Mechanický pohyb: = změna vzájemné polohy těles v prostoru a v čase.
|
|
- Jarmila Staňková
- před 8 lety
- Počet zobrazení:
Transkript
1 Úvo Přemět laicé mechaniy (ále jen mechaniy) = mechanicý pohyb, jeho popi v potou a v čae a jeho příčiny. Mechanicý pohyb: = změna vzájemné polohy těle v potou a v čae. Klaicá mechania: ychloti těle jou mnohem menší než ychlot větla ve vauu c = 3 x 10 8 m/
2 Popi v potou a čae bez uvažování příčin pohybu a jeho změn MECHANIKA Stuium příčin pohybu a jeho změn Zvláštní čát mechaniy (pohyb nenatává) STATIKA
3 1. TŘENÍ Ve tatice jme vazby uvažovali jao útvay oonale hlaými tyčnými míty a eacemi olmými e tyčným plochám či řivám. Ve utečnoti jou tyčná míta vazeb víceméně ná. Vznilé eace jou obecně ochýlené o nomál tyčných ploch (řive). Paivní opoy e pojevují eacemi, teé mají tečné ložy. V chaateu těchto tečných lože ozlišujeme přípay. 1) Jetliže je o vzájemný pohyb útvaů, obecně mluvíme o myovém tření. ) elativnímu liu příluší tečné eace.
4 Všeobecně platí, že třecí íla (myové tření) půobí ve měu a poti mylu elativní ychloti týajících e boů Jiné paivní opoy: opoové účiny při valení tělea, při navíjení vláen (lan, řetězů), třecí bza apo. Tření -čato užitečné, bez tření by nebyla možná chůze, ozjez a bzění voziel, přeno enegie řemeny - čato šolivé, neboť nižuje výonnot tojů, pa e mu báníme tím, že třecí plochy necháme potáhnout vtvou přilnavé apaliny (mazala) a tím tření zmenšujeme, neboť tření pevných láte nahaíme třením apalinným (menší).
5 1.1. Tření myové Vzni tečných eací vyvětlován neovnotmi tyčných ploch. Tření je jev fyziálně velmi ložitý. Závií: - na mateiálu, - na tavu tyčných ploch, - na íle, teá tyto plochy přitlačuje, - na velioti ploch, - na teplotě, - jiné poměy jou za liu, jiné za pohybu. Těleo nepohybuje tření bání uveení tělea o pohybu - natává tření v liu. Těleo e pohybuje - natává tření v pohybu tření e uplatňuje jao íla bzící pohyb
6 V 18. toletí fomuloval fyzi Coulomb empiicé záony o myovém tření. 1. záon o myovém tření za liu Tření myové v liu nemůže přetoupit učitou honotu, teá je úměná nomálové ložce, jíž jou tělea obě přitlačována. T N e T je veliot třecí ložy eace je oučinitel tření za liu N je nomálová loža eace na tyu obou těle Staticý oučinitel tření závií převážně na noti ploch.
7 . záon o myovém tření za pohybu Tření za pohybu vyvozuje tečnou ložu eace, teá je úměná nomálové ložce eace. T je veliot třecí ložy eace Kinematicý oučinitel tření (závií převážně na noti ploch a nezávií na ychloti) Platí: T N e (platnot vztahu je ověřena výley expeimentů - viz obáze) je oučinitel tření za liu N je nomálová loža eace na tyu obou těle T(N) N N (N)
8 Úloha 1.1.1: Těleo na vooovné ovině, na teé půobí íla, teá víá nomálou třecí plochy úhel. n N v t T 0 1.a) Je-li ovina ieálně hlaá, těleo je v ovnováze pouze tehy, je-li íla olmá ovině ( = 0 ) b) Oloněním íly o úhel e á těleo o pohybu po účinem hnací íly " = in..a) Je-li ovina ná, může vzoovat nejen ilám nim olmým, ale i tečným ilám až o velioti T N Při půobení íly oloněné o úhel bue těleo ta louho v ovnováze, pou tečná loža íly " bue menší než maximální honota vooovné eace T.
9 in N in co co in tg co čili pou úhel bue menší než úhel, po teý platí tg, e je úhel myového tření v liu. Uává ajní polohy vnější íly, při nichž vazba půobí. b) Přetoupí-li úhel honotu, á e těleo o pohybu. Hnací ilou ze bue výlenice vnější íly a eace veení T in co V této ovnici je již míto. oučinitel a potože e těleo pohybuje je
10 Třecí užel - vyšafovaná oblat mezi čechovanými hanicemi vymezenými úhlem o vilé oy. Pou pape íly leží uvnitř třecího uželu, je těleo ve tabilní poloze (v liu). n N t T ma Evivalence: Potože e jená o pohyb ovnoměně zychlený, je nutno o výpočtu zahnout etvačnou ílu. Pohybová ovnice tělea bue ma ma in co m a T tg in 1 tg úhel, jehož tg, e nazývá úhel tření za pohybu.
11 Pohyb e bue zychlovat, pou platí tg tg, lene-li úhel po honotu, bue těleo bzěno a čaem e zataví. Mateiál ocel na leě 0,07 1 o 36 0, ocel na oceli 0,11-0,3 6 o 0-16 o 40 0,07-0,5 4 o - 14 o ov na řevě 0, - 0,55 11 o 0-9 o 0, - 0,5 11 o 0-6 o 30 řevo na řevě 0,43-0,6 3 o - 3 o 0,19-0,48 1 o - 5 o Nutnou a potačující pomínou aby těleo na naloněné ovině bylo ve tabilní ovnováze, je, aby pape výlenice vnějších půobících il (ze tíha) ležel uvnitř třecího užele.
12 Chování tělea o tíze G naloníme-li ovinu, na teé leží vá a) b) G G N Gco 0 bez tření bez pohybu, STABILNÍ Gin c) třecí užel ) G G N Gco N Gco Gin Gin bez pohybu, ale pohyb možný, LABILNÍ POHYB
13 1.. Tření valivé G G v v N N T a) oonale hlaá položa b) tření Doonale hlaá položa mýání Hubá položa mýání válce po položce bání tření, položa omě vilé eace půobí i ilou vooovnou, teá bání pounu otyového bou válce. Tento otyový bo zůtává na mítě a válec e olem něho točí - valí e.
14 Moment oztáčející válec má veliot a velice malá hnací íla by měla tačit uveení válce o pohybu. Ve utečnoti lae těleo opo i poti valení. Vyvětlení: eace položy e poněu poune vpře poti měu pohybu o jitou élu e (tejně jao u aiálního čepu v nepřiléhajícím ložiu) G v Váha tělea vzhleem e třeu otáčení půobí e Paticy: N T bzícím momentem G e. Jev e nazývá tření valivé, éla e je paamet tření valivého (ačoliv e tření tu neochází). Tření valivé je e facto opo poti valení tělea. Účine tření valivého e poobně jao u tření myového vyjařuje bzící ilou T, teá je náobem vilého tlau.
15 Součtové pomíny ovnováhy momentová pomína ovnováhy e třeu e v je oeficient tření valivého, teý je značně menší než u tření myového. Zjenoušující přepolay (Coulomb) - paamet e je nezávilý na poloměu válce a jeho výšce - paamet e je nezávilý na íle, teou je válec tlačen polau G N e v T N G T N G - T 0 0 v G T e G T e N T T e N 0
16 1.3. Tření v čepech Vyšetříme moment potřebný přeonání opou v čepu Čep tvau V Součinitel tření v liu je chaateizován třecím úhlem a valivý opo paametem valivého tření e. Slon amen V čepu je án úhlem M max M max P A 1 B G e 1 x B 1 A x e p V mítě otyu uhového půřezu a han čepu vzniají neznámé eace 1,, třetí neznámou je veliot momentu M max.
17 Setavíme oučtové pomíny ovnováhy tuhé ey v ovině ve vooovném a vilém měu: in 0 G co co 0 1 in 1 Řešením obou ovnice otaneme 1 co G in tan 1 in G in in co tan Výley mají myl, pou. Pou to neplatí, jená e o úlohu řešící pohyb ola na naloněné ovině. Neznámou honotu momentu vypočteme z momentové výminy ovnováhy e třeu uhu. M e co in max 0 Doazením za eace 1,zíáme M 1 G eco in
18 Pou by byl tento moment přeonán, změnil by e třecí úhel taticý na inematicý a V čep by lal opo vyjářený momentem M G e co in Válcový čep Opo pohybu lae jena tření valivé a jena tření myové. Součet těchto opoů e nazývá tření čepové a po úhel čepového tření za liu můžeme přibližně přepoláat č v č Setavíme pomíny ovnováhy válce v čepu. n G co č 0 t G inč 0 a momentová pomína ovnováhy oe válce M max t 0 Řešením ovnic pa otaneme n G coč t G inč M max G inč
19 Opět při pohybu lae čep opo vyjářený momentem M G e č Axiální a aiální čep hříele Čepy jou čáti hříelů uložené o ložie, teé umožňují otáčení. Svilé hříele, zatížené oovou ilou způobenou vahou otujícího tělea, mají čepy axiální. Vooovné hříele, zatížené převážně olmo e vé oe, mají čepy aiální. 1. Axiální čep tvau otačního omolého užele zatížený oovou ilou, teá e ozěluje ovnoměně na oeací plochu. Při otáčení hříele e po obě pounují plošné elementy čepu a oeací plochy ložia, při němž vzniají vooovné íly tření poti měu pohybu. Ty mají
20 na celém čepu oe otáčení moment, teý toto otáčení bzí nazývá e moment čepového tření. Plášť p 1 po omolý užel Doeací plocha čepu 1 1 A 1 in in Celová íla olmá na povch čepu Q x N in Q N in in Ptencový plošný element x A x x in
21 Elementání nomálová íla x x Q x x Q A A N N in in in in 1 1 Tření půobící na plošném elementu bue x x Q N T in 1 Moment il tření po celé ploše čepu jeho oe in in 1 1 Q x x Q T x M č Má-li e těleo otáčet ovnoměně, muí na ně půobit hnací moment této velioti. V opačném přípaně e těleo účinem čepového tření zataví.
22 . aiální čep zatížený vilou ilou Q a uložený v nepřiléhajícím ložiu (půmě čepu je o něco menší než půmě ložia) Pou e hříel neotáčí, bue čep počívat v nejnižší poloze ložia A. eace bue vilá v ovnováze e ilou Q. Při otáčení hříele oje v boě otyu e mýání ploch ložia a čepu, vyvoí e tečná loža eace, teý způobí, že výlená íla nebue olmá ploše ložia. Potože veliot a mě eace je án veliotí a měem íly Q, poune e půobiště íly (vojice il) ta, aby výlenice byla vilá (čep naběhne poti měu otáčení). Za pohybu nejou íly Q a v ovnováze, muí půobit moment velioti Q, aby e užel ovnoměný cho hříele.
23 Tento moment je opět moment čepového tření. Q oučtová výmina T Q in N in M Q Q in Q č e č je oeficient tření čepového č č in 1 3. aiální čep v těném ložiu. eace ložia půobí po celém obvoě čepu, není vša ozělena ovnoměně. V ažém boě ložia bue tato eace víat nomálou úhel tření za pohybu. Elementání eace buou obalovat užnici o poloměu in, tzv. třecí užnice. M č muí na otáčející e hříel půobit přeonání tření v čepu
24 Q 0 oučtová pomína ovnováhy Potože platí, že integál z abolutních honot je vžy menší než abolutní honota integálu bue Q po těné ložio pa Q, e 1 Mč in Q ep. Mč č Q Ke in č 1 Jetliže na aiální čep bez tření, v liu, bue půobit vnější íla olmá jeho oe, nevyvoí otáčení jen v tom přípaě, bue-li ji potínat (nulový moment oe). Jamile bue mít vnější íla oe čepu nějaý moment, způobí otáčení. Bez uvažování tření vša může íla půobit mimo ou hříele, aniž vyvoí
25 pohyb (moment půobí íly užnici. M M ), tj. bue-li tato íla potínat třecí č 1.4. Tření lana pře uhový válec Lano je veeno pře uhový válec, mezi lanem a povchem válce je tření. Hleáme největší možný ozíl mezi veliotmi il 1 a, aby lano otýající e uhového válce v élce učené úhlem (viz obáze), nepolouzlo. Součinitel myového tření za liu mezi mateiály lana a válce je. t 1 n
26 Ve měu vnější nomály uhového půřezu válce potom etavíme oučtovou pomíny ovnováhy in n n n ( potože po malý úhel in ). Zanebáme veličinu uhého řáu a potom 0 n Poobně výmina ovnováhy v mítě ve měu tečny má tva 0 0 co t t ( potože po malý úhel 1 co ) Třecí íla n t. Doazením o přechozí ovnice a úpavou otaneme 0
27 což přetavuje lineání ifeenciální ovnici 1. řáu 0. Řešením ovnice zíáme ílu C 1 e. Integační ontantu C 1 zíáme z oajové pomíny 0 1, tey e 1 Z vypočteného vztahu lze zopověět zaání, že maximální možný ozíl mezi ilami 1 a je e 1. 1 max 1
28
Mechanika hmotného bodu
Mechanika hmotného bodu Pohybové zákony klaické fyziky Volný hmotný bod = hmotný bod (HB), na kteý nepůobí žádné íly (je to abtaktní objekt). Ineciální vztažná (ouřadná) outava = vztažná (ouřadná) outava,
Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/
Střední půmyslová šola a Vyšší odboná šola technicá Bno, Soolsá 1 Šablona: Inovace a zvalitnění výuy postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechania, pužnost pevnost Záladní duhy namáhání,
C Charakteristiky silničních motorových vozidel
C Chaaktetky lnčních otoových vozel Toto téa e zabývá záklaní etoa tanovení někteých povozních chaaktetk lnčních otoových vozel, kteé pak náleně louží k pouzování užtných vlatnotí těchto vozel. Stanovení
FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.
Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5
Vyztužená stěna na poddajném stropu (v 1.0)
Vyztužená těna na poajném tropu (v.0) Výpočetní pomůcka pro poouzení zěné, vyztužené těny na poajném tropu Smazat zaané honoty Nápověa - čti pře prvním použitím programu!!! O programu 0. Pomínka rešení:
A Pohyb silničních vozidel
A Pohyb silničních voziel Po popisování pohybu silničních voziel a sil na ně působící bueme vzcházet ze souřaného systému vozila, tak jak byl popsán v přechozím tématu. Tyto postupy je možno obecně aplikovat
Metoda konečných prvků Základní veličiny, rovnice a vztahy (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace tudijního oboru Geotechnika Reg. č. CZ..7/../8.9 Metoda konečných prvků Základní veličin, rovnice a vztah (výuková prezentace pro. ročník navazujícího tudijního oboru Geotechnika) Doc. RNDr. Eva
Katedra geotechniky a podzemního stavitelství
Katedra geotechnik a podzemního taviteltví Modelování v geotechnice Základní veličin, rovnice a vztah (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace tudijního
Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda
NÁVRH SMYKOVÉ VÝZTUŽE ŽB TRÁMU
NÁRH SMYKOÉ ÝZTUŽE ŽB TRÁMU Navrhněte mykovou výztuž v poobě třmínků o ŽB noníku uveeného na obrázku. Kromě vlatní tíhy je noník zatížen boovou ilou o obvoového pláště otatním tálým rovnoměrným zatížením
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT
Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, dynamika Pohybová ovnice po
a polohovými vektory r k
Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,
ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY
ÚSTŘEDNÍ KOMISE YZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY E-mail: ivo.volf@uhk.cz, tel.: 493 331 19, 493 331 189 Řešení úloh krajkého kola 55. ročníku yzikální olympiády Kategorie E Předložená řešení by neměla
Překlad z vyztuženého zdiva (v 1.0)
Překla z vyztuženého ziva (v 1.0) Výpočetní pomůcka pro poouzení zěného vyztuženého překlau Smazat zaané honoty Nápověa - čti pře prvním použitím programu!!! O programu 0. Pomínka prutového či těnového
dynamika hmotného bodu, pohybová rovnice, d Alembertůvprincip, dva druhy úloh v dynamice, zákony o zachování / změně
Dnaika I,. přednáška Oba přednášk : dnaika otnéo bodu, pobová ovnice, d lebetůvpincip, dva du úlo v dnaice, zákon o zacování / zěně Doba tudia : ai odina Cíl přednášk : eznáit tudent e základníi zákonitoti
4. cvičení z Matematické analýzy 2
4. cvičení z Matematické analýzy 2 22. - 26. října 208 4. Po funkci fx, y, z xy 2 + z 3 xyz učete v bodě a 0,, 2 deivaci ve měu u, kteý je učen tím, že víá kladnými měy ouřadných o potupně úhly 60, 45
Délka kružnice (obvod kruhu) II
.10.7 Déla užnice (obvod uhu) II Předpolady: 01006 Př. 1: Bod je od středu užnice ( ;cm) vzdálen 7 cm. Uči početně vzdálenost z bodu do bodu, teý je tečným bodem tečny užnice jdoucí z bodu. vůj výslede
TŘENÍ A PASIVNÍ ODPORY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez
VLHKOST HORNIN. Dělení vlhkostí : Váhová (hmotnostní) vlhkost w - poměr hmotnosti vody ve vzorku k hmotnosti pevné fáze (hmotnosti vysušeného vzorku)
VLHKOST HORNIN Definice : Vlhkot horniny je efinována jako poěr hotnoti voy k hotnoti pevné fáze horniny. Pro inženýrkou praxi e používá efinice vlhkoti na záklaě voy, která e uvolňuje při vyoušení při
přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu
7..0 přednáška TLAK - TAH Prvky namáhané kombinací normálové íly a ohybového momentu Namáhání kombinací tlakové (tahové) íly a momentu tlak Namáhání kombinací tlakové (tahové) íly a momentu Namáhání kombinací
5. cvičení návrh a posouzení výztuže desky
5. cvičení návrh a poouzení výztuže eky Jenotky Ve tatických výpočtech e nejčatěji pracuje jenotkami íly (N, kn), napětí (kpa, MPa) a élky (mm, cm, m). Jako nejjenoušší prevenci chyb oporučuji vžy oazovat
SPOTŘEBITELSKÝ ÚVĚR. Při rozhodování o splátkové společnosti se budeme řídit výší RPSN. Pro nákup zboží si zvolíme. Dl = >k=0
Úloha 4 - Koupě DVD reoréru SPOTŘEBITELSKÝ ÚVĚR Mlaá roina si chce poříit DVD reorér v honotě 9 900,-Kč. Má možnost se rozhonout mezi třemi splátovými společnosti, teré mají násleující pomíny: a) První
Materiál: Lepené lamelové dřevo (GL 24h) stojka 2 x 120x1480 mm příčel 1 x 200x1480 mm Třída provozu: 1 Spojovací prostředek: kolíky ϕ24 mm
RÁOÝ ROH TROJKLOUBOÁ HALA Náv oje ojy a říčle ojloubovéo ámu (viz obáze): aeiál: Leeé lamelové řevo (GL 4) oja x 0x480 mm říčel x 00x480 mm Třía ovozu: Sojovací ořee: olíy ϕ4 mm Nejeřízivější ombiace (áoobýc)
Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia
Stavební statika, 1.ročník bakalářského stuia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katera stavební mechaniky Fakulta stavební, VŠB - Technická univerzita
PŘÍTECH. Smykové tření
PŘÍTECH Smykové tření Gymnázium Cheb Nerudova 7 Tomáš Tomek, 4.E 2014/2015 Prohlášení Prohlašuji, že jem maturitní práci vypracoval amotatně pod vedením Mgr. Vítězlava Kubína a uvedl v eznamu literatury
1.4.3 Zrychlující vztažné soustavy II
143 Zrychlující vztažné outavy II Předoklady: 1402 Př 1: Vaón SVARME rovnoměrně zrychluje dorava Rozeber ilové ůobení a tav čidel na nátuišti z ohledu MOBILů Čidla na nátuišti (ohled MOBILŮ ze zrychlujícího
6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU
6. ZÁSOBOVÁÍ 6.1. Bilance materiálu 6.2. Propočty potřeby materiálu 6.3. Řízení záob (plánování záob) Záobování patří mezi velmi ůležité ponikové aktivity. Při řízení záob e jená v potatě o řešení tří
PŘÍKLAD 7: / m (včetně vlastní tíhy) a osamělým břemenem. = 146, 500kN uprostřed rozpětí. Průvlak je z betonu třídy C 30/37 vyztuženého ocelí třídy
yoká škola báňká Tehniá univerzita Otrava Fakulta tavební Texty přenášek z přemětu Prvky betonovýh kontrukí navrhování pole Eurooe PŘÍKLAD 7: Navrhněte mykovou výztuž v krajníh čáteh průvlaku zatíženého
je dána vzdáleností od pólu pohybu πb
7_kpta Tyč tvaru le obrázku se pohybuje v rohu svislé stěny tak, že bo A se o rohu (poloha A 0 ) vzaluje s konstantním zrychlením a A 1. m s. Počáteční rychlost bou A byla nulová. Bo B klesá svisle olů.
Namáhání krutem. Napětí v krutu podle Hookova zákona roste úměrně s deformací a svého maxima dosahuje na povrchu součásti
Pužnost a evnost namáhání utem Namáhání utem Namáhání utem zůsobuje silová dvojice, esetive její outicí moment = F.a, teý vyvolává v namáhaných ůřezech vnitřní outicí moment (viz etoda řezu) Při namáhání
Prvky betonových konstrukcí BL01 9 přednáška
Prvky betonových kontrukcí BL01 9 přednáška Prvky namáhané momentem a normálovou ilou základní předpoklady interakční diagram poouzení, návrh namáhání mimo oy ouměrnoti kontrukční záady Způoby porušení
2.1 Shrnutí základních poznatků
.1 Shnutí základních poznatků S plnostěnnými otujícími kotouči se setkáváme hlavně u paních a spalovacích tubín a tubokompesoů. Matematický model otujících kotoučů můžeme s úspěchem využít např. i při
Mechanika kontinua - napětí
Mechanika kontinua - napětí pojité protředí kontinuum objemové íl půobí oučaně na všechn čátice kontinua (např. tíhová íla) plošné íl půobí na povrch tudované čáti kontinua a půobují jeho deformaci napětí
Energie v magnetickém poli. Jaderný paramagnetismus.
Enege v magnetcém pol. Jadený paamagnetmu. šeobecně: Damagneta účny eletonů v chemcých vazbách e do značné míy vzáemně ompenzuí výledný vlv e velm labý. K měření e nutné velm homogenní a tablní pole až
Analýza parametrů měřených křivek akomodace a vergence oka v programu MATLAB
Analýza arametrů měřených řive aomoace a vergence oa v rogramu MATLAB Václav Baxa*, Jarolav Duše*, Mirolav Dotále** *Katera raioeletroniy, FEL ČVUT Praha **Oční oělení, Nemocnice, Litomyšl Abtrat Práce
Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa
yzikálí praktiku I Úloha č10 Měřeí oporu prouícího zuchu (erze 0/01) Úloha č 10 Měřeí rychloti prouu zuchu Měřeí záiloti íly oporu protřeí a taru tělea 1) Poůcky: Aeroyaický tuel, ikroaoetr, Pratloa trubice,
= mechanická práce. Práce a energie. F s
Páce a enegie Po voji záadní dležitot bývá mechanicá páce vyvtlována jao jeden z dled pobení íly na hmotný objet (hmotný bod tzv. dáhový úine íly. Ze tední šoly znáte záladní definici fyziální veliiny
Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy
Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel
NUMERICKÉ STUDIUM STĚNOVÉ VRSTVY PLAZMATU VÁLCOVÉ KATODY
NUMERICKÉ STUDIUM STĚNOVÉ VRSTVY PLAZMATU VÁLCOVÉ KATODY J. Blaže 1) P. Špatena ) J. Olejníče 3) P. Batoš 1) 1) Jihočeá univezita ateda fyziy Jeonýmova 1 371 15 Čeé Budějovice ) Technicá univezita Libeec
vzhledem k ose kolmé na osu geometrickou a procházející hmotným středem válce. c) kužel o poloměru R, výšce h, hmotnosti m
8. Mechanika tuhého tělesa 8.. Základní poznatky Souřadnice x 0, y 0, z 0 hmotného středu tuhého tělesa x = x dm m ( m) 0, y = y dm m ( m) 0, z = z dm m ( m) 0. Poznámka těžiště tuhého tělesa má v homogenním
Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2
Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Dobaprvníjízdynaprvníčtvrtinětratije 1 4 1 4 48 t 1 = = h= 1 v 1 60 60 h=1min anazbývajícíčátitrati t = 4 v = 4
VŠB - Technická univerzita Ostrava Fakulta strojní Katedra automatizační techniky a řízení
VŠB - echnická univerzita Otrava Fakulta trojní Katera automatizační techniky a řízení Ověření méně známé metoy eřizování regulátorů čílicovou imulací a na laboratorním moelu teplovzušného agregátu Vypracoval:
Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 7
Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ převoy Přenáška 7 Kuželová soukolí http://www.gearesteam.com/ The universe is full of magical things patiently waiting for
Průřezové charakteristiky základních profilů.
Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové
4. Práce, výkon, energie
4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy
Diferenciální (dynamický) odpor diody v pracovním bodě P. U lim. du = di. Diferenciální (dynamická) vodivost diody v pracovním bodě.
Difeenciální (ynamický) opo ioy v pacovním boě P lim P Difeenciální (ynamická) voivost ioy v pacovním boě g ( P) lim P P P Výpočet užitím Shockleyho ovnice: ( e T ) P ( g e T T T g T ) V popustném směu:
Části kruhu. Předpoklady:
2.10.3 Části uhu Předpolady: 0201002 Př. 1: Na užnici ( ;5cm) leží body,, = 8cm. Uči početně vzdálenost tětivy od středu užnice. pávnost výpočtu zontoluj ýsováním. Naeslíme si obáze a využijeme speciální
MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6)
Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6) 1.a) Jetliže kolo automobilu neprokluzuje, je velikot okamžité rychloti
Obr.1. LD1..4 ložiskové domky. DŘK1-3 roztečné průměry řetězových kol
Přemět : 34750/0 Konstukční cvčení I Gaant přemětu : oc Ing Jří Havlík, PhD Ročník : navazující, magsteské Školní ok : 07/08 Semest : zmní Zaání : Navhněte a konstukčně zpacujte poháněcí stanc hozontálního
2 Diferenciální rovnice
2 Diferenciální rovnice 2 Moely růstu V této apitole bueme zabývat jenouchými eterministicými moely růstu, napříla růstu populací, objemu nějaé omoity apo Funce y(t bue označovat veliost populace v čase
11. SEMINÁŘ Z MECHANIKY sin α 1 cos. což je vzhledem k veličinám, které známe, kvadratická rovnice vzhledem k tg α. Její diskriminant je
- 9 - SEMINÁŘ Z MECHANIKY Dělo rá třel počáteční rclotí = m Je nutno zaánout cíl, který je orizontální zálenoti = m o ěla a e ýši = m na ním Jaký je minimální eleační úel ěla? = m ; = m ; = m ; = 9,8 m
2.2.6 Tepelné izolace
..6 Tepelné izolace Přepoklay: 5 Pomůcky: le, talířek, va mikrotenové pytlíky, Opakování z minulé hoiny: Vnitřní energie se přenáší třemi způsoby: veení prouění záření Př. 1: Máme va stejné kousky leu.
OBECNÉ ZÁKONY DYNAMIKY TĚLESA S APLIKACÍ NA ROVINNÝ POHYB
OCNÉ ZÁKONY YNMIKY TĚS S PIKCÍ N ROVINNÝ POHY SPCIFIKC PROÉMU Mějme obecným pohybem e pohybující těeo (vz ob.) o tředu hmotnot S (poohový veto nehybnému počátu ouřadncové outavy x y z) na teé v bodech
PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load
7..0 Protlačení Je jev, ke kterému ochází při působení koncentrovaného zatížení na malé ploše A loa PROTLAČENÍ A loa A loa A loa Zatěžovací plochu A loa obyčejně přestavuje kontaktní plocha mezi sloupem
Kabelové vlečky s pojezdem v C-profilu Program 0230
Kabelové vlečky pojezem v C-profilu Obah Sytém kabelových vleček - program 0230 C-profily a upevňovací materiál 3 Kabelová vlečka pro ploché kabely 3 Kabelová vlečka pro kruhové kabely 3 C-profily a přílušentví
Keplerova úloha. Abstrakt: Článek řeší problém pohybu planety (Země) kolem Slunce.
Kepleova úloha Keple-2c.TEX jan.obzalek@mff.cuni.cz Abstakt: Článek řeší poblém pohybu planety (Země) kolem Slunce. Úplná úloha: co zanebáme Chceme vyšetřit pohyb planety, např. Země, v naší sluneční soustavě.
5.4.6 Objemy a povrchy rotačních těles I
5.4.6 Objey a povchy otačních těle I Předpoklady: 050405 Pedagogická poznáka: Stejně jako u nohotěnů i u otačních těle e vzoce po objey a obahy e neodvozují, žáci ohou využívat tabulky a cíle hodin je,
Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
Úvod - vymezení základních pojmů v zákoně o DPH ve vazbě na účetnictví
v účetnictví příspěvkové organizace (včetně vazby na aňové přiznání) Program semináře Úvo - vymezení záklaních pojmů v zákoně o ve vazbě na účetnictví I. Blok uskutečněná plnění Plnění poléhající ani a
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT pof. Ing. Jiří Holčík, CSc. INVESTICE Intitut DO biotatitiky OZVOJE VZDĚLÁVÁNÍ a analýz II. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obaz zpacovávaných dat je
Komentovaný příklad návrhu prefamonolitického stropu
FKULT STVEBNÍ, ČVUT V PRZE Komentovaný příkla návrhu preamonolitického tropu Výuková pomůcka Ing. Joe Flár 1.1.01 Tento okument vznikl za inanční popory projektu FRVŠ 39/01/G1 Navrhování betonových a zěných
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ
JÍZDNÍ ÚSTROJÍ. transformace (změna) rotačního pohybu kola na posuvný pohyb vozidla.
JÍZDNÍ ÚSTROJÍ Přenáší všechny síly mezi vozidlem a vozovou postřednictvím ol. Funce ola: přenos svislých (vetiálních) sil od tíhy vozidla přenos vodoovných (hoizontálních) hnacích, bzdících a bočních
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických
e en loh 1. kola 48. ro n ku fyzik ln olympi dy. Kategorie B Auto i loh: M. Jare ov (1, 2, 5, 6, 7), J. J r (4) a KVANT (3). Kone n prava P. ediv 1. l
e en loh. kola 48. o n ku fyzik ln olympi y. Kategoie B Auto i loh: M. Jae ov (,, 5, 6, 7), J. J (4) a KVANT (). Kone n pava P. eiv. lohu bueme e it ve vzta n soustav, jej po tek je ve st eu M s ce a osy
Betonové a zděné konstrukce Přednáška 4 Spojité desky Mezní stavy použitelnosti
Betonové a zděné kontrukce Přednáška 4 Spojité deky Mezní tavy použitelnoti Ing Pavlína Matečková, PhD 2016 Spojitá deka: deka o více polích, zpravidla jako oučát rámové kontrukce Řeší e MKP Zjednodušené
Konstrukční a technologické koncentrátory napětí
Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem
POHYB SPLAVENIN. 8 Přednáška
POHYB SPLAVENIN 8 Přenáška Obsah: 1. Úvo 2. Vlastnosti splavenin 2.1. Hustota splavenin a relativní hustota 2.2. Zrnitost 2.3. Efektivní zrno 3. Tangenciální napětí a třecí rychlost 4. Počátek eroze 5.
Základy optického zobrazení
Základy optickéo zobazeí. Zákoy geometické optiky Záko odazu větla (ob. ) ři dopadu věteléo papku a ozaí dvou ůzýc potředí dojde k jejic čátečému ebo úplému odazu. dažeý papek zůtává v oviě dopadu (oviě
ANALÝZA A KLASIFIKACE DAT
ANAÝZA A KASIFIKACE DAT pof. Ing. Jiří Holčík, CSc. INVESTICE Intitut DO biotatitiky OZVOJE VZDĚÁVÁNÍ a analýz III. BAYESŮV KASIFIKÁTO Intitut biotatitiky a analýz Intitut biotatitiky a analýz ZÁKADN KADNÍ
1 Seznamová barevnost úplných bipartitních
Barvení grafů pravděpodobnotní důazy Zdeně Dvořá 7. proince 208 Seznamová barevnot úplných bipartitních grafů Hypergraf je (labě) -obarvitelný, jetliže exituje jeho obarvení barvami neobahující monochromaticou
Teorie plasticity PLASTICITA
Teore platcty PLASTICITA TEORIE PLASTICKÉHO TEČENÍ IDEÁLNĚ PRUŽNĚ-PLASTICKÝ MATERIÁL BEZ ZPEVNĚNÍ V platcém tavu nelze jednoznačně přřadt danému napětí jedné přetvoření a naopa, ja tomu bylo ve tavu elatcém.
třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy:
SPŠ VOŠ KLADO SAIKA - PASIVÍ ODPORY PASIVÍ ODPORY Při vzájemném pohybu těles vznikjí v reálných vzbách psivní odpory, jejichž práce se mění v teplo. Psivní odpory předstvují ztráty, které snižují účinnost
Kuličkové šrouby a matice - ekonomické
Kuličkové šrouby a matice - ekonomické Tiskové chyby, rozměrové a konstrukční změny vyhrazeny. Obsah Obsah 3 Deformační zatížení 4 Kritická rychlost 5 Kuličková matice FSU 6 Kuličková matice FSE 7 Kuličková
Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydrostatika
aula savební ČVUT v Pae Kaeda hdauli a hdoloie Předmě HYA K4 Sv ČVUT Hdosaia Doc. In. Aleš Havlí, CSc., In. Tomáš Pice PhD. K4 HYA Hdosaia ŘEŠENÍ HYDROSTATICKÉ SÍLY VE SLOŽKÁCH Dvě navájem olmé vodoovné
5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1
Řešení úloh 1 kola 7 ročníku fyzikální olympiáy Kategorie C Autoři úloh: J Thomas (1,, 3), J Jírů (4, ), J Šlégr (6) a T Táborský (7) 1a) Označme stranu čtverce na mapě Autobus za 1 hoinu urazí ráhu s
7. cvičení návrh a posouzení smykové výztuže trámu
7. cvičení návrh a poouzení mykové výztuže trámu Výtupem domácího cvičení bude návrh proilů a roztečí třmínků na trámech T1 a T2. Pro návrh budeme jako výchozí hodnotu V Ed uvažovat největší hodnotu mykové
Laboratorní práce č. 3: Kmitání mechanického oscilátoru
Přírodní vědy oderně a interaktivně FYZIKA 4. ročník šetiletého a. ročník čtyřletého tudia Laboratorní práce č. : Kitání echanického ocilátoru G Gynáziu Hranice Přírodní vědy oderně a interaktivně FYZIKA
Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce
Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí
Naklápěcí soudečková ložiska E1
Novinka: navýšení výkonnostních paametů u velkých ložisek Naklápěcí souečková ložiska E1 Vyšší hospoánost a povozní bezpečnost íky koncepci X-life Obsah Naklápěcí souečková ložiska FAG E1: Vyšší hospoánost
MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ
Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..
ZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST 2: PŘÍKLADY VÝPOČTŮ
ČEZDitribuce, E.ON Ditribuce, E.ON CZ., ČEPS PREditribuce, ZSE Podniková norma energetiky pro rozvod elektrické energie ZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST : PŘÍKLADY VÝPOČTŮ Znění pro tik PNE 041 druhé
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VOKÁ ŠKOLA BÁŇKÁ TECHNICKÁ NIVEZITA OTAVA FAKLTA TOJNÍ ZÁKLAD ATOMATICKÉHO ŘÍZENÍ 9. týden doc. Ing. enata ANEOVÁ, Ph.D. Otrava 03 doc. Ing. enata ANEOVÁ, Ph.D. Vyoká škola báňká Technická univerzita Otrava
I. MECHANIKA 5. Otáčení tuhého tělesa I
I. MECHAIKA 5. Otáčení tuhého tělea I Obah otáčení tuhého tělea ole pené oy oent etračnot ůč oe záon zachoání oentu hybnot pro otáčení ole oy Steneroa ěta netcá energe rotujícího tělea těžá laa alení po
PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2
PAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DÁTKOBETONOVÝCH SMĚSÍ Petr Janas 1 a Martin Krejsa 2 Abstract The paper reviews briefly one of the propose probabilistic assessment concepts. The potential of the propose
Pro dvojkloubové a trojkloubové rámy se sklonem stojek menším než cca 15 (viz obrázek), lze pro vzpěrnou délku stojek použít tento přibližný vztah:
SOUPY PŘÍČE TROJOUBOVÁ H Vpěné él: Po vojloubové a tojloubové á se slone stoje enší než cca 5 (v obáe), le po vpěnou élu stoje použít tento přblžný vtah: l s h 4+ 3, + E e, s. h h Opovíající vpěná éla
Pružnost a plasticita II
Pužnost a plasticita II. očník bakalářského stuia oc. Ing. Matin Kejsa, Ph.D. Katea stavební mechanik Rovinný poblém, stěnová ovnice Rovinné úloh Řešené úloh teoie pužnosti se postatně jenouší, poku v
Stabilita prutu, desky a válce vzpěr (osová síla)
Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1
MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
Ing. Vítězslav Doleží, Ing. Dušan Galis
Projekt OP VK CZ..7/..7/. Podpora odborného vzdělávání na tředních školách SK Střední škola průmylová a umělecká, Opava, přípěvková organizace Prakova 8/99 76, Opava www.pu-opava.cz tel.: 55 6 58 e-mail:
II. Kinematika hmotného bodu
II Kinematika hmotného bodu Všechny vyřešené úlohy jou vyřešeny nejprve obecně, to znamená bez číel Číelné hodnoty jou doazeny až tehdy, dopějeme-li k vyjádření neznámé pomocí vztahu obahujícího pouze
F (x, h(x)) T (g)(x) = g(x)
11 Implicitní funkce Definice 111 (implicitní funkce) Nechť F : R 2 R je funkce a [x 0, y 0 ] R 2 je takový bo, že F (x 0, y 0 ) = 0 Řekneme, že funkce y = f(x) je v okolí bou [x 0, y 0 ] zaána implicitně
3. V případě dvou na sebe kolmých posunutí o velikostech 3 cm a 4 cm obdržíme výsledné posunutí o velikosti a) 8 cm b) 7 cm c) 6 cm d) 5 cm *
Fyzika 1 2009 Otázky za 2 body 1. Mezi tavové veličiny patří a) teplo b) teplota * c) práce d) univerzální plynová kontanta 2. Krychle má hranu o délce 2 mm. Jaký je její objem v krychlových metrech? a)
Elektromagnetické jevy, elektrické jevy 4. Elektrický náboj, elektrické pole
Elektomagnetické jevy, elektické jevy 4. Elektický náboj, elektické pole 4. Základní poznatky (duhy el. náboje, vodiče, izolanty) Někteé látky se třením dostávají do zvláštního stavu přitahují lehká tělíska.
METODA NÁSOBNÉHO DOMINANTNÍHO PÓLU PRO REGULÁTORY SE DVĚMA STUPNI VOLNOSTI A PROPORCIONÁLNÍ SOUSTAVY S DOPRAVNÍM ZPOŽDĚNÍM
ntrnational onfrnc Fbruary 0 -, 00 BERNES AN NFORMAS VŠNÁ BOA, Slova Rpublic MEOA NÁSOBNÉHO OMNANNÍHO ÓLU RO REULÁOR SE VĚMA SUN VOLNOS A ROORONÁLNÍ SOUSAV S ORAVNÍM ZOŽĚNÍM Miluš Vítčová - Antonín Vítč,
Harmonický pohyb, výchylka, rychlost a zrychlení
Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, kinematika Hamonický pohyb,
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů
Řešení úo. koa 59. ročníku fyzikání oympiáy. Kategorie D Autor úoh: J. Jírů Obr. 1 1.a) Označme v veikost rychosti pavce vzheem k voě a v 0 veikost rychosti toku řeky. Pak patí Číseně vychází α = 38. b)