permutace, popisující nějaké symetrie, je i π permutace, popisující nějakou symetrii.
|
|
- Lukáš Vávra
- před 8 lety
- Počet zobrazení:
Transkript
1 DSM Cv Pólyova věta Budeme se zabývat objekty (na množně X - to jsou vrcholy těchto objektů) s různým prvky symetre (například to mohou být různé brože, tsky, ale také strukturní vzorce různých chemckých sloučenn). Příslušné symetre popsují permutace na množně X, popsující, jak se v dané symetr navzájem zobrazují jednotlvé vrcholy. Jednou z nch je určtě dentta, dále platí, že popsuje-l nějakou symetr objektu permutace π, popsuje jnou symetr permutace π. Rovněž platí, že jsou-l π, π permutace, popsující nějaké symetre, je π π permutace, popsující nějakou symetr. Tedy systém permutací, popsujících všechny symetre objektu tvoří permutační grupu G. Tuto grupu popíšeme následujícím způsobem: - každé permutac π přřadíme její typ - [ p, p,, pn ] (kde p udává počet cyklů v permutac o velkost právě známe z DSM), - dále přřadíme každé permutac cyklový jednočlen proměnných p p p c, c,, cn, který defnujeme takto: cykl ( π ) = c n c c n, - pro každou permutační grupu G defnujeme její cyklový ndex jako mnohočlen proměnných c, c,, cn vztahem: cykl ( G) = cykl ( π ). G π G Do vrcholů těchto objektů budeme umsťovat různé předměty (budeme je vlastně obarvovat tolka barvam, kolk různých předmětů máme k dspozc, někdy to nemusí být předměty, ale např. perforace políček jízdenky děrovacím strojkem, atomy prvků nebo dokonce skutečné barvy). Přpomínám, že obarvenou množnou rozumíme objekt O = X, β, β je zobrazení množny X do množny barev B, ( x) kde : X B barva prvku př obarvení β. β je
2 Pro ztotožnění stejně vypadajících obarvených objektů zavádíme pojem G ekvvalence symbol G. Platí: X, β G X, β π G : β = β π. To znamená, že jeden obarvený objekt můžeme převést pomocí nějaké permutace z grupy G (symetre objektu) na druhý. Takové obarvené objekty jsou pak mez sebou nerozlštelné. Je dána n prvková množna X a množna barev B, na X exstuje permutační grupa G. Na množně všech objektů O = X, β, kde β : X B, určuje relace G rozklad na rozkladové třídy navzájem G ekvvalentních objektů. Pokusíme se vnést do této problematky účnný nástroj vytvořující funkce. Nejprve přřadíme každé barvě číselnou hodnotu. Zavedeme váhovou funkc. Váhová funkce na množně B je lbovolné zobrazení w : B Z0 (každé barvě přřadíme jednoznačně celé nezáporné číslo, obvykle co možná nejjednodušej, tedy malá celá nezáporná čísla). Defnujeme váhu obarvené množny O X, β w O w β x = ( ). = předpsem ( ) ( ) Platí, že dvě G ekvvalentní obarvené množny mají stejnou váhu. Všechny objekty v určté rozkladové třídě mají stejnou váhu. x X Zavedení vytvořující funkce: Na množně barev B je defnovaná váhová funkce w. Pro lbovolné Z0 defnujeme číslo w = w ( ) (číslo udává počet barev, které mají přřazenu váhu ). Váhové funkc w pak přřadíme váhovou vytvořující funkc ( ) f x w x w = = 0 (koefcent u té mocnny proměnné x udává počet barev, které mají přřazenu váhu )
3 Je-l na systému obarvených množn defnována ekvvalence G, která vytváří rozklad množny všech objektů na třídy ekvvalentních (z hledska našeho problému stejně vypadajících objektů), pak označíme symbolem e počet tříd této ekvvalence, které mají váhu rovnou právě. Pak platí Polyova věta: ( ) ( ) k e0 + e x + ex + + ek x + = cykl G fw x kde symbol znamená specální substtuc, kdy pro každé j,, n cykl G všechny výskyty = nahradíme v cyklovém ndexu ( ) j f x, tedy nahradíme c f ( x) symbolu c j vytvořující funkcí w ( ) ( ) c f x atd. w, w Příklad: Je dán obdélník, který má tyto symetre: denttu, dvě osové souměrnost podle středních příček a středovou souměrnost podle středu. Jeho vrcholy budeme obarvovat dvěma barvam bílou a černou. Na tomto příkladu ukážeme použtí Polyovy věty.
4 a) Určíme symetre pomocí grupy permutací: 3 π = 3 3 π = 3. π, 3 = 3 π, 3 3 = 3, Typy permutací jsou postupně: [,0,0,0], [0,,0,0], [0,,0,0], [0,,0,0]. = +. Cyklový ndex tedy je cykl ( G) ( c 3c ) Pro obarvení dvěma barvam zvolíme následující váhovou funkc: w b = 0, w c =. ( ) ( ) f x = + x Váhová vytvořující funkce je potom w ( ) ( w = w ( 0) =, w = w ( ) = ). 0 Aplkací Polyovy věty dostaneme: cykl G f x x 3 x ( ) ( ) w ( ) = ( + ) + ( + ) 3 = + x + 3x + x + x. Význam mnohočlenu: - objekt s žádným černým vrcholem (všechny bílé), váha 0, x - objekt s jedním černý a třem bílým vrcholy, váha, 3x - 3 objekty se dvěma bílým a dvěma černým 3 vrcholy, váha, x - objekt s třem černým a jedním bílým vrcholem, váha 3, x - jeden objekt s čtyřm černým a žádným bílým vrcholem, váha. Celkový počet různých objektů je 7, což se součtu koefcentů nebo také hodnotě výsledné vytvořující funkce pro x =.
5 Příklady:. Řešte předcházející příklad pro případ, kdy do vrcholů obdélníka vkládáme některou z mncí Kč, Kč, 5 Kč.. Je dáno těleso tvaru kolmého kvádru (jako krabčka od srek). Každou ze 6 stěn máme obarvt černě nebo bíle. Jako symetre 0 uvažujeme kromě dentty jen otáčení o 80 kolem tří os, kdy stejně velké stěny přejdou na sebe. Zjstěte počty různých obarvení. 3. Představte s unverzální lístek městské dopravy (příklad pochází ze starých časů, kdy se v MHD lístky procvakávaly ve strojku) s 9 políčky. Př čtení označeného lístku (s procvaknutým políčky od počtu 0 až po 9) musí být možné vkládat lístek do čtečky z lbovolné strany a také rubem č lícem. Kolka způsoby může být lístek označen dírkam?. Zlatá brož tvaru podlouhlého obdélníka s 5 místy pro osazení polodrahokamy má kromě dentty ještě jednu symetr, a to 0 otočení kolem středového místa o 80. Máme k dspozc druhy polodrahokamů smaragdy a rubíny. Kolk je možností osazení? Vytvořující funkce více proměnných: Pokud máme daný základní objekt obarvt více než dvěma rozlštelným barvam, které ale jnak dávají stejný vnější efekt (kromě barvy) například kdybychom v předchozím příkladu měl drahokamy tří druhů, ale stejného tvaru. Pak používáme vytvořující funkce více (q) proměnných, které vycházejí z vícerozměrné váhové funkce q β : B Z = Z Z Z, kde q je počet barev Jedná se tedy o váhové vytvořující funkce fw ( x, x,, xq ).
6 Příklad: Zavedeme-l na našem obdélníku obarvení vrcholů třem barvam bílou, černou a modrou, pracujeme s 3-rozměrnou váhovou w b =,0,0, w c = 0,,0, w m = 0,0,, funkcí ( ) [ ] ( ) [ ] ( ) [ ] w[ ] w =,0,0 [, 0, 0] =, w[ ] w = 0,,0 [ 0,, 0] =, w w [ 0, 0,] Váhová vytvořující funkce je pak f x, y, z = x y z + x y z + x y z = x + y + z. w ( ) = =. Zobecněná Polyova věta: Pro získání počtu rozkladových tříd ekvvalence, které mají příslušnou vícerozměrnou váhu, použjeme obdobně specální substtuc do cyklového ndexu: cykl G f x, x,, x, kde ve specální substtuc nahradíme ( ) w ( q ) všechny výskyty symbolu j j j j c vytvořující funkcí fw ( x, x,, xq ). V našem příkladu pokračujeme specální substtucí cykl ( G) ( x + y + z) ( ( ) ( ) ) = x + y + z + 3 x + y + z. Počet všech objektů, obarvených třem barvam pak bude roven součtu koefcentů u mnohočlenu o třech proměnných, který získáme použtím multnomcké věty, případně roznásobováním. Tento součet se ale rovná hodnotě příslušného mnohočlenu pro x =, y =, z =, 08 kterou získáme dosazením: ( ) = ( 8+ 7) = = 7. Pokud chceme znát počty příslušných obarvených objektů, musíme roznásobt. 5. Řešte příklad pro 3 druhy polodrahokamů rubín, smaragd, ametyst. 6. Kruhový koláč má tvarohovou náplň, kterou rozdělíme na tř stejné segmenty. Do každého dáme buď roznky nebo mandle nebo roznku a mandl. Kolk různých koláčů lze přpravt?
7 7. Máme navrhnout brož tvaru rovnostranného trojúhelníka, který má být osazen třem kameny, každý má být umístěn do vrcholu trojúhelníka. K dspozc máme čtyř polodrahokamy rubíny, smaragdy, ametysty a akvamaríny. Kolk je různě vypadajících broží? Brož je možné v rovně pootáčet, ale nkol v prostoru převracet, protože na zadní straně je špendlík. 8. Př chlorac benzenu vznkají jeho chlorderváty s chemckým sumárním vzorcem C6H pcl q, kde p + q = 6. V prostoru tedy máme pravdelný šestúhelník představující tzv. benzenové jádro, které obsahuje 6 atomů uhlíku. Do jeho vrcholů vkládáme atomy H nebo Cl. Určete, kolk je teoretcky možných sloučenn C6H pcl q, kde p + q = 6, s uvážením zomere. Dále určete, kolk zomerů teoretcky exstuje pro sumární vzorec C H Cl Br? 6 9. Klenotník vyrobl symetrcký šperk (vz obrázek), 0 který má prvky symetre (denttu a otočení o 80 ). Má jej osadt na 6 místech polodrahokamy (rubíny, safíry, akvamaríny). Určete všechny možnost osazení tohoto šperku. Kolk je možností, chceme-l použít rubíny, safíry a akvamaríny?
8 0. V šestranném revolveru lze do každého otvoru v bubínku vložt jeden náboj. Bubínek se volně otáčí. Do každého otvoru v bubínku můžeme vložt buď ostrý nebo slepý náboj nebo nc. Určete všechny možnost osazení bubínku. Kolk je možností, máme k dspozc ostré a slepé náboje.. Určete počet možností, jak může vypadat čtvercová brož, která má být osazena čtyřm kameny stejného tvaru (na výběr máme rubíny, smaragdy, ametysty a akvamaríny), které mají být umístěny v místech u vrcholů čtverce.
KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla
KOMPLEXNÍ ČÍSLA Příklad Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární
VíceNumerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První
Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá
VíceKOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla
KOMPLEXNÍ ČÍSLA Příklad 1 Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární
VíceEnergie elektrického pole
Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný
VícePříprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz
Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla
Více10. DETERMINANTY " # $!
10. DETERMINANTY $ V této kapitole zavedeme determinanty čtvercových matic libovolného rozměru nad pevným tělesem, řekneme si jejich základní vlastnosti a naučíme se je vypočítat včetně příkladů jejich
VíceMATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
VícePOROVNÁNÍ MEZI SKUPINAMI
POROVNÁNÍ MEZI SKUPINAMI Potřeba porovnání počtů mez určtým skupnam jednců např. porovnání počtů onemocnění mez kraj nebo okresy v prax se obvykle pracuje s porovnáním na 100.000 osob. Stuace ale nebývá
Více2. Definice pravděpodobnosti
2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se
VíceIvana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Ivana Lnkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE Abstrakt Příspěvek prezentuje B-splne křvku a Coonsovu, Bézerovu a Fergusonovu kubku jako specální případy
Více1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2.
. Spektrální rozklad samoadjungovaných operátorů.. Motvace Vlastní čísla a vlastní vektory symetrcké matce A = A λe = λ λ = λ 3λ + = λ 3+ λ 3 Vlastní čísla jsou λ = 3+, λ = 3. Pro tato vlastní čísla nalezneme
Více10. N á h o d n ý v e k t o r
10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět
VíceCVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
VíceZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647
ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: VY_32_INOVACE_HRAVĚ16 Soutěž desetinná čísla, souměrnost, finanční matematika,
VíceKinetika spalovacích reakcí
Knetka spalovacích reakcí Základy knetky spalování - nauka o průběhu spalovacích reakcí a závslost rychlost reakcí na různých faktorech Hlavní faktory: - koncentrace reagujících látek - teplota - tlak
Více3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.
Obr.17. F F 1x = F.cos α1,..., Fnx = F. cos 1y = F.sin α1,..., Fny = F. sin α α n n. Původní soustava je nyní nahrazena děma soustavami sil ve směru osy x a ve směru osy y. Tutu soustavu nahradíme dvěma
VíceCVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 20 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Jsou dána tři celá čísla A, B, C. Zvětšíme-li číslo A o 1, číslo
Více2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC
25 MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC V této kaptole se dozvíte: jak lze obecnou soustavu lneárních rovnc zapsat pomocí matcového počtu; přesnou formulac podmínek řeštelnost soustavy lneárních rovnc
Více[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201
6.. Gonometrcký tvar kompleních čísel I Předpoklad: 07, 09, 60 Pedagogcká poznámka: Gonometrcký tvar kompleních čísel není pro student njak obtížný. Velm obtížné je pro student s po roce vzpomenout na
VíceSada 7 odchylky přímek a rovin I
Sada 7 odchylky přímek a rovin I Odchylky přímek 1) Je dána krychle ABCDEFGH. Určete odchylku daných přímek a) AB, AE b) AB, AD c) AE, AF d) AB, BD e) CD, GH f) AD, FG g) AB, SAEF h) ED, FC 2) Je dána
VíceShodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
VíceSTEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
VíceSHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ
Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,
VíceCVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
VíceAXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.
AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na bájný zikkurat tvaru komolého kolmého jehlanu s větší podstavou u země vede
VíceDefinujte Gaussovský obor. Vysvětlete, co přesně rozumíme jednoznačností rozkladu.
1.teorie(1bod) Formulujte princip matematické indukce. Napište základní větu aritmetiky. Napište Bézoutovu rovnost v oboru celých čísel. Definujte,coznamenázápis a b(mod n),auveďtezákladnívlastnosti. Napište
VíceMatematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose
Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické
Více1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
Vícei=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
VícePOSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Více4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy
STROJNICKÁ PŘÍRUČKA čá s t 4, d íl 3, k a p to la 3, str. 1 díl 3, Statka 4/3.3 ROVNOVÁHA TĚLESA Procházejí-l po uvolnění tělesa všechny síly jedním bodem v rovně (tvoří rovnný svazek sl), jsou vždy splněny
VíceVzdělávací obor matematika
"Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost
VícePOSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceÚlohy domácího kola kategorie B
47. ročník Matematické olympiády Úlohy domácího kola kategorie B 1. Magický čtverec je čtvercová tabulka přirozených čísel, v níž je součet všech čísel v každém řádku, v každém sloupci i na obou úhlopříčkách
VíceAnalytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Více6 Ordinální informace o kritériích
6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní
VíceKomplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0
Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceCvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
VícePříklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
VíceCVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
VícePetr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57
Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost
VícePovrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3
y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
VíceGeometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy
1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné
Více9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
VíceŽák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
VíceTrojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
Více- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
Více- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů
- 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně
Víceu (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo
Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)
VíceTest z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
VíceKombinatorika. Michael Krbek. 1. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle
Kombinatorika Michael Krbek. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle konečnými) strukturami a patří kvůli tomu mezi nejstarší oblasti matematiky. Je těžké podat přesný výčet
VíceCVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
VíceRovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA
Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic
Více8 Podobná (ekviformní) zobrazení v rovině
Typeset by LATEX2ε 1 8 Podobná (ekviformní) zobrazení v rovině 8.1 Stejnolehlost (homotetie) v rovině Definice 8.1.1. Nechť jsou dány 3 různé kolineární body A, B, C. Dělicím poměrem λ = (ABC) rozumíme
VíceSeriál II.II Vektory. Výfučtení: Vektory
Výfučtení: Vektory Abychom zcela vyjádřili veličiny jako hmotnost, teplo či náboj, stačí nám k tomu jediné číslo (s příslušnou jednotkou). Říkáme jim skalární veličiny. Běžně se však setkáváme i s veličinami,
Vícearcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
Více6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
VíceIterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2
Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...
VíceÚlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceŘešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Metody řešení konstrukčních úloh: množinou bodů zobrazením výpočtem kombinací předchozích způsobů Konstrukční
Více1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
VícePythagorova věta
.8.19 Pythagorova věta Předpoklady: 00801 Pedagogická poznámka: Z následujícího příkladu rýsuje každý žák pouze jeden bod podle toho, v jakém sedí oddělení. Př. 1: Narýsuj pravoúhlý trojúhelník: a) ABC:
VíceMetrické vlastnosti v prostoru
Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii
VíceMirko Navara, Petr Olšák. Základy fuzzy množin. Praha, 2001
Mrko Navara, Petr Olšák Základy fuzzy množn Praha, 2001 E Text je šířen volně podle lcence ftp://math.feld.cvut.cz/pub/olsak/fuzzy/lcence.txt. Text ve formátech TEX (csplan), Postcrpt, dv, PDF najdete
VíceDále budeme předpokládat, že daný Markovův řetězec je homogenní. p i1 i 2
4 Markovovy řetězce se nazývá Markovův řetě- Defnce 7 Posloupnost celočíselných náhodných velčn {X n } zec (markovský řetězec), jestlže P(X n+ = j X n = n,, X 0 = 0 ) = P(X n+ = j X n = n ) (7) pro každé
Více10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )
Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina
VíceMatematický KLOKAN 2006 kategorie Junior
Matematický KLOKAN 006 kategorie Junior Vážení přátelé, v následujících 7 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet
VíceTeorie. Kombinatorika
Teorie Kombinatorika Kombinatorika Jak obecně vybrat k prvkové množiny z n prvkové množiny? Dvě možnosti: prvky se v množině neopakují bez opakování. prvky se v množině opakují s opakováním. prvky jsou
VíceVyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.
Charakteristika předmětu 2. stupně Matematika je zařazena do vzdělávací oblasti Matematika a její aplikace. Vyučovací předmět má časovou dotaci v 6. ročníku 4 hodiny týdně, v 7., 8. a 9 ročníku bylo použito
VíceCVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 7 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Určete přirozené číslo n tak, aby platilo: 3 + 12 + 27 = n. 1 bod 2 Doplňte
VíceCVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní
VíceSOUŘADNICE BODU, VZDÁLENOST BODŮ
Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose
VíceČtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník
Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky
VíceMASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA
MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA Katedra Matematky Řetězové zlomky Dplomová práce Brno 04 Autor práce: Bc. Petra Dvořáčková Vedoucí práce: doc. RNDr. Jaroslav Beránek, CSc. Bblografcký záznam
VícePRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
VíceLokace odbavovacího centra nákladní pokladny pro víkendový provoz
Markéta Brázdová 1 Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Klíčová slova: odbavování záslek, centrum grafu, vážená excentrcta vrcholů sítě, časová náročnost odbavení záslky, vážená
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
VíceSyntetická geometrie I
Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB
VíceCVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
VíceVýslednice, rovnováha silové soustavy.
Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky
VíceBCH kódy. Alena Gollová, TIK BCH kódy 1/27
7. přednáška z algebraického kódování Alena Gollová, TIK 1/27 Obsah 1 Binární Alena Gollová, TIK 2/27 Binární jsou cyklické kódy zadané svými generujícími kořeny. Díky šikovné volbě kořenů opravuje kód
VíceCyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
VíceLOGICKÉ OBVODY J I Ř Í K A L O U S E K
LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2
VíceFERGUSONOVA KUBIKA. ( u) ( ) ( ) X s X s. Kubický spline C 2 má dva stupně volnosti Q 1 Q 2
FERGUSONOVA KUBIKA C F F F ( u) = Q F ( u) + Q F ( u) + Q F ( u) + Q F ( u), u F ( u) = u ( u) = u + ( u) = u u ( u) = u u u + u + u Q Q Q Q C napojení Fergusonových kubk Kubcký splne C má dva stupně volnost
VíceOperační výzkum. Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu.
Operační výzkum Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
Vícepodle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y
4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.
Více1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE
ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE V této kaptole se dozvíte: jak je oecě defováa kolmost (ortogoalta) vektorů; co rozumíme ortogoálí a ortoormálí ází; co jsou to tzv relace ortoormalty a Croeckerovo delta;
VíceGoniometrické rovnice
Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u
Víceina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)
Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.
VíceZdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
VíceÚlohy krajského kola kategorie C
65. ročník matematické olympiády Úlohy krajského kola kategorie. Najděte nejmenší možnou hodnotu výrazu x xy + y, ve kterém x a y jsou libovolná celá nezáporná čísla.. Určete, kolika způsoby lze všechny
VíceCopyright 2013 Martin Kaňka;
Copyright 2013 Martin Kaňka; http://dalest.kenynet.cz Popis aplikace Hlavním cílem aplikace Cubix je výpočet a procvičení výpočtu objemu a povrchu těles složených z kostek. Existují tři obtížnosti úkolů
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Matematika (MAT) Náplň: Racionální čísla a procenta a základy finanční matematiky, Trojúhelníky a čtyřúhelníky, Výrazy I, Hranoly Třída: Sekunda Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC
VíceJEVIŠTNÍ PERSPEKTIVA TABULKA 19
OBSAH tabulka strana Předmluva 6 Úvod 7 Základní pojmy v perspektivě 1 8 Výška oka sedícího diváka 2 9 Průčelná perspektiva centrální, pozorovací bod je na ose symetrie, základna prochází stranou BC 3
Více