměry elipsy? Které průměry kružnice můžeme považovat za sdružené pokud bychom uvažovali kružnici jako speciální případ elipsy (ohniska splynou)? 3.3 Kolik nevlastních bodů mají jednotlivé regulární kuželosečky?

27 3.6. KontrolnÍ otázky 27 Obrázek 3.34: Obrázek 3.35:

28 Kapitola 4 Elementární plochy a tělesa 4.1 Základní pojmy Elementárními plochami budeme rozumět jehlanovou, hranolovou, kuželovou, válcovou a kulovou plochu a elementárními tělesy jehlan, hranol, kužel, válec a kouli. Elementární tělesa znáte z předchozího studia na střední škole. Zde je jen dáme do souvislostí s nově definovanými pojmy Jehlanová plocha, jehlan Jehlanová plocha je určena rovinnou lomenou čárou - polygonem c (c σ) a bodem V, který neleží v rovině polygonu (V σ), a je tvořena přímkami, které protínají polygon c a procházejí bodem V - obr. 4.1 a). Je-li polygon uzavřený, pak množina přímek, které procházejí daným bodem V a protínají vnitřek polygonu nebo polygon, se nazývá jehlanový prostor. Přímky určené vrcholem V a vrcholy polygonu jsou hrany jehlanové plochy. Rovina, která prochází vrcholem, se nazývá vrcholová rovina. Jehlan je průnik jehlanového prostoru a prostorové vrstvy určené rovinou σ řídícího polygonu a vrcholové roviny σ σ - obr. 4.1 c). ) Výška jehlanu je vzdálenost vrcholu V od roviny podstavy. Má-li podstava střed S a leží-li vrchol V na kolmici vztyčené v bodě S k rovině podstavy, nazýváme jehlan kolmý a SV je jeho osa. V opačném případě je jehlan kosý Hranolová plocha, hranol Hranolová plocha je určena rovinnou lomenou čárou - polygonem c (c σ) a směrem s, který nenáleží dané rovině (s σ), a je tvořena přímkami, které protínají polygon c a jsou směru s - obr. 4.1b). Je-li polygon uzavřený, pak množina přímek směru s, které protínají polygon nebo vnitřek polygonu, se nazývá hranolový prostor. Přímky určené vrcholy polygonu a směru s jsou hrany hranolové plochy. V projektivním rozšíření euklidovského prostoru lze definovat hranolovou plochu jako speciální případ jehlanové plochy, jejímž vrcholem je nevlastní bod. Vrcholovou rovinou je každá rovina směru s. 28

29 4.1. ZákladnÍ pojmy 29 Hranol je průnik hranolového prostoru a prostorové vrstvy určené rovinou σ řídícího polygonu a roviny σ σ - obr. 4.1d). Výška hranolu je vzdálenost rovin podstav. Jsou-li pobočné hrany kolmé na roviny podstav, nazýváme hranol kolmý a spojnice středů podstav je jeho osou (pokud existuje). V opačném případě je hranol kosý. Hranol, jehož podstavou je rovnoběžník, nazýváme rovnoběžnostěn. Obrázek 4.1: Obrázek 4.2: Kuželová plocha, kužel Kuželová plocha je určena rovinnou křivku k (k σ) a bodem V, který neleží v rovině dané křivky (V σ), a je tvořena přímkami, které protínají křivku k a procházejí bodem V - obr. 4.2 a). Je-li křivka k uzavřená, pak množina přímek, které procházejí daným bodem V a protínají křivku nebo vnitřek křivky, se nazývá kuželový prostor. Přímka určená vrcholem V a bodem křivky k je površka kuželové plochy. Rovina, která prochází vrcholem, se nazývá vrcholová rovina. Kužel je průnik kuželového prostoru a prostorové vrstvy určené rovinou σ řídícího polygonu a vrcholové roviny σ σ - obr. 4.2 c). Je-li řídící křivkou kuželové plochy kružnice (řídící kružnice), kuželová plocha se nazývá kruhová. Jestliže je spojnice středu S řídící kružnice k a vrcholu V kolmá na rovinu σ, pak nazýváme kuželovou plochu kolmou nebo rotační a přímku SV osou kuželové plochy. Rotační kuželovou plochu můžeme také získat rotací přímky, která protíná osu otáčení a není k ní kolmá. Není-li přímka SV kolmá na rovinu řídící kružnice, nazývá se kuželová plocha kosá. Podobně kolmý nebo rotační kužel má osu kolmou k rovině podstavy na rozdíl od kosého kužele.

30 4.2. KontrolnÍ otázky Válcová plocha, válec Válcová plocha je určena rovinnou křivkou k (k σ) a směrem s, který nenáleží dané rovině (s σ), a je tvořena přímkami, které protínají křivku k a jsou směru s - obr. 4.2 b). Je-li křivka k uzavřená, pak množina přímek směru s, které protínají křivku nebo procházejí vnitřním bodem křivky, se nazývá válcový prostor. Přímka určená bodem křivky k a směru s je površka. Podobně jako u hranolové plochy, můžeme v projektivním rozšíření euklidovského prostoru definovat válcovou plochu jako speciální případ kuželové plochy, jejímž vrcholem je nevlastní bod. Vrcholovou rovinou je každá rovina směru s. Válec je průnik válcového prostoru a prostorové vrstvy určené rovinou σ řídícího polygonu a roviny σ σ - obr. 4.2 d). Je-li řídící křivkou válcové plochy regulární kuželosečka, získáme eliptickou, parabolickou či hyperbolickou válcovou plochu. Jestliže je řídící křivkou kružnice, nazývá se válcová plocha kruhová. Jestliže jsou površky kolmé na rovinu řídící kružnice, dostáváme kolmou kruhovou neboli rotační válcovou plochu, v opačném případě je plocha kosá. Poznámka 4.1 Každá křivka (podle naší definice rovinná) na válcové nebo kuželové ploše může být řídící křivkou této plochy. Řezem rotační kuželové plochy rovinou může být, podle polohy roviny řezu, i jiná kuželosečka. To znamená, že zvolíme-li tuto kuželosečku jako řídící křivku, dostaneme opět rotační kuželovou plochu. Nemá tedy smysl, na rozdíl od válcových ploch, rozlišovat hyperbolickou nebo parabolickou kuželovou plochu od eliptické kuželové plochy Kulová plocha, koule Kulová plocha je množina všech bodů, které mají od daného bodu S vzdálenost rovnu danému kladnému číslu r. Koulí rozumíme množinu všech bodů, které mají od daného bodu S vzdálenost menší nebo rovnu danému kladnému číslu r. 4.2 Kontrolní otázky 4.1 Popište a načrtněte pravidelný trojboký jehlan a pravidelný čtyřboký hranol. 4.2 Definujte kosý kruhový válec. 4.3 Vysvětlete rozdíl mezi koulí a kulovou plochou.

31 Kapitola 5 Základy promítání 5.1 Úvod Deskriptivní geometrie se zabývá studiem takových zobrazení, kterými můžeme zobrazit prostorové útvary do roviny a naopak. Zpravidla požadujeme, aby tato zobrazení byla vzájemně jednoznačná. Vzájemně jednoznačným zobrazením v deskriptivní geometrii říkáme zobrazovací metody. Protože deskriptivní geometrie vznikla z potřeb praxe, je důležité, aby bylo možné snadno vyčíst velikost objektů, jejich tvar a vzájemnou polohu jednotlivých částí. Další požadavky se týkají názornosti a snadného řešení stereometrických úloh. Procesu našeho vidění se nejvíce blíží středové promítání a jeho speciální případ lineární perspektiva. Tyto zobrazovací metody jsou velmi názorné a často se s nimi setkáváme v situacích, kdy je třeba reálné zobrazení světa, například v umění nebo architektuře. Nevýhodou středového promítání je složitost konstrukcí a obtíže s měřením délek. Proto se v technické praxi více používají zobrazovací metody, které můžeme označit společným názvem rovnoběžná promítání. V následujícím textu se tedy velmi krátce zmíníme o principech středového promítání, ale podrobněji se budeme zabývat promítáním rovnoběžným a jeho speciálním případem - pravoúhlým promítáním. 5.2 Středové promítání Zvolme v prostoru rovinu π, na kterou budeme zobrazovat - budeme jí říkat průmětna a bod S (vlastní), který neleží v rovině π. Bod S se nazývá střed promítání. Libovolný bod A v prostoru (různý od bodu S) zobrazíme do roviny π následujícím způsobem: Body S a A proložíme přímku p. Přímka p se nazývá promítací přímka. Průsečík A přímky p s rovinou π je středovým průmětem bodu A do roviny π. Podobně sestrojíme bod B jako středový průmět bodu B - obr Vlastnosti středového promítání 1. Středovým průmětem bodu různého od středu promítání je bod. (Bod S ve středovém promítání nemůžeme zobrazit.) 31

32 5.3. Rovnoběžné promítání Středovým průmětem přímky, která neprochází středem promítání S, je přímka. Středovým průmětem přímky procházející středem promítání S je bod. 3. Středovým průmětem roviny procházející středem promítání S je přímka. Středovým průmětem roviny, která neprochází středem promítání S, je celá průmětna. 4. Středovým průmětem bodu A ležícího na přímce k je bod A ležící na středovém průmětu k přímky k. Obecně leží-li bod na nějaké čáře, pak jeho průmět leží na průmětu té čáry. Říkáme, že se zachovává incidence. Poznámka 5.1 Pokud budeme pracovat s body z projektivního rozšíření prostoru, zjistíme, že ve středovém promítání může být obrazem vlastního bodu bod nevlastní a naopak obrazem nevlastního bodu bod vlastní. Načrtněte si takovou situaci a uved te vhodný reálný příklad (např. zobrazení železničních kolejí). Obrázek 5.1: Obrázek 5.2: 5.3 Rovnoběžné promítání Podobně jako ve středovém promítání zvolíme v rovnoběžném promítání rovinu π, na kterou budeme zobrazovat, a které říkáme průmětna. Dále zvolíme přímku s, která není rovnoběžná s rovinou π. Říkáme, že přímka s nám určuje směr promítání. Rovnoběžný průmět A bodu A získáme tak, že bodem A vedeme přímku p (nazýváme ji opět promítací přímka), která je rovnoběžná s přímkou s a najdeme její průsečík s rovinou π. Podobně najdeme průmět bodu B - obr Pokud použijeme pojmy z kapitoly o nevlastních elementech, můžeme říct, že rovnoběžné promítání je speciální případ středového promítání, kde středem promítání je nevlastní bod. Vlastnosti rovnoběžného promítání 1. Rovnoběžným průmětem (vlastního) bodu je (vlastní) bod.

33 5.4. Pravoúhlé promítání Rovnoběžným průmětem přímky, která není směru promítání, je přímka. Rovnoběžným průmětem přímky, která je směru promítání, je bod. 3. Rovnoběžným průmětem roviny, která je směru promítání, je přímka. Rovnoběžným průmětem roviny, která není směru promítání, je celá průmětna. 4. Rovnoběžným průmětem bodu A ležícího na přímce k je bod A ležící na rovnoběžném průmětu k přímky k. Obecně leží-li bod na nějaké čáře, pak jeho průmět leží na průmětu té čáry. 5. Rovnoběžným průmětem různoběžek a, b jsou různoběžné přímky nebo přímky splývající, pokud a, b nejsou směru promítání. Jestliže je jedna z přímek a, b směru promítání, pak rovnoběžným průmětem různoběžek a, b je přímka a na ní bod. 6. Rovnoběžnost se zachovává, tj. rovnoběžné přímky se zobrazí na rovnoběžné nebo splývající přímky (nebo na dva body), rovnoběžné úsečky na rovnoběžné úsečky apod. 7. Rovnoběžným průmětem rovnoběžných a shodných úseček jsou rovnoběžné a shodné úsečky (popř. dva body). 8. Rovnoběžným průmětem útvaru ležícího v rovině rovnoběžné s průmětnou je útvar s ním shodný. 9. Dělící poměr se v rovnoběžném promítání zachovává, tj. například střed úsečky se zobrazí na střed úsečky. Druhy rovnoběžného promítání Podle vztahu směru promítání vzhledem k průmětně rozlišujeme dva druhy rovnoběžného promítání. Jestliže směr promítání je kolmý k průmětně, pak hovoříme o pravoúhlém (nebo také o kolmém či ortogonálním) promítání. Pokud směr promítání není kolmý k průmětně, mluvíme o kosoúhlém promítání. Připomeňme, že jsme vyloučili případ, kdy směr promítání je rovnoběžný s průmětnou. 5.4 Pravoúhlé promítání Vlastnosti, které jsme uvedli pro rovnoběžné promítání, doplníme dvěma větami, které platí jen pro pravoúhlé promítání. Věta 5.1 (Věta o pravoúhlém průmětu pravého úhlu) Pravoúhlým průmětem pravého úhlu je pravý úhel, jestliže alespoň jedno jeho rameno je rovnoběžné s průmětnou a druhé není na průmětnu kolmé. Věta 5.2 Velikost pravoúhlého průmětu A B úsečky AB je menší nebo rovna velikosti úsečky AB, tj. A B AB. 5.5 Středová kolineace Jsou dány dvě různé roviny α a α a bod S, který neleží v žádné z rovin α a α. Středová kolineace je geometrická příbuznost, kdy bodu jedné roviny odpovídá jeho středový průmět z bodu S do druhé roviny. Průsečnice o rovin α a α se nazývá osa kolineace (obr. 5.3).

34 5.5. Středová kolineace 34 Obrázek 5.3: Obrázek 5.4: Vlastnosti středové kolineace Uvedeme vlastnosti středové kolineace, které vyplývají z vlastností středového promítání. 1. Bodu odpovídá bod a přímce přímka. 2. Přímky, které si odpovídají ve středové kolineaci, se protínají na ose kolineace nebo jsou s ní rovnoběžné, což ale znamená, že mají společné nevlastní body. 3. Body osy kolineace jsou samodružné, tj. vzor a obraz splývají. 4. Středová kolineace zachovává incidenci. To znamená, že jestliže bod A leží na přímce b, pak pro jejich obrazy A, b opět platí A b. 5. Body, které si odpovídají ve středové kolineaci, leží na přímce procházející středem kolineace. Poznámka 5.2 Je nutné si uvědomit, že středová kolineace obecně nezachovává rovnoběžnost a že vlastnímu bodu může odpovídat bod nevlastní a naopak. Také dělící poměr tří kolineárních bodů se obecně ve středové kolineaci nezachovává. Středová kolineace v rovině Protože se zabýváme zobrazováním trojrozměrného prostoru na rovinu, zajímá nás, co se stane, promítneme-li středovou kolineaci do roviny. Promítneme rovnoběžně obě roviny α, α a střed promítání S do průmětny π tak, aby směr promítání nebyl rovnoběžný s žádnou z rovin α a α (tj. žádná z rovin se nezobrazí jako přímka). Odpovídající si body A a A promítnuté do π leží opět na přímce procházející průmětem středu kolineace. Takto získanou příbuznost v rovině nazveme středovou kolineací v rovině - obr Vlastnosti, které jsme uvedli pro středovou kolineaci mezi rovinami, platí také pro středovou kolineaci v rovině. Znalost středové kolineace využijeme např. při sestrojování řezů na jehlanu a kuželi.

35 5.5. Středová kolineace 35 Středová kolineace v rovině je určena středem S, osou o a párem odpovídajících si bodů A, A (body A, A, S leží na jedné přímce). Pro sestrojování obrazů bodů ve středové kolineaci jsou nejdůležitější tyto tři vlastnosti: 1. Středová kolineace zachovává incidenci. 2. Přímky, které si odpovídají ve středové kolineaci, se protínají na ose kolineace nebo jsou s ní rovnoběžné. 3. Body, které si odpovídají, leží na přímce procházející středem kolineace. Příklad 5.1 Středová kolineace v rovině je určena středem S, osou o a párem odpovídajících si bodů A, A - obr Sestrojíme obraz bodu B v kolineaci. Řešení: (obr. 5.6) 1. Spojíme bod B se vzorem bodu, pro který známe jeho obraz, tj. v našem případě s bodem A - dostaneme přímku p. 2. Najdeme obraz p přímky p (p a p se protínají na ose a přímka p prochází bodem A - vlastnost 2. a 1.) 3. Protože body, které si odpovídají, leží na přímce procházející středem kolineace- vlastnost 3., sestrojíme přímku SB. 4. Bod B leží v průsečíku přímek SB a p. Obrázek 5.5: Obrázek 5.6: Jak jsme již uvedli, obrazem vlastního bodu ve středové kolineaci nemusí vždy být vlastní bod. Stejně tak se některé nevlastní body zobrazí na vlastní body. Vzory a obrazy nevlastních bodů nazýváme úběžníky. Vzor nevlastní přímky se nazývá úběžnice vzorů a obraz nevlastní přímky se nazývá úběžnice obrazů. Nevlastní přímka má s osou o společný nevlastní bod (nevlastní bod osy o). Přímky, které si odpovídají v kolineaci se protínají na ose, pokud je tento bod nevlastní, pak jsou odpovídající si přímky rovnoběžné. Tedy obě úběžnice jsou rovnoběžné s osou kolineace.

36 5.5. Středová kolineace 36 Příklad 5.2 Středová kolineace v rovině je určena středem S, osou o a párem odpovídajících si bodů A, A - obr Sestrojíme úběžnici obrazů. Řešení: (obr. 5.8) 1. Zvolíme libovolný bod V na nevlastní přímce. 2. Najdeme obraz V nevlastního bodu V (bod V je vlastní). 3. Bod V leží na úběžnici obrazů v a ta je rovnoběžná s osou o. 4. Podobně lze sestrojit úběžnici vzorů. Úběžnice vzorů je rovnoběžná s osou o a prochází vzorem bodu U (bod U je libovolný bod nevlastní přímky). Obrázek 5.7: Obrázek 5.8: Příklad 5.3 Středová kolineace v rovině je určena středem S, osou o a párem odpovídajících si přímek p, p - obr Sestrojíme obě úběžnice. Řešení: (obr. 5.10) 1. Označíme V nevlastní bod přímky p. 2. Najdeme obraz V nevlastního bodu V (V p ) a sestrojíme úběžnici obrazů v (v o, V v ). 3. Dále označíme bod U nevlastní bod přímky p. 4. Najdeme vzor U nevlastního bodu U (U p) a sestrojíme úběžnici vzorů v (v o, U u). Ve středové kolineaci v rovině je vzdálenost středu od jedné úběžnice rovna vzdálenosti druhé úběžnice od osy kolineace. Podíváme-li se znovu na obrázek 5.10, pak toto tvrzení plyne z rovnoběžníka SUMV. Středová kolineace v rovině se nazývá involutorní, když pro všechny body X, Y platí: jestliže X = Y, pak Y = X. V involutorní kolineaci úběžnice splývají a půlí vzdálenost středu kolineace od osy. Necht body A, A si odpovídají ve středové kolineaci, bod Ā je průsečík přímky AA s osou (A AĀ) o. Pak dvojpoměr (A AĀS) = je konstantní pro všechny páry odpovídajících si bodů. (A AS) Číslo k = (A AĀS) se nazývá charakteristika středové kolineace, charakteristika involutorní kolineace je k = 1.

37 5.6. Osová afinita 37 Obrázek 5.9: Obrázek 5.10: 5.6 Osová afinita Jsou dány dvě různé roviny α a α a směr s, který není rovnoběžný s žádnou z rovin α a α. Osová afinita je geometrická příbuznost, kdy bodu jedné roviny odpovídá jeho rovnoběžný průmět ve směru s do druhé roviny. Průsečnice rovin α a α se nazývá osa afinity (obr. 5.11). Obrázek 5.11: Obrázek 5.12: Vlastnosti osové afinity (vyplývají z rovnoběžného promítání) Vlastnosti jsou podobné vlastnostem pro kolineaci, ale všimněte si pozorně vlastností 6. a Bodu odpovídá bod a přímce přímka. 2. Přímky, které si odpovídají v osové afinitě, se protínají na ose afinity nebo jsou s ní rovnoběžné.

38 5.6. Osová afinita Body osy afinity jsou samodružné. 4. Osová afinita zachovává incidenci.(to znamená, že jestliže bod A leží na přímce b, pak pro jejich průměty A, b opět platí A b.) 5. Body, které si odpovídají v osové afinitě leží na rovnoběžce se středem promítání. 6. Osová afinita zachovává rovnoběžnost. 7. Osová afinita zachovává dělící poměr. Osová afinita v rovině Podobně jako kolineaci promítneme rovnoběžně i afinitu. Promítneme rovnoběžně obě roviny α, α a směr promítání s do průmětny π tak, aby směr promítání u do roviny π nebyl rovnoběžný s žádnou z rovin α a α (tj. žádná z rovin se nezobrazí jako přímka) a aby nebyl rovnoběžný se směrem s (dostali bychom identitu). Odpovídající si body A a A promítnuté do π leží na přímce rovnoběžné s promítnutým směrem s. Takto získanou příbuznost nazveme osovou afinitou v rovině - obr Uvedené vlastnosti osové afinity mezi rovinami budou platit i pro osovou afinitu v rovině. Osovou afinitu využijeme při sestrojování řezů na hranolu a kuželi a při otáčení v Mongeově projekci a axonometrii. Nejčastější určení osové afinity je osou o a párem odpovídajících si bodů A a A (tím je určen směr afinity). Opět zopakujeme tři vlastnosti, které využijeme při sestrojování obrazu nebo vzoru daného bodu: 1. Osová afinita zachovává incidenci 2. Přímky, které si odpovídají v osové afinitě, se protínají na ose afinity nebo jsou s ní rovnoběžné. 3. Body, které si odpovídají, leží na rovnoběžce se směrem afinity. Příklad 5.4 Osová afinita v rovině je určena osou o a párem odpovídajících si bodů A, A - obr Sestrojíme obraz bodu B v afinitě. Řešení: (obr. 5.14) 1. Spojíme bod B s bodem A - dostaneme přímku p. (Obecně se vzorem bodu, pro který známe jeho obraz.) 2. Najdeme obraz p přímky p (p a p se protínají na ose a přímka p prochází bodem A - vlastnost 2 a 1) 3. Protože body, které si odpovídají, leží na přímce směru afinity a tento směr určuje přímka AA (vlastnost 3), sestrojíme přímku k rovnoběžnou s přímkou AA a procházející bodem B. 4. Bod B leží v průsečíku přímek k a p.

39 5.7. Kružnice v osové afinitě a středové kolineaci 39 Obrázek 5.13: Obrázek 5.14: Poznámka 5.3 Osová afinita může být určena i jiným způsobem než osou a párem odpovídajících bodů, např. osou, směrem a párem odpovídajících si přímek (které se protínají na ose) nebo dvěma páry odpovídajících si přímek. Stejně i kolineace může být určena jinak než středem, osou a párem odpovídajících si bodů. Osovou afinitu můžeme chápat jako speciální případ středové kolineace, kdy střed kolineace je nevlastním bodem. Vztah mezi afinitou a kolineací nám přiblíží schéma na obrázku Kružnice v osové afinitě a středové kolineaci Ve středové kolineaci odpovídá kuželosečce k kuželosečka k (nemusí být stejného typu) a platí: 1. Bodům a tečnám vzoru odpovídají body a tečny obrazu, 2. Středu kuželosečky k obecně neodpovídá střed kuželosečky k, 3. Průměru kuželosečky k obecně neodpovídá průměr kuželosečky k, 4. Sdruženým průměrům kuželosečky k neodpovídají sdružené průměry kuželosečky k. Jestliže kružnice k nemá s úběžnicí u žádný společný bod, pak se všechny její body zobrazí na body vlastní a obrazem kružnice k ve středové kolineaci je elipsa; jestliže se kružnice k dotýká úběžnice u, pak se tento dotykový bod zobrazí na nevlastní bod a obrazem kružnice k ve středové kolineaci je parabola; jestliže kružnice k úběžnici u protíná, pak obrazem kružnice k ve středové kolineaci je hyperbola, která má dva nevlastní body (viz obr. 5.15). V osové afinitě se všechny vlastní body zobrazí opět na vlastní body, kuželosečce k odpovídá kuželosečka k, je stejného typu a platí: 1. Bodům a tečnám vzoru odpovídají body a tečny obrazu, 2. Středu kuželosečky k odpovídá střed kuželosečky k, 3. Průměru kuželosečky k odpovídá průměr kuželosečky k,

40 5.8. KontrolnÍ otázky 40 Obrázek 5.15: 4. Sdruženým průměrům kuželosečky k odpovídají sdružené průměry kuželosečky k. Obrazem kružnice k v osové afinitě je tedy elipsa. 5.8 Kontrolní otázky 5.1 Vyslovte větu o pravoúhlém průmětu pravého úhlu. 5.2 Jakou délku může mít (v porovnání s délkou zobrazované úsečky) průmět úsečky v pravoúhlém promítání a jakou v kosoúhlém? 5.3 Rovnoběžné promítání zachovává dělící poměr. Je pravda, že obrazem středu úsečky je v rovnoběžném promítání střed úsečky, která je průmětem dané úsečky? 5.4 Jakou vlastnost mají body, které leží na ose afinity nebo kolineace? 5.5 Jakou vlastnost mají body úběžnic kolineace?

41 5.8. KontrolnÍ otázky 41 Obrázek 5.16:

42 Kapitola 6 Mongeovo promítání 6.1 Úvod Mongeovo promítání je pravoúhlé promítání na dvě navzájem kolmé průmětny. Jeho výhodou je snadné řešení stereometrických úloh, nevýhodou může být menší názornost a složitější orientace ve dvou pohledech na jeden objekt. Obrázek 6.1: Zvolíme v prostoru dvě navzájem kolmé roviny. Rovinu π volíme ve vodorovné poloze - říkáme jí půdorysna - a rovinu ν v poloze svislé - nárysna. Průsečnici rovin π a ν ztotožníme s osou x souřadnicového systému a říkáme jí základnice. Osu y volíme v rovině π, tak aby byla kolmá k x. Průsečíkem O os x a y prochází osa z, leží v rovině ν a je kolmá k osám x, y. V Mongeově promítání budeme při vynášení souřadnic používat zpravidla levotočivý souřadnicový systém viz obr Při použití pravotočivého souřadnicového systému by se kladné souřadnice x nanášely vlevo. Poznámka 6.1 Pokud bychom chtěli promítat pouze na jednu průmětnu, pak útvar, který promítneme, nebude v prostoru jednoznačně určen. Další možností je použít kótované promítání, to znamená, že ke každému bodu budeme připisovat jeho vzdálenost od průmětny. Toto promítání se používá při řešení střech a při tvorbě map (vstevnice), to znamená většinou v případech, kdy není nutné řešit složitější prostorové vztahy. 6.2 Obraz bodu Nejprve kolmo promítneme bod B do půdorysny a průmět označíme indexem 1 - dostaneme bod B 1 - obr. 6.2a), potom bod B promítneme do nárysny, průmět označíme indexem 2 a získáme 42

43 6.3. Obraz přímky 43 bod B 2 - obr. 6.2b). Nyní máme dvě možnosti, jak si představit sdružení průmětů. Bud otočíme rovinu π kolem osy x tak, aby kladná část osy y splynula se zápornou částí osy z - obr. 6.1 nebo si představíme nárysnu a půdorysnu jako dvě průhledné folie, které položíme na sebe, tak aby se překrývaly průměty osy x 1 a x 2 a bod O 1 a O 2 - obr Bod B 1 nazýváme půdorysem a bod B 2 nárysem bodu B. Spojnice nárysu a půdorysu téhož bodu je kolmá k základnici a nazývá se ordinála. (Půdorys je vlastně pohled shora a nárys je pohled zpředu). Z obrázku 6.2 c) je vidět, jak sestrojíme nárys a půdorys bodu, známe-li jeho souřadnice. V našem případě jsou všechny tři souřadnice kladné. Nárysu a půdorysu bodu B říkáme sdružené průměty bodu B. (Neplést si se sdruženými průměry, ty najdeme u elipsy.) Obrázek 6.2: Příklad 6.1 Určeme, kde bude ležet nárys a půdorys bodů B, C, D, E, jestliže umístíme každý do jiného kvadrantu vymezeného nárysnou a půdorysnou - obr Řešení: (obr. 6.4) Bod B, který se nachází nad půdorysnou a před nárysnou, má půdorys pod osou a nárys nad osou x 1,2. Bod C leží za nárysnou a nad půdorysnou a oba jeho průměty leží nad osou x 1,2. Nárys i půdorys bodu E ležícího pod půdorysnou a před nárysnou najdeme pod osou x 1,2. Pro bod D, který je za nárysnou a pod půdorysnou platí, že nárys je pod a půdorys nad osou x 1, Obraz přímky Z vlastností rovnoběžného promítání víme, že obrazem přímky je bud přímka, nebo bod. Pokud přímka p není kolmá k ose x, pak jejím půdorysem a nárysem jsou přímky p 1 a p 2, které nejsou kolmé k ose x 1,2 - obr. 6.5 a 6.6. Jestliže je přímka kolmá k půdorysně je jejím půdorysem bod a nárysem přímka kolmá k ose x 1,2, pro přímku kolmou k nárysně bude nárysem bod a půdorysem přímka kolmá k ose x 1,2. Ve všech těchto případech je přímka svými průměty jednoznačně určena.

44 6.3. Obraz přímky 44 Obrázek 6.3: Obrázek 6.4: Je-li přímka kolmá k ose x a přitom není kolmá k žádné průmětně, pak její sdružené průměty splývají a jsou kolmé k x 1,2. Jen v tomto případě není přímka určena svými sdruženými průměty. K určení je v tomto případě nutná znalost např. průmětů dvou různých bodů přímky. Přímkou, která není kolmá k průmětně, můžeme proložit rovinu kolmou k průmětně. Této rovině říkáme promítací rovina přímky. Přímkou můžeme proložit půdorysně promítací rovinu kolmou k půdorysně nebo nárysně promítací rovinu kolmou k nárysně. Na zvláštní polohy přímky vzhledem k průmětně se podívejme v příkladu 6.2. Obrázek 6.5: Obrázek 6.6: Příklad 6.2 V obrázku 6.7 určíme polohu jednotlivých přímek vzhledem k průmětnám. Řešení: Přímky p, q, r jsou kolmé k základnici. Přímka p je navíc kolmá k půdorysně a q je kolmá k nárysně. Přímka r není svými průměty jednoznačně určena a musíme ji dourčit sdruženými průměty dvou bodů, které na ní leží. Přímka s je rovnoběžná s půdorysnou a přímka t s nárysnou, s v půdorysně leží a u je rovnoběžná se základnicí.

45 6.4. Obraz roviny 45 Obrázek 6.7: Vzájemný vztah přímky a bodu, který na ní leží, je v Mongeově promítání dán větou: Věta 6.1 Leží-li bod M na přímce p, pak M 1 p 1 a M 2 p 2. Jestliže přímka p je určena svými průměty (tím vylučujeme přímky kolmé k ose x a nejsou promítací), pak pro sdružené průměty bodu M a přímky p platí: pokud M 1 p 1 a M 2 p 2, pak bod M leží na přímce p. Přímka je jednoznačně určena dvěma body. Pro sdružené průměty přímky můžeme vyslovit následující větu: Věta 6.2 Sdružené průměty přímky p = AB jsou v Mongeově promítání jednoznačně určeny průměty dvou jejích bodů A, B. Vlastní bod, ve kterém přímka protne průmětnu, nazýváme stopník. Půdorysný stopník P je bod, ve kterém přímka protne půdorysnu, nárysný stopník N je bod, ve kterém přímka protíná nárysnu - obr Pro půdorysný stopník P přímky p platí: P 1 p 1, P 2 p 2 a P 2 x 1,2. Pro nárysný stopník N přímky p platí: N 1 p 1, N 2 p 2 a N 1 x 1,2 - obr Poznámka 6.2 Přímka, která je rovnoběžná s průmětnou, má jen jeden stopník. 6.4 Obraz roviny Pravoúhlým průmětem roviny, která není kolmá k průmětně, je celá průmětna. Rovinu v Mongeově projekci zadáme pomocí sdružených průmětů určujících prvků. Ukažme si nejobvyklejší způsoby určení roviny. 1. Třemi body, které neleží v přímce (nekolineární body) - obr Dvěma různoběžkami - obr Sdružené průměty průsečíku různoběžek musí ležet na ordinále.

46 6.4. Obraz roviny 46 Obrázek 6.8: Obrázek 6.9: Obrázek 6.10: Obrázek 6.11: 3. Dvěma rovnoběžkami - obr Nárysem i půdorysem rovnoběžek jsou opět rovnoběžky (mohou ovšem i splývat). 4. Bodem a přímkou - obr Aby byla rovina určena bodem a přímkou, nesmí bod ležet na přímce. Speciálním případem je zadání roviny stopami. Stopa roviny ρ je přímka, ve které rovina ρ protne průmětnu. Průsečnice roviny ρ s nárysnou se nazývá nárysná stopa a značíme ji n ρ. Průsečnice roviny ρ s půdorysnou se nazývá půdorysná stopa a značíme ji p ρ. Stopy roviny jsou dvě přímky (rovnoběžné nebo různoběžné). Rovina určená stopami je tedy opět určena rovnoběžkami nebo různoběžkami. Pro půdorys nárysné stopy n ρ 1 a nárys půdorysné stopy p ρ 2 platí n ρ 1 = p ρ 2 = x 1,2. Přímky n ρ 2 a p ρ 1 se protínají na ose x 1,2 - obr nebo jsou obě rovnoběžné s osou x 1,2. Příklad 6.3 V obrázku 6.13 rozhodneme, jakou polohu mají roviny, určené svými stopami, vzhledem k průmětnám. Řešení: Rovina α je v obecné poloze vzhledem k průmětnám, není kolmá ani rovnoběžná s žádnou z průměten. Rovina β je kolmá k nárysně, rovina γ je kolmá k půdorysně. Rovina σ je kolmá k ose x a ρ je s x rovnoběžná. Posledním případem je rovina τ, která obsahuje osu x, v tomto případě není rovina stopami jednoznačně určena.

47 6.4. Obraz roviny 47 Obrázek 6.12: Obrázek 6.13: Poznámka 6.3 Rovina, která je rovnoběžná s průmětnou, má jen jednu stopu. V následujících kapitolách ukážeme 12 základních úloh, pomocí kterých budeme schopni řešit složitější konstrukce jako např. sestrojení těles v obecné poloze, jejich průniky či řezy na plochách. Každou složitější úlohu pak rozložíme na tyto základní úlohy, které už budeme umět řešit (provedeme dekompozici, což je velice důležitý postup plynoucí z analytického geometrického myšlení). Rozdělíme úlohy na dva typy - polohové a metrické. Polohové úlohy řeší vztahy mezi jednotlivými útvary, jako je vzájemná poloha, průnik, rovnoběžnost. Vzdálenosti, velikost objektů, kolmost nám pomohou určit úlohy metrické. Uvedeme vždy důležité skutečnosti, které budeme využívat, a ukážeme přímo na příkladech řešení základních úloh.

48 6.5. Polohové úlohy Polohové úlohy Přímka v rovině (základní úloha Z1) Při řešení této následující fakta: úlohy je vhodné uvědomit si Leží-li přímka v rovině, je se všemi přímkami roviny různoběžná nebo rovnoběžná. Stopník přímky ležící v rovině leží na její stopě (Půdorysný stopník na půdorysné stopě, nárysný stopník na nárysné stopě). Chceme-li sestrojit stopu roviny, určíme stopníky dvou přímek ležících v rovině. Půdorysná stopa je spojnicí půdorysných stopníků, nárysná stopa je spojnicí nárysných stopníků. Obrázek 6.14: Obrázek 6.15: Obrázek 6.16: Příklad 6.4 Je dána rovina ρ a jeden průmět přímky k ležící v rovině ρ. Sestrojme druhý průmět přímky k. a) Rovina ρ je učena přímkami a, b - obr b) Rovina ρ je učena stopami - obr Řešení: a) obr Sestrojíme průsečík A 1 přímky a 1 a k Sestrojíme průsečík B 1 přímky b 1 a k Odvodíme druhé průměty bodů A a B. Na přímce a 2 dostaneme bod A 2 a podobně bod B 2.

49 6.5. Polohové úlohy 49 Obrázek 6.17: Obrázek 6.18: 4. Přímka k 2 je spojnicí bodů A 2 a B 2. b) obr Sestrojíme nárys nárysného stopníku N 2 - průsečík přímky k 2 a stopy n ρ Sestrojíme nárys půdorysného stopníku P 2 - průsečík přímky k 2 a osy x 1,2 = p ρ Určíme body N 1 a P 1, N 1 leží na ose x 1,2 a P 1 na stopě p ρ Přímka k 1 je spojnicí bodů N 1 a P 1. Hlavní přímky roviny Hlavní přímka roviny ρ je přímka, která leží v rovině ρ a je rovnoběžná s průmětnou. Horizontální hlavní přímka (hlavní přímka první osnovy) je rovnoběžná s půdorysnou. Speciálním případem horizontální hlavní přímky je půdorysná stopa. Všechny horizontální hlavní přímky jedné roviny jsou navzájem rovnoběžné obr Obrázek 6.19: Obrázek 6.20:

50 6.5. Polohové úlohy 50 Frontální hlavní přímka (hlavní přímka druhé osnovy) je rovnoběžná s nárysnou. Speciálním případem frontální hlavní přímky je nárysná stopa. Všechny frontální hlavní přímky jedné roviny jsou navzájem rovnoběžné obr Obrázek 6.21: Obrázek 6.22: Obrázek 6.23: Obrázek 6.24: Příklad 6.5 Zobrazte nějakou (libovolnou) a) horizontální hlavní přímku roviny ρ - obr. 6.21, b) frontální hlavní přímku roviny ρ - obr Řešení: a) (obr. 6.22) Horizontální hlavní přímka je rovnoběžná s půdorysnou, proto je její nárys rovnoběžný s osou x 1,2. 1. Sestrojíme nárys přímky h. (h 2 x 1,2 ). 2. Půdorys přímky h je rovnoběžný se stopou p ρ 1. Použijeme stopník N přímky h. Kdyby rovina nebyla určena stopami, odvodili bychom půdorys pomocí průsečíků s jinými přímkami roviny. b) (obr.6.24) Frontální hlavní přímka je rovnoběžná s nárysnou, proto je její půdorys rovnoběžný s osou x 1,2. 1. Sestrojíme půdorys přímky f. (f 1 x 1,2 ).

51 6.5. Polohové úlohy Nárys přímky f je rovnoběžný se stopou n ρ 2. Použijeme stopník P přímky f. Kdyby rovina nebyla určena stopami, odvodili bychom nárys pomocí průsečíků s jinými přímkami roviny. Spádové přímky roviny Spádová přímka je kolmá na hlavní přímky jednoho systému - obr To znamená, že máme dva systémy spádových přímek - spádové přímky kolmé na horizontální hlavní přímky - spádové přímky první osnovy a spádové přímky kolmé na frontální hlavní přímky - spádové přímky druhé osnovy. Příklad 6.6 Sestrojíme spádovou přímku s první osnovy (kolmou k horizontálním hlavním přímkám). Řešení: (obr. 6.26) Půdorys s 1 spádové přímky je kolmý k půdorysné stopě p ρ 1, což plyne z věty o pravoúhlém průmětu pravého úhlu. Najdeme půdorysy stopníků této přímky a odvodíme je do nárysu. Nárys s 2 spádové přímky prochází nárysy těchto stopníků. Nárys spádové přímky nemá žádnou speciální polohu vůči stopám nebo ose x. Obrázek 6.25: Obrázek 6.26: Bod v rovině (základní úloha Z2) Bod leží v rovině, právě když leží na některé přímce roviny. Chceme-li odvodit druhý průmět bodu ležícího v rovině, zvolíme přímku procházející tímto bodem (může to být i přímka hlavní) a použijeme řešení úlohy 6.5.1, tj. Z1. Bod leží na odvozené přímce a na ordinále. Příklad 6.7 Rovina ρ je určena přímkami a, b. Sestrojme nárys bodu M ležícího v rovině ρ, známe-li jeho půdorys - obr Řešení: (obr. 6.28) 1. Bodem M 1 vedeme přímku k 1, tím jsme úlohu převedli na úlohu 6.5.1, tj. Z1.

52 6.5. Polohové úlohy 52 Obrázek 6.27: Obrázek 6.28: a) Sestrojíme průsečík A 1 přímky a 1 a k 1. b) Sestrojíme průsečík B 1 přímky b 1 a k 1. c) Odvodíme body A 2 a B 2. Po ordinále na přímce a 2 dostaneme bod A 2, na přímce b 2 dostaneme bod B 2. d) Přímka k 2 je spojnicí bodů A 2 a B Bod M 2 najdeme na přímce k 2 a na ordinále vedené bodem M 1. Obrázek 6.29: Obrázek 6.30: Příklad 6.8 Rovina ρ je určena stopami. Sestrojme půdorys bodu M ležícího v rovině ρ, známe-li jeho nárys - obr Řešení: (obr. 6.30) 1. Bodem M 2 vedeme přímku k 2, tím jsme úlohu převedli na úlohu 6.5.1, tj. Z1. a) Sestrojíme nárys nárysného stopníku N 2 - průsečík přímky k 2 a stopy n ρ 2.

53 6.5. Polohové úlohy 53 b) Sestrojíme nárys půdorysného stopníku P 2 - průsečík přímky k 2 a osy x 1,2 = p ρ 2. c) Odvodíme body N 1 a P 1, N 1 leží na ose x 1,2 a P 1 na stopě p ρ 1. d) Přímka k 1 je spojnicí bodů N 1 a P Bod M 1 najdeme na přímce k 1 a na ordinále vedené bodem M Rovnoběžné roviny (základní úloha Z3) Při řešení této úlohy je vhodné uvědomit si následující fakta: Kritérium rovnoběžnosti přímky a roviny. Kritérium rovnoběžnosti dvou rovin. Rovnoběžné roviny mají rovnoběžné stopy. Stopy roviny obecně neprochází nárysem i půdorysem bodu ležícím v této rovině (aby nastal tento případ, musel by bod ležet na ose x). Obrázek 6.31: Obrázek 6.32: Obrázek 6.33: Příklad 6.9 Rovina ρ je určena přímkami a, b. Bodem M ved te rovinu σ rovnoběžnou s rovinou ρ - obr Řešení: (obr.6.33)

Katedra matematiky. Geometrie pro FST 1. Plzeň 1. února 2009 verze 6.0

Katedra matematiky. Geometrie pro FST 1. Plzeň 1. února 2009 verze 6.0 Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 1. února 2009 verze 6.0 Předmluva Tento pomocný text vznikl pro potřeby předmětu Geometrie

Více

Deskriptivní geometrie 1

Deskriptivní geometrie 1 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 2. října 2006 verze 2.0 Předmluva Tento pomocný

Více

MONGEOVO PROMÍTÁNÍ - 2. část

MONGEOVO PROMÍTÁNÍ - 2. část MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 11. září 2006 verze 4.0 Předmluva

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie Pomocný učební text František Ježek, Světlana Tomiczková Plzeň 20. září 2004 verze 2.0 Předmluva Tento pomocný text

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Elementární plochy-základní pojmy

Elementární plochy-základní pojmy -základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ: Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2] ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ

Více

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy. strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek

Více

Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost

Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost Kuželosečky Kružnice Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost (poloměr r).?! Co získáme, když v definici výraz stejnou nahradíme stejnou nebo

Více

DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze:

DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze: DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA Mgr. Ondřej Machů --- Pracovní verze: 6. 10. 2014 --- Obsah Úvodní slovo... - 3-1 Základy promítacích metod... - 4-1.1 Rovnoběžné promítání...

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

AXONOMETRIE - 2. část

AXONOMETRIE - 2. část AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.

Více

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

Více

Pracovní listy MONGEOVO PROMÍTÁNÍ

Pracovní listy MONGEOVO PROMÍTÁNÍ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich

Více

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří

Více

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky. AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna

Více

Mongeovo zobrazení. Osová afinita

Mongeovo zobrazení. Osová afinita Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A

Více

Mendelova univerzita. Konstruktivní geometrie

Mendelova univerzita. Konstruktivní geometrie Mendelova univerzita Petr Liška Konstruktivní geometrie rno 2014 Tato publikace vznikla za přispění Evropského sociálního fondu a státního rozpočtu ČR prostřednictvím Operačního programu Vzdělávání pro

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok

Více

ZÁKLADNÍ ZOBRAZOVACÍ METODY

ZÁKLADNÍ ZOBRAZOVACÍ METODY ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno

Více

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2] Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.

Více

Kótované promítání. Úvod. Zobrazení bodu

Kótované promítání. Úvod. Zobrazení bodu Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,

Více

Obsah a průběh zkoušky 1PG

Obsah a průběh zkoušky 1PG Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

Obrázek 34: Vznik středové kolineace

Obrázek 34: Vznik středové kolineace 6 Středová kolineace Jak naznačuje Obr. 34, středová kolineace (se středem S), jako vzájemně jednoznačné zobrazení Ē 2 na sebe, je výsledkem středového průmětu (se středem S ) středového promítání (se

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE Diplomová práce Řezy rotačních těles v projekcích Vedoucí diplomové práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání:

Více

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura

Více

Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.

Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha. Abstrakt Tento text je určen všem zájemcům z řad široké veřejnosti, především jako studijní materiál pro studenty Konstruktivní a počítačové geometrie. Práce pojednává o rotačních kvadratických plochách,

Více

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,

Více

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava

Více

P L A N I M E T R I E

P L A N I M E T R I E M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů

Více

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení

Více

Další plochy technické praxe

Další plochy technické praxe Další plochy technické praxe Dosud studované plochy mají široké využití jak ve stavební tak ve strojnické praxi. Studovali jsme možnosti jejich konstrukcí, vlastností i využití v praxi. Kromě těchto ploch

Více

RELIÉF. Reliéf bodu. Pro bod ležící na s splynou přímky H A 2 a SA a reliéf není tímto určen.

RELIÉF. Reliéf bodu. Pro bod ležící na s splynou přímky H A 2 a SA a reliéf není tímto určen. RELIÉF Lineární (plošná) perspektiva ne vždy vyhovuje pro zobrazování daných předmětů. Například obraz, namalovaný s osvětlením zleva a umístěný tak, že je osvětlený zprava, se v tomto pohledu "nemodeluje",

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného Elipsa Výklad efinice a ohniskové vlastnosti prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného řezu na rotační kuželové ploše, jestliže řezná rovina není kolmá k ose

Více

Zadání domácích úkolů a zápočtových písemek

Zadání domácích úkolů a zápočtových písemek Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Kružnice, úhly příslušné k oblouku kružnice

Kružnice, úhly příslušné k oblouku kružnice KRUŽNICE, KRUH Kružnice, úhly příslušné k oblouku kružnice Je dán bod S a kladné číslo r. Kružnice k(s;r) je množina všech bodů (roviny), které mají od bodu S vzdálenost r. Můžeme také říci. Kružnicí k

Více

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................

Více

Axiomy: Jsou to tvrzení o těchto pojmech a vztazích, která jsou přijata bez důkazů. Například:

Axiomy: Jsou to tvrzení o těchto pojmech a vztazích, která jsou přijata bez důkazů. Například: 1.Euklidovský prostor 1.1) Základními geomterickými útvary jsou bod přímka a rovina. Základním geometrickým vztahem je vztah incidence, který se většinou opisuje spojeními bod leží na přímce, přímka prochází

Více

Metrické vlastnosti v prostoru

Metrické vlastnosti v prostoru Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii

Více

Konstruktivní geometrie

Konstruktivní geometrie Mendelova univerzita Alice Králová, Petr Liška, Miroslava Tkadlecová Konstruktivní geometrie Brno 05 Tato publikace vznikla za přispění Evropského sociálního fondu a státního rozpočtu ČR prostřednictvím

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

5 Pappova věta a její důsledky

5 Pappova věta a její důsledky 5 Pappova věta a její důsledky Pappos z Alexandrie (?90?350), řecký matematik a astronom. Pod označením Pappova věta je uváděno více vět. Proto je třeba uvést, o jaké z těchto vět hovoříme. Zde se budeme

Více

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1 Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Kartografické projekce

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Kartografické projekce Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Kartografické projekce Vypracoval: Jiří Novotný Třída: 4.C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE KOSOÚHLÉ PROMÍTÁNÍ DO PŮDORYSNY BAKALÁŘSKÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání: 2012 Vypracovala:

Více

Konstruktivní geometrie

Konstruktivní geometrie Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl I Světlana Tomiczková Plzeň 12. února 2016 verze 2.0 2 Autoři Obsah 1 Elementární

Více

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;

Více

Dvěma různými body prochází právě jedna přímka.

Dvěma různými body prochází právě jedna přímka. Úvod Jestliže bod A leží na přímce p a přímka p leží v rovině, pak i bod A leží v rovině. Jestliže v rovině leží dva různé body A, B, pak také přímka p, která těmito body prochází, leží v rovině. Dvěma

Více

10. Analytická geometrie kuželoseček 1 bod

10. Analytická geometrie kuželoseček 1 bod 10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)

Více

PŘÍMKOVÉ PLOCHY. Přednáška DG2*A

PŘÍMKOVÉ PLOCHY. Přednáška DG2*A PŘÍMKOVÉ PLOCHY Přednáška DG*A PŘÍMKOVÉ PLOCHY = plocha, jejímž každým bodem prochází alespoň jedna přímka plochy. Každá přímková plocha je určena třemi řídícími křivkami, příp. plochami. p k k k 3 Je-li

Více

SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru

SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru SÍR ÚO STROTRI Polohové vlastnosti útvarů v prostoru Sbírka úloh STROTRI Polohové vlastnosti útvarů v prostoru gr. arie hodorová, Ph.. rafická úprava a sazba: arcel Vrbas OS SZN POUŽÍVNÝ SYOŮ 5. ZÁY STROTRI

Více

ZÁKLADNÍ PLANIMETRICKÉ POJMY

ZÁKLADNÍ PLANIMETRICKÉ POJMY ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky

Více

Důkazy vybraných geometrických konstrukcí

Důkazy vybraných geometrických konstrukcí Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie

Více

Ročníková práce Konstrukce kuželosečky zadané pěti body

Ročníková práce Konstrukce kuželosečky zadané pěti body Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Konstrukce kuželosečky zadané pěti body Jakub Borovanský 4. C 2011/2012 Zadavatel: Mgr. Ondřej Machů Přísahám, že jsem zadanou ročníkovou

Více

Michal Zamboj. January 4, 2018

Michal Zamboj. January 4, 2018 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

2 OSOVÁ AFINITA V ROVINĚ 37

2 OSOVÁ AFINITA V ROVINĚ 37 Kuželosečky Obsah 1 OHNISKOVÉ VLASTNOSTI KUŽELOSEČEK 5 1.1 Úvod..................................... 5 1.2 Elipsa.................................... 9 1.2.1 Ohniskové vlastnosti elipsy.....................

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

Zobrazení a řezy těles v Mongeově promítání

Zobrazení a řezy těles v Mongeově promítání UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání

Více

ROTAČNÍ PLOCHY. 1) Základní pojmy

ROTAČNÍ PLOCHY. 1) Základní pojmy ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Pravoúhlá axonometrie

Pravoúhlá axonometrie Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou

Více

Kuželoseč ky. 1.1 Elipsa

Kuželoseč ky. 1.1 Elipsa Kuželoseč ky 1.1 Elipsa Definice: Elipsa je množina všech bodů v 2, které mají od dvou pevných (různých) bodů v 2, zvaných ohniska (značíme F 1, F 2 ), stálý součet vzdáleností rovný 2a, který je větší

Více

STEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

STEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky STEREOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití IT ve vyučování matematiky na gymnáziu INVESTIE

Více

17 Kuželosečky a přímky

17 Kuželosečky a přímky 17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x

Více

Prùniky tìles v rùzných projekcích

Prùniky tìles v rùzných projekcích UNIVERZITA PALACKÉHO V OLOMOUCI PØÍRODOVÌDECKÁ FAKULTA Katedra algebry a geometrie Prùniky tìles v rùzných projekcích Bakalářská práce Vedoucí práce: RNDr. Lenka Juklová, Ph.D. Rok odevzdání: 2010 Vypracoval:

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Technické osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Technické osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické osvětlení Vypracoval: Martin Hanuš Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že jsem ročníkovou

Více

Deskriptivní geometrie pro střední školy

Deskriptivní geometrie pro střední školy Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl

Více

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.

Více

Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika

Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika Bítov 13.-17.8.2012 Blok 1: Kinematika Pro lepší orientaci v obrázku je vhodné umísťovat. Nabízí se dvě rychlé varianty. Buď pomocí příkazu

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní

Více

Mongeova projekce - úlohy polohy

Mongeova projekce - úlohy polohy Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova

Více

ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY

ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY Zpracovala: Kristýna Rožánková FA ČVUT 2011 ZBORCENÉ PŘÍMKOVÉ PLOCHY Zborcené přímkové plochy jsou určeny třemi křivkami k, l, m, které neleží na jedné rozvinutelné

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

Shodná zobrazení v rovině

Shodná zobrazení v rovině Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,

Více

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

Kreslení, rýsování. Zobrazení A B. Promítání E 3 E 2

Kreslení, rýsování. Zobrazení A B. Promítání E 3 E 2 Kreslení, rýsování Zobrazení A B Promítání E 3 E 2 1 Promítání lineární 1. Obrazem bodu je bod 2. Obrazem přímky je přímka (nebo bod) 3. Obrazem roviny je rovina (nebo přímka) Nelineární perspektivy: válcová...

Více

8 Podobná (ekviformní) zobrazení v rovině

8 Podobná (ekviformní) zobrazení v rovině Typeset by LATEX2ε 1 8 Podobná (ekviformní) zobrazení v rovině 8.1 Stejnolehlost (homotetie) v rovině Definice 8.1.1. Nechť jsou dány 3 různé kolineární body A, B, C. Dělicím poměrem λ = (ABC) rozumíme

Více

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.

Více

Deskriptivní geometrie I Prezentace a podklady k pr edna s ka m

Deskriptivní geometrie I Prezentace a podklady k pr edna s ka m Deskriptivní geometrie I Prezentace a podklady k pr edna s ka m Geometrická zobrazení v rovině Shodná zobrazení v rovině: identita, posunutí, rotace, středová souměrnost osová souměrnost posunutá souměrnost

Více

Další servery s elektronickým obsahem

Další servery s elektronickým obsahem Právní upozornění Všechna práva vyhrazena. Žádná část této tištěné či elektronické knihy nesmí být reprodukována a šířena v papírové, elektronické či jiné podobě bez předchozího písemného souhlasu nakladatele.

Více

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné

Více