Statistická rozdělení
|
|
- Štefan Kadlec
- před 8 lety
- Počet zobrazení:
Transkript
1 Úvod Statstcá rozděleí Václav Adamec Náhodá proměá: matematcá velča, jejíž hodot osclují. Produt áhodého procesu lze charaterzovat fucí Hodot proměé v oboru přípustých hodot Rozděleí defují fučí vztah mez hodotam áhodé proměé a četostm jejch výstu Spojtá rozděleí: eoečý počet možých hodot, fuce pravděpodobostí hustot (p.d.f., f( Nespojtá rozděleí: oečý počet možých hodot, pravděpodobostí fuce (p.m.f., p( Kumulatví dstrbučí fuce (c.d.f., F( Tp proměých Fuce popsující rozděleí Náhodé proměé: umercé (vattatví omálí (valtatví: barva, pohlaví Numercé: ardálí (měřtelé ordálí (pořadové: tříd jaost, stup. lasface Kardálí: spojté (otuálí: hmotost, masá užtovost espojté (dsrétí: počt mláďat, defetů Pravděpodobostí fuce (p.m.f., p( vjadřuje pravděpost výstu dsrétí hodot v oboru možých hodot p( = p( Y = = F( F( Fuce pravděpodobostí hustot (p.d.f., f( spojté proměé df( / f ( = = F ( d Kumulatví dstrbučí fuce (c.d.f., F( vjadřuje pravděpod. výstu hodot meší ebo rové Y. F ( = P( Y = p( espojtý případ Y Y f F ( = P( Y = ( d spojtý případ p( =. 0
2 Středí hodota (Expectato Varace Expectato (E defujeme jao prví obecý momet. Pro spojtou áhodou proměou: Pro espojtou áhodou proměou: M = P ( + M = f ( d Y = + E ( Y = f ( d = P( Varac (Var defujeme jao druhý cetrálí momet Pro spojtou proměou: + [ ] Var ( = M = M f ( d Pro espojtou proměou: Var( = M = [ M ] P( Obecě platí: Var( Y = = ( Přílad Pravdla pro expectato Je dáo rozděleí pravděpodobostí dsrétí proměé Y: Jaá je středí hodota a varace? p( F( 0 0,5 0,5 0,5 0,40 0,5 0,65 3 0,35,00 = 0 * 0,5 + * 0,5 + * 0,5 +3 * 0,35 =,8 Var( = (0-,8 * 0,5 + (-,8 *0,5 + (-,8 *0,5 + (3-,8 * 0,35 = 0 + 0,6 + 0,0 + 0,504 =,6 E ( cy = c Y = cµ Y ± c = Y ± c = µ ± c E ( Y± X = Y ± X =µ ± µ g( Y = E ( c = c E ( = µ Y E ( µ µ µ + = + = = + g( P( E ( g ( Y = g ( f ( d x Y dsrétí Y spojtá
3 Pravdla pro varac Beroullho proměá Najděte Var Var Var( c = 0 Cov( Y, c = 0 ( cy = c Var ( Y = c σ ( Y ± c = Var( Y + Var( c ± cov( Y, c = σ + 0 ± 0 = σ Var( Y ± X = Var( Y + Var( X ± cov( Y, X = σ + σ ± σ = E Var = ( = σ x Var ( = Var = x Bárí espojtá proměá: pacet přežl ( = pacet epřežl ( = 0 Y ~ Beroull ( π de π je parametr rozděleí (pravděpodobost přežtí, = a - π je pravděpodobost epřežtí = 0 Pravděpodobostí f-ce: Jaé jsou hodot F(=0 a F(=? P = π Var( = π ( π ( = π ( π Bomcé rozděleí Beroullho expermet opaovaý - rát Y ~ B (, π Beroullho opaováí jsou vzájemě ezávslá Parametr π je stálý (Beroullho pous jsou detcé, s vraceím Pravděpodobostí fuce: P( = ( π ( π ; 0; > 0! ( =!(! E ( = π Var( = π ( π Bomcé rozděleí B( = 6, π = 0,5 c p( F( 0 0,0565 0, , , , , ,3500 0, , , , , ,0565, Pravděpodobost ejvíce sů, ejméě sů? Pravděpodobost ejvíce dcer?? Var(?
4 Bomcá rozděleí pro růzá π Multomcé rozděleí Bomal p.m.f p=0.5 p=0.5 p=0.85 Rozšířeí bomcého opaováí a více (> možých výstupů Y, Y,..., Y ~ Multom(, π,..., π Opaováí jsou opět ezávslá Parametr π,..., π jsou stálé Pravděpodobostí fuce:! P(,,..., = π ;! = = E ( = p Var ( = π 0 Přílad: multomcé rozděleí Possoovo rozděleí Pravděpodobost jedáča π = 0,6; dvojčat π = 0,3; trojčat π 3 = 0, Jaá je pravděpodobost, že ve vrzích 3 mate bude 7x jedáče, 4x dvojče a x trojče? P( =7, =4, 3 = π = (3! /(7!4!! * 0,6 7 * 0,3 4 * 0, = 0,0584 Jaá je pravděpodobost, že ve vrzích 3 mate ebude a jedou vrh s trojčat? Výslede = 0,54 Proměá: Počt bez přrozeého jmeovatele Bomcé případ s a s malým π Dstrbučí parametr λ = π z Bomcého rozděleí Parametr λ je stálý Pravděpodobostí fuce: λ e λ P( = ; 0! Y ~ Posso ( λ = Var ( = λ Přílad: Na část chromozomu o daé délce se vstují reombace v průměru (=λ,05x za meoz. Jaé jsou pravděpodobost výstu = 0,,,...,9 crossoverů a úseu?
5 Possoovo rozděleí Posso(λ =,05 p( F( 0 0, , , ,7737 0,9903 0, , , ,0773 0, ,0037 0, , , , , ,00003, ,00000,00000 Přesvědčete se, že = Var( = λ Possoovo rozděleí Posso p.m.f. a c.d.f Gaussovo rozděleí Gaussovo rozděleí Spojtá proměá Y geerovaá polfatorálí sumací Určujících fatorů je moho a jsou ezávslé Možé hodot Y v oboru reálých čísel od - do + Fuce pravděpodobostí hustot (p.d.f.: f Y ~ N ( µ, σ ( µ σ ( = e πσ Hodota f-ce pravděpodobostí hustot f( eí pravděpodobost! P( = Y = 0! E µ ( = Var ( = σ Atrbut: Normálích rozděleí je eoečě moho Parametr µ a σ defují aždé ormálí rozděleí Rozděleí je smetrcé podle os procházející průměrem Loačí mír průměr, medá a modus jsou totožé Plocha pod Gaussovou řvou odpovídá P =,0 Pravdlo 34 4 se týá pravděpodobost výstu hodot (% mez µ a σ, σ a σ, σ a +
6 Stadardzovaé Gaussovo rozděleí Proměá Z ~IID, N(0, Norm ovaa Gaussova rva Hodot z aždého ormálího rozděleí lze stadardzovat Stadardí ormálí proměá z: µ z = ~ N ( µ = 0, z σ z = σ P.d.f. Std. ormálího rozděleí se začí φ(z φ ( z = e π z C.d.f. Std. ormálího rozděleí se začí Φ(z Z f Φ( z = P( z Z = ( z dz % 4% 34% 34% 4% % Z Kalulace pravděpodobostí Kalulace pravděpodobostí Řěšíme tegrálem P Z ( z µ σ ( z Z = e πσ dz Levostraá pravdepodobost z =,645 P b ( z µ σ ( a z b = e a πσ Platí že: φ(z = φ(-z (důslede souměrost Φ(-z = - Φ(z z -p = - z p (vplývá z předchozího výrazu dz P ( Z z = 0.95 z = Z
7 Kumulatví dstrbučí fuce F(z Pravděpodobostí výraz P = 0.95 Kumulatv dstrbuc fuce Prcp: Kvatl z lze převést a levostraou pravděpost P a obráceě př vužtí souměrost rozděleí Z ~ N(0, Pravdepodobost P = 0.50 P = 0.6 z = -.0 z = z = Z Kol % dojc se achází v populac s průměrem 4500 l a směrodatou odchlou 650 l mez 3800 l až 5000 l? z = ( / 650 = -,0769 z = ( / 650 = 0, P( -,0769 ( - P(0,7693 0,40758 ( - 0,779 0, ,0878 = 0,638364, ted 64 % Jaá je pravděpodobost výstu dojce s užtovostí ad 6000 l? z = ( / 650 =, P(,30769 = - 0,98949 = 0,00508, ted,05 % Pravděpodobostí výraz Studetovo t - rozděleí Jaá je pravděpodobost výstu dojce s užtovostí pod 3300 l? z = ( / 650 = -,8465 P(-,8465 = - P(,8465 = 0,03435, ted 3, % 5 % ejlepších dojc budou vužt v ET. Staovte selečí lmt užtovost. z(0,95 =, ,64485 * 650 = 5569,5 l, ted 5570 l 5 % ejhorších dojc ebudou zapoje do reproduce stáda. Staovte lmt užtovost pro vřazeí. z(0,5 = -, ,03643 * 650 = 386,3, ted 3830 l Gossettovo t - rozděleí Spojté rozděleí dervátů výběrových velč mající vztah výběrovému rozptlu s lmtovaým stup volost ν Možé hodot t v oboru reálých čísel od - do + Rozděleí je umodálí a souměré olem ul Platí, že t p;ν = t p;ν Tvar p.d.f. defová parametrem ν (stupě volost Vztah proměé Z dá výrazem z p t = p; ν = V pratcých případech, je-l přblžě ν > 0
8 Studetovo t - rozděleí Gaussova a Gossettova rva Rozděleí Chí-vadrát (Pearsoovo Z - rva t, - rva t,4 - rva t Chí - vadrát χ je spojté rozděleí (p.d.f. ezáporé velč Součet čtverců stadardích ormálích odchle má Chí-vadrát rozděleí s ν = stup volost z = z + z z ~ χ = ( = ( s z = = ~ χ ν = = σ σ Parametr rozděleí: stupě volost ν dá počtem ezávslých odchle od průměru Počet stupňů volost ν určuje tvar řv p.d.f. Užtečé př testováí rozptlu a jeho dervátů (sum čtverců E ( χ ν = ν Var( χ ν = ν Rozděleí Chí-vadrát (Pearsoovo Fsherovo - Sedecorovo rozděleí Ch-vadrát desta a stupe volost χ χ 4 χ 6 χ 0 Je spojté rozděleí pro podíl dvou ezávslých ezáporých velč (rozptlů, součtu čtverců U aždé z velč se předpoládá Chí-vadrát rozděleí χ ν a χ ν Podíl těchto velč má F rozděleí se stup volost ν (proměá v čtatel a ν (proměá ve jmeovatel F-rozděleí je vžd asmetrcé Platí, že: F p; ν ; ν = F F = t p; ν ; ν p ; ; ν p / ; ν F 0.95,3,7 = / F 5,7,3 = / 0053 = F 0.95,, 4 = t 0.975,4 = =
9 F-rozděleí F - rozdele
PRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
VíceDoc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
VíceOdhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
VíceOdhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
VícePřednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VíceSP2 Korelační analýza. Korelační analýza. Libor Žák
Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VíceDigitální učební materiál
Dgtálí učebí materál Číslo projetu CZ..07/.5.00/34.080 Název projetu Zvaltěí výuy prostředctvím ICT Číslo a ázev šabloy líčové atvty III/ Iovace a zvaltěí výuy prostředctvím ICT Příjemce podpory Gymázum,
VícePRAVDĚPODOBNOST A STATISTIKA
SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VíceRegrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
VícePRAVDĚPODOBNOST A STATISTIKA
SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a
VícePro orientaci v této problematice jsme se seznámili s nkolika novými pojmy:
Ig. Marta Ltschmaová Statsta I., cveí 8 LIMITNÍ VTY Lmtí vty jsou tvrzeí, terá jsou dležtá pro pops pravdpodobostích model v pípad rostoucího potu áhodých pous.. ro oretac v této problematce jsme se sezáml
VícePRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady
SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc
VícePRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
VíceMendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu
Víceprocesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze
limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,
VíceSpolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
VíceGenerování dvojrozměrných rozdělení pomocí copulí
Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta
VíceIntervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
VíceSoustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.
Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:
VíceIntervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr
VíceS1P Popisná statistika. Popisná statistika. Libor Žák
SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk
VíceTestování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
Více3. Charakteristiky a parametry náhodných veličin
3. Charatersty a parametry áhodýh velč Úolem této aptoly je zavést pomoý aparát, terým budeme dále popsovat pomoí jedoduhýh prostředů áhodé velčy. Taovýmto aparátem jsou tzv. parametry ebo haratersty áhodé
VíceV. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
VíceLineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
VíceTesty statistických hypotéz
Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč
Více1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která
Více1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru
Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v
VícePRAVDĚPODOBNOST A STATISTIKA
SP Náhodý vektor PRAVĚPOOBNOS A SAISIKA Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor přpomeutí pomů z SP V prví část kurzu SP s rozšíříme pomy o áhodém vektoru z SP: Nechť e áhodý vektor eho složky:
VíceMezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
Více3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
VíceTest dobré shody se používá nejčastěji pro ověřování těchto hypotéz:
Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám
VíceZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
Vícejako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
VíceOdhady a testy hypotéz o regresních přímkách
Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží
VícePRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2
SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých
VíceSP NV Normalita-vlastnosti
SP - - NV Normala-vlasos Přpomeuí vlasosí Normálího rozděleí Charakerscká fukce Lévyho-Ldebergova věa - cerálí lmí věa -rozměré ormálí rozděleí -rozměré ormálí rozděleí Přpomeuí vlasosí Normálího rozděleí
Více14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
Více4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou
VícePopisná statistika. Zdeněk Janák 9. prosince 2007
Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46
Více1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků
1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,
Více1. Čím se zabývá 4PP? zabývá se určováním deformace a porušováním celistvých těles v závislosti na vnějším zatížení
. Čím se zabývá 4PP? zabývá se určováím deformace a porušováím celstvých těles v závslost a vějším zatížeí. Defce obecého apětí + apjatost v bodě tělesa -apětí - je to apětí v určtém bodě určtého tělesa.
VíceNárodní informační středisko pro podporu kvality
Národí iformačí střediso pro podporu vality Problémy s uazateli způsobilosti a výoosti v praxi Dr.Jiří Michále, CSc. Ústav teorie iformace a automatizace AVČR Uazatel způsobilosti C p Předpolady: ormálí
VíceNejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A
Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota
VíceKatedra pravděpodobnosti a matematické statistiky. χ 2 test nezávislosti
Katedra pravděpodobosti a matematické statistiky Oborový semiář χ 2 test ezávislosti Petr Míchal 27 listopadu 2017 Situace 2 X {1,, I}, Y {1,, J} Jsou X a Y ezávislé? K dispozici máme áhodý vyběr (X 1,
Vícea další charakteristikou je četnost výběrového souboru n.
Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu
VíceTento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
VíceNEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
Víceodhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
VícePříklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka
Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní
VícePravděpodobnostní model doby setrvání ministra školství ve funkci
Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí
Více8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy
cvičící 8. cvičeí 4ST1 Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST1 Neparametricé testy Neparametricétesty využíváme,
VíceVYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA VZORCE PRO 4ST201
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULTA INFORMATIKY A TATITIKY Kaedra a a ravděodobo TATITIKA VZORCE RO 4T verze.3 oledí aualzace: 4.9.9 KT 9 oá aa,,..., ɶ < z < + < z < + +,5 z +, 5 z H H H G... G... R
Více7 LIMITNÍ VTY. as ke studiu kapitoly: 70 minut. Cíl:
7 LIMITNÍ VTY as e studu aptoly: 70 mut Cíl: o prostudováí tohoto odstavce budete umt formulovat a používat lmtí vty aproxmovat já rozdleí rozdleím ormálím - 90 - Výlad: V této aptole adefujeme tvrzeí
VíceTestujeme hypotézu: proti alternativě. Jednoduché třídění:
Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché
VíceÚvod do teorie měření
Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých
VíceStatistika pro metrologii
Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých
VíceTESTOVÁNÍ STATISTICKÝCH HYPOTÉZ
TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího
VícePřednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs.
Předáška V. Úvod do teore odhadu Pojmy a prcpy teore odhadu Nestraé odhady Metoda mamálí věrohodost Průměr vs. medá Opakováí výběrová dstrbučí fukce Sestrojíme výběrovou dstrbučí fukc pro výšku a váhu
VíceCvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý
VíceVYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a pravděpodobos AIIKA VZORCE RO 4 a 4 verze 8 posledí aualzace:. 9. 8 K 8 opsá sasa p p =,,...,... () () ( ),, z, ( z ) ( z ) ( z), z
VícePřednáška č. 10 Analýza rozptylu při jednoduchém třídění
Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě
Více2. TEORIE PRAVDĚPODOBNOSTI
. TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
Více8. cvičení 4ST201-řešení
cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,
VíceUSTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH
USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou
Více8. Odhady parametrů rozdělení pravděpodobnosti
Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z
Vícen-rozměrné normální rozdělení pravděpodobnosti
-rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici
Více4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností
4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.
VíceZávislost slovních znaků
Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví
VícePřednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti
Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou
VíceIntervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním
Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí
Více11. Popisná statistika
. Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př
VíceSprávnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
Více6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
Více2. Vícekriteriální a cílové programování
2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě
Více8.1.2 Vzorec pro n-tý člen
8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým
VíceAnalýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály
Aalýza a zpracováí sigálů 3. Číselé řady, jejich vlastosti a základí operace, áhodé sigály Diskrétí sigál fukce ezávislé proměé.!!! Pozor!!!! : sigáleí defiová mezi dvěma ásledujícími vzorky ( a eí tam
VíceZáklady teorie pravděpodobnosti a teorie grafů
Vysoá šola báňsá Techcá uverzta Ostrava Faulta strojí Zálady teore pravděpodobost a teore grafů Autoř : Doc. Ig. Mluše Vítečová, CSc., Bc. řdal etr, Ig. Koudela Tomáš Ostrava 006 Obsah Obsah SEZNAM OUŽITÉHO
Více2. Náhodná veličina. je konečná nebo spočetná množina;
. Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité
Více1. Základy měření neelektrických veličin
. Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost
Více12. Neparametrické hypotézy
. Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,
VíceNáhodné jevy, jevové pole, pravděpodobnost
S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem
VíceStatistické charakteristiky (míry)
Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty
VíceMOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ
PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION 0/008 MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ STATISTICAL ASSESSMENT
Více