Spolehlivost soustav
|
|
- Roman Němeček
- před 9 lety
- Počet zobrazení:
Transkript
1 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů spolehlivostní analýzy je zvýšení spolehlivosti zařízení. To lze provést: a) Vhodným návrhem a konstrukcí systému (b) Zvyšování spolehlivosti jeho komponent c): Promyšleným zálohováním nejdůležitějších prvků nebo podsystémů Budeme uvažovat systém, který sestává z n komponent, které označíme C 1, C 2,..., C n. Tedy i tou komponentu značíme C i a předpokládáme, že tato komponenta se může nacházet v jednom ze dvou operačních stavů: komponenta je funkční nebo komponenta není funkční. Stav komponent popisujeme pomocí indikátorové funkce. Indikátorovou funkci (stručně indikátor), kterou přiřadíme komponentě C i označíme X i pro i = 1, 2,..., n a zavedeme ji předpisem: X i = 1, když C i je funkční X i = 0, když C i je funkční Strukturní funkce systému Strukturní funkcí φ celého systému o n komponentách s indikátory X 1, X 2,..., X n definujeme vztahem φ(x 1, X 2,..., X n ) = 1 když systém je funkční φ(x 1, X 2,..., X n ) = 0 když systém není funkční Dále číslo n udávající počet komponent systému nazýváme řádem systému. 1.2 Příklady systémů a jejich strukturních funkcí Příklad sériového systému je na obrázku: C1 C2 Cn Obr. 1: Sériový systém Komponenty systému jsou řazeny do série. Pro úspěšnou funkčnost systému je třeba, aby byly funkční všechny komponenty. Když jedna z komponent nebude funkční, bude to mít za následek, že celý systém nebude funkční. Strukturní funkce sériového systému je rovna φ(x 1, X 2,..., X n ) = min{x 1, X 2,..., X n } Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/ PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
2 Lze ji také zapsat ve tvaru φ(x 1, X 2,..., X n ) = Příklad paralelního systému je na obrázku: C1 X i. C2 Cn Obr. 2: Paralelní systém Komponenty systému jsou řazeny paralelně vedle sebe. Pro úspěšnou funkčnost systému je třeba, aby byla funkční aspoň jedna z n komponent. Celý systém bude funkční, když bude funkční aspoň jedna komponenta. Strukturní funkce sériového systému je rovna Lze ji také zapsat ve tvaru φ(x 1, X 2,..., X n ) = max{x 1, X 2,..., X n } φ(x 1, X 2,..., X n ) = 1 (1 X i ). Na obrázku 3 je graficky znázorněna jednoduchá počítačová sít sestávající z n = 6 prvků : C1 C2 C3 C4 C5 C6 Obr. 3: Jednoduchá počítačová sít příklad Komponenty C 1, C 2, C 3 mohou představovat terminály, C 4 počítač - centrální jednotku a komponenty C 5 a C 6 lokální a centrální tiskárny. V této síti jsou komponenty C 1, C 2, C 3 řazeny paralelně a také komponenty C 5, C 6 jsou řazeny paralelně a bloky C 1, C 2, C 3, C 4 a C 5, C 6 jsou řazeny sériově. Proto strukturní funkce systému bude součinem strukturních funkcí jednotlivých bloků v sérii. Lze ji vyjádřit ve tvaru φ(x 1, X 2,..., X n ) = [1 (1 X 1 )(1 X 2 )(1 X 3 )][X 4 ][1 (1 X 5 )(1 X 6 )] 2
3 nebo ekvivalentně ve tvaru φ(x 1, X 2,..., X n ) = min{max{x 1, X 2 X 3 }, X 4, max{x 5, X 6 }} Komponentu C i systému řádu n nazveme irelevantní komponentou, když pro všechny stavy ostatních komponent systému (tedy když pro všechny hodnoty indikátorů X j, j i) platí φ(x 1, X 2,..., X i 1, 0, X i+1,..., X n ) = φ(x 1, X 2,..., X i 1, 1, X i+1,..., X n ) Komponentu nazýváme relevantní, když není irelevantní. Tedy komponenta, jejíž funkčnost není důležitá pro funkčnost systému, je irelevantní. Budeme se zajímat o systém, ve kterém nahrazení libovolné nefunkční komponenty funkční komponentou nezhorší fungování systému. V takovém systému platí φ(x 1, X 2,..., X i 1, 0, X i+1,..., X n ) φ(x 1, X 2,..., X i 1, 1, X i+1,..., X n ). Tedy strukturní funkce je neklesající funkcí v argumentu X i. Když je strukturní funkce systému neklesající v každém argumentu X i při pevně daných libovolných hodnotách ostatních argumentů pro i = 1, 2,..., n, nazýváme strukturní funkci neklesající funkcí. Stav celého systému můžeme popsat pomocí stavu jednotlivých komponent, tedy ve vektorovém označení pomocí vektoru indikátor; všech komponent X = (X 1, X 2,..., X n ). Dále použijeme pro dva stavy celého systému X = (X 1, X 2,..., X n ) a Y = (Y 1, Y 2,..., Y n ) označení X Y když X i Y i, přičemž aspoň pro jedno i {1, 2,..., n} platí ostrá nerovnost. Potom pro neklesající strukturní funkci φ platí X X φ(x) φ(y) Definice. Systém nazýváme koherentním, když jeho strukturní funkce je neklesající a každá jeho komponenta je relevantní. Věta. Pro strukturní funkci φ koherentního systému o n komponentách ve stavu X = (X 1, X 2,..., X n ) platí X i φ(x) 1 (1 X i ). Uvedenou větu lze snadno zapsat pomocí strukturní funkce φ serie (X) sériového systému a pomocí strukturní funkce φ paralell (X) paralelního systému φ serie (X) φ(x) φ paralell (X) Pravděpodobnost, že daná komponenta uvažovaného systému je funkční (nebo jednodušeji spolehlivost této komponenty) lze jednoduše zavést pomocí indikátoru X i, který reprezentuje stav této komponenty. Indikátor X i považujeme za náhodnou veličinu, která má alternativní rozdělení A(θ i ). Tedy X i je rovna 1 s pravděpodobností θ i a rovna 0 s pravděpodobností 1 θ i. Pak definujeme spolehlivost komponenty C i jako střední hodnotu E(X i ) = θ i, předpokládáme, že platí 0 θ i 1. Jinými slovy, je spolehlivost komponenty C i rovna pravděpodobnosti, že tato komponenta je funkční. Dále, když vyjdeme z vektoru indikátorů všech komponent X = (X 1, X 2,..., X n ) a označíme θ = (θ 1, θ 2,..., θ n ) vektor spolehlivostí jednotlivých komponent, můžeme zavést spolehlivost systému pomocí spolehlivostí jednotlivých komponent θ = (θ 1, θ 2,..., θ n ) jako funkci h(θ) = E([φ(X)]). 3
4 Budeme říkat, že komponenty pracují nezávisle, když jejich indikátory X 1, X 2,..., X n jsou vzájemně nezávislé náhodné veličiny. Tato definice znamená, že skutečnost, že komponenta C j je či není funkční neovlivní funkčnost kterékoliv jiné komponenty C i. Věta. Spolehlivost h systému s nezávislými komponentami a s hodnotami indikátorů X 1 = x 1, X 2 = = x 2,..., X n = x n a se strukturní funkcí φ je rovna h(θ) = Σ x Π n[θ x i i (1 θ i ) 1 x i ], kde se sčítá přes všechny možné hodnoty x = (x 1, x 2,..., x n ) vektoru indikátorů X = (X 1, X 2,..., X n ). Uvažujme sériový systém s n nezávislými komponentami a vektorem spolehlivosti komponent θ = (θ 1, θ 2,..., θ n ). Pak jeho spolehlivost je h(θ) = h(θ 1, θ 2,..., θ n ) = Π n θ i. Uvažujme paralelní systém s n nezávislými komponentami a vektorem spolehlivosti komponent θ = (θ 1, θ 2,..., θ n ). Pak jeho spolehlivost je h(θ) = h(θ 1, θ 2,..., θ n ) = 1 Π n (1 θ i ). Příklad. Užitím předchozích výsledků lze snadno nahlédnout, že spolehlivost systému z obrázku 3 lze za předpokladu nezávislosti komponent zapsat ve tvaru h(θ) = [1 (1 θ 1 )(1 θ 2 )(1 θ 3 )][θ 4 ][1 (1 θ 5 )(1 θ 6 )]. Uvažujme systém n komponent a předpokládejme, že životnost (doba do poruchy) komponenty C i je náhodná veličina Y i, přičemž náhodné veličiny Y 1, Y 2,..., Y n jsou nezávislé. Pak spolehlivost komponenty C i v libovolném čase y můžeme definovat jako S i (y) = P (Y i > y) pro i = 1, 2..., n. Tedy identifikátor X i komponenty C i závisí na čase a platí, že X i = 1 právě když Y i > y, jinak je X i = 0. Spolehlivost S(y) systému s n komponentami v čase y pak definujeme jako pravděpodobnost, že tento systém je v čase y funkční. Pro sériový systém s n nezávislými komponentami platí S(y) = S 1 (y)s 2 (y)... S n (y) a pro systém s n paralelně spojenými komponentami platí S(y) = 1 [1 S 1 (y)][1 S 2 (y)]... [1 S n (y)]. Příklad. Předpokládejme, že v systému s nezávislými komponentami mají doby do poruchy Y i exponenciální rozdělení, tedy spolehlivost komponenty C i v čase y je pro i = 1, 2..., n dána vztahem S i (y) = P (Y i > y) = e y λ pro y > 0, kde parametr λ > 0. Pak spolehlivost sériového systému v čase y je rovna S(y) = P (min{y 1, Y 2,..., Y n } y) = S 1 (y)s 2 (y)... S n (y) = e n y λ. a pro spolehlivost paralelního systému v čase y dostaneme S(y) = P (max{y 1, Y 2,..., Y n } y) = = 1 P (max{y 1, Y 2,..., Y n } y) = 1 (1 e y λ ) n. 4
5 Příklady k procvičení 1. Ukažte, že indikátory X 1, X 2,..., X n pro systém o n komponentách splňují vztahy: max{x 1, X 2,..., X n } = min{x 1, X 2,..., X n } = 1 X i (1 X i ) 2. Uvažujme identické komponenty C 1, C 2, C 3, C 4, C 5 které pracují nezávisle. Dále konstruujeme systémy K 1 jako systém, kdy C 1 a C 2 pracují v sérii; K 2 jako systém, kdy C 3 a C 4 pracují paralelně; K 3 systém sestávající z C 5 ; K systém sestávající z K 1, K 2 a K 3, které pracují v sérii. Nakreslete diagram systému K, určete strukturní funkci systému K a dále stanovte spolehlivost systémů K 1, K 2, K 3 a K, když θ i je pravděpodobnost, že komponenta C i je funkční. 3. Předpokládejme, že dvě elektronické komponenty mají životnosti Y 1 a Y 2, přičemž Y 1 a Y 2, jsou nezávislé náhodné veličiny a Y i má exponenciální rozdělení s parametrem λ i, i = 1, 2. Stanovte pravděpodobnost P (Y 1 > Y 2 ). 4. Elektronická jednotka sestává ze dvou komponent C 1 a C 2 pracujících paralelně. Předpokládejme, že Y 1 značí životnost C 1 a Y 2 značí životnost C 2 Předpokládejme, že Y 1 a Y 2 pracují nezávisle. a) Když Y 1 a Y 2 mají stejné exponenciální rozdělení s parametrem λ, stanovte hustotu životnosti elektronické jednotky. b) Když Y 1 má exponenciální rozdělení s parametrem λ 1, a Y 2 má exponenciální rozdělení s parametrem λ 1 2, stanovte hustotu životnosti elektronické jednotky. c) Když Y 1 a Y 2 mají stejné exponenciální rozdělení s parametrem λ, a dvě takové jednotky pracují sériově, stanovte hustotu životnosti výsledného systému těchto dvou elektronických jednotek. c) jak by bylo možné zobecnit předchozí výsledky na n komponent? 5
Markovské metody pro modelování pravděpodobnosti
Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou
Lineární algebra. Soustavy lineárních rovnic
Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.
Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.
Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.
Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty
cv3.tex. Vzorec pro úplnou pravděpodobnost
3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
2011 (datový soubor life expectancy CR.txt). Budeme predikovat vývoj očekávané doby dožití pomocí
Příklady užití časových řad k predikci rizikových jevů 1 Očekávaná doba dožití v ČR Máme k dispozici časovou řadu udávající očekávanou dobu dožití v České republice od roku 1960 do roku 2011 (datový soubor
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.
Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Testování a spolehlivost. 4. Laboratoř Spolehlivostní modely 1
Testování a spolehlivost ZS 2011/2012 4. Laboratoř Spolehlivostní modely 1 Martin Daňhel Katedra číslicového návrhu Fakulta informačních technologí ČVUT v Praze Příprava studijního programu Informatika
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
3 Lineární kombinace vektorů. Lineární závislost a nezávislost
3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární
Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně
7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností
6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
4. Aplikace matematiky v ekonomii
4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =
7 Ortogonální a ortonormální vektory
7 Ortogonální a ortonormální vektory Ze vztahu (5) pro výpočet odchylky dvou vektorů vyplývá, že nenulové vektory u, v jsou na sebe kolmé právě tehdy, když u v =0. Tato skutečnost nám poslouží k zavedení
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
Pravděpodobnost a její vlastnosti
Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor014 Vypracoval(a),
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.
Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají
2 Hlavní charakteristiky v analýze přežití
2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu
VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.
Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně
Operační výzkum. Přiřazovací problém.
Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
A B = A A B P A B C = P A P B P C = =
9..8 Nezávislé jevy II Předpoklady: 907 Jsou-li nezávislé jevy a. Jsou nezávislé i jevy a? Z obrázku je vidět, že platí: ( ) ( ) = ( ( ) ) ( ( ) ) = ( ) ( ) P P P P P = použijeme nezávislost jevů, : P
CVIČENÍ 4 Doc.Ing.Kateřina Hyniová, CSc. Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze 4.
CVIČENÍ POZNÁMKY. CVIČENÍ. Vazby mezi systémy. Bloková schémata.vazby mezi systémy a) paralelní vazba b) sériová vazba c) zpětná (antiparalelní) vazba. Vnější popis složitých systémů a) metoda postupného
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho
Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost
Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením
13. cvičení z PSI ledna 2017
cvičení z PSI - 7 ledna 07 Asymptotické pravděpodobnosti stavů Najděte asymptotické pravděpodobnosti stavů Markovova řetězce s maticí přechodu / / / 0 P / / 0 / 0 0 0 0 0 0 jestliže počáteční stav je Řešení:
Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Funkce, elementární funkce.
Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Základní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Soustavy rovnic diskuse řešitelnosti
Tématická oblast Datum vytvoření 22. 8. 2012 Ročník Stručný obsah Způsob využití Autor Kód Matematika - Rovnice a slovní úlohy 4. ročník osmiletého gymnázia Řešení soustav dvou rovnic o dvou neznámých
3. Podmíněná pravděpodobnost a Bayesův vzorec
3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka
Bodové a intervalové odhady parametrů v regresním modelu
Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
VELIKOST VEKTORU, POČETNÍ OPERACE S VEKTORY
VELIKOST VEKTORU, POČETNÍ OPERACE S VEKTORY Vektoru můžeme přisoudit velikost. S vektory také můžeme provádět početní operace, které jsme zvyklí provádět s čísly, tzn. že je možné je sčítat, odčítat a
10. N á h o d n ý v e k t o r
10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět
METRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?
Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
Matematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Lineární algebra : Lineární (ne)závislost
Lineární algebra : Lineární (ne)závislost (4. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Kapitola 4: Extrémy funkcí dvou proměnných 1/5
Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
1 Soustavy lineárních rovnic
1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem
Podmíněná pravděpodobnost, nezávislost
Podmíněná pravděpodobnost, nezávislost Úloha 1: Do třídy 1.A chodí 10 chlapců a 20 dívek, z toho jsou 3 chlapci se jménem Jakub a 2 dívky se jménem Katka. Martina tvrdí, že ráno potkala někoho ze třídy
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.
5. Náhodná veličina Poznámka: Pro popis náhodného pokusu jsme zavedli pojem jevového pole S jako množiny všech možných výsledků a pravděpodobnost náhodných jevů P jako míru výskytů jednotlivých výsledků.
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální
Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.
6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
Řešené příklady z pravděpodobnosti:
Řešené příklady z pravděpodobnosti: 1. Honza se ze šedesáti maturitních otázek 10 nenaučil. Při zkoušce si losuje dvě otázky. a. Určete pravděpodobnost jevu A, že si vylosuje pouze otázky, které se naučil.
Přednáška 3: Limita a spojitost
3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST
SOFTWARE STAT1 A R. Literatura 4. kontrolní skupině (viz obr. 4). Proto budeme testovat shodu středních hodnot µ 1 = µ 2 proti alternativní
ŘEŠENÍ PRAKTICKÝCH ÚLOH UŽITÍM SOFTWARE STAT1 A R Obsah 1 Užití software STAT1 1 2 Užití software R 3 Literatura 4 Příklady k procvičení 6 1 Užití software STAT1 Praktické užití aplikace STAT1 si ukažme
Úlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
12. Křivkové integrály
12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
19 Hilbertovy prostory
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem
NMAI059 Pravděpodobnost a statistika
NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )
Operační výzkum. Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu.
Operační výzkum Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška
Náhodný vektor a jeho charakteristiky
Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich