KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)
|
|
- Radim Pavlík
- před 9 lety
- Počet zobrazení:
Transkript
1 KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl)
2 Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry) Třífázové trice, vzduch (póry), vod (v pórech) Čtyřfázové trice, vzduch, volná vod, vázná vod Kždá fáze á iné vlstnosti e veli složité provádět počítčové siulce v heterogenní systéu. Proto se provádí vhodná náhrd heterogenního systéu systée hoogenní vlstnosti ednotlivých fází se nhrdí tzv. efektivní vlstností teriálu
3 Vícestupňová hoogenizce I n stvební konstrukce e ožné pohlížet ko n vícefázové soustvy. Npř. cihelné zdivo fáze, ceentová lt fáze 2 Kenné zdivo (opuk) fáze, vápenná lt fáze 2 V tkové přípdě e ožné provést hoogenizci v několik krocích. Neprve ednotlivé fáze. složk trice, póry, vod v cihelné zdivu 2. složk trice, póry vod v ceentové ltě Stnoví se eich efektivní vlstnost V dlší kroku e ožné uvžovt zhoogenizovnou dvoufázovou sěs složenou z cihelného zdiv lty. Provede se finální hoogenizce těchto dvou složek.
4 Jké vlstnosti nás zíí Z hledisk stvební prxe sou to zeén: Dielektrické vlstnosti reltivní peritivit r [-] při volbě vhodného odelu e ožné připrvit klibrční křivky pro etodu TDR přepočítt něřenou reltivní peritivitu n obsh vlhkosti Tepelné vlstnosti součinitel tepelné vodivosti λ [W - K - ] e ožné získt předstvu o tepelných vlstnostech vícefázového teriálu n zákldě znlosti vlstností ednotlivých koponent.
5 Teoretické eze - Wienerovy eze - odvozeny pro elektrické vlstnosti peritivit, konduktivit prlelní iniu sériová xiu - Hshin-Shtricknovy eze odvozeny pro gnetické vlstnosti, zužuí Wienerovy eze ) Mxiální efektivní elektrická vlstnost kopozitu při působení elektrického pole prlelně k vrstvá teriálu Wienerův sériový odel b) Miniální efektivní vlstnost kopozitu při působení elektrického pole působícího kolo k vrstvá teriálu Wienerův prlelní odel.
6 Teoretické eze - Dvoufázové soustvy trice, vzduch - Wienerův sériový odel f ( f ) - Wienerův prlelní odel f - Třífázové soustvy trice, vzduch, vod - Wienerův sériový odel - Wienerův prlelní odel f f2 f3 ( f ) f f22 f33 2 3
7 Teoretické eze Ke zpřesnění Wienerových ezí přispěli Hshin Shtrikn (963) ezei odvozenýi pro sttické gnetické pole. Díky podobnosti elektrosttických sttických gnetických úloh byl eich pltnost zobecněn i pro dielektrické vlstnosti teriálů pozděi i pro vlstnosti tepelné. Zobecnění pro n fází při < 2 < < n f f 3, f f 3,2 2 3,x n i i n n i i n n f 2 3 2,in n i i i i f
8 Teoretické eze
9 Dvě hlvní skupiny sěšovcích prvidel Mxwell-Grnettův odel x Bruggenův odel Mxwell pohlížel n heterogenní sěs ko n ednu spoitou fázi (trice, host, trix), do které sou přidány částice kulového tvru tkzvné inkluze, které se vzáeně nepřekrýví neshlukuí. Mtrice inkluze í rozdílné peritivity, e (v přípdě stvebních teriálů de o reltivní peritivitu trice ) i (v přípdě stvebních teriálů de o reltivní peritivitu vzduchu ). Pro obě fáze e znáé obeové zstoupení inkluzí f (tzv. filling fctor, který e v přípdě stvebního teriálu rovný obeovéu zstoupení vzduchu f ). Mtrice f vyplňue zbytek obeu pltí f f. 3 f 2 2 2
10 Dvě hlvní skupiny sěšovcích prvidel Mxwell-Grnettův odel x Bruggenův odel neboli EMA (Effective Mediu Approxition) EMM (Effective Mediu Model) Obrácený pohled n věc Všechny fáze (trice, inkluze) sou rovnocenné Záklde e efektivní hodnot vlstnosti heterogenního teriálu. Jk trice, tk inkluze způsobuí odchylku od této efektivní hodnoty n f 2 0 n rovnocenných fází
11 Dlší vylepšení odelů - ísto kulových inkluzí se uvžuí inkluze ve tvru elipsoidů - uvžue se sěs inkluzí různých vlstností - uvžuí se vícevrstvé inkluze Protože sou odely většinou odvozené pro elektrické vlstnosti (následně zobecněné pro dlší vlstnosti), tvr inkluze e ožné popst depolrizční fktore.
12 Dlší vylepšení odelů Depolrizční fktor e vektor v 3D prostoru popsný třei složki V přípdě, že e elipsoid uístěn ve vněší hoogenní elektrické poli E e působící prlelně k ose x, působí i vnitřní pole E i prlelně k ose x vzth pltný pro kulové inkluze e ožné zobecnit Ei 3e z A n E 2 e i e A E E i e e e N x ( ) i e kde A e poěr ezi vnitřní E i vněší elektrický pole E e v částicích eliptického tvru. Pro kulové inkluze pltí {N x, N y, N z } {/3; /3; /3} Pro diskové inkluze {N x, N y, N z } {, 0, 0} desk v rovině x Pro ehlové inkluze {N x, N y, N z } {0, /2, /2 } ehl tenký válec
13 Dlší vylepšení odelů Zobecnění Bruggenov prvidl pro různé tvry inkluzí byl vytvořen Polder vn Sntenov prvidl pro kulové inkluze pro ehlové inkluze pro deskové inkluze Obecně K e tzv. tvrový fktor, N i depolrizční fktor ) ( f ) ( f ) ( f ( ) K f z y x x i i N K,, 3
14 Dlší vylepšení odelů Jiný sěre se ubírá dlší skupin sěšovcích prvidel tzv. Lichteneckerův sěšovcí odel - ocninný odel, power rised odel Záklde e Wienerov ez, která e zobecněn poocí ocninného koeficientu - ten istý způsobe vydřue geoetrii uvnitř teriálu resp. ntočení inkluzí v prostoru pro dvě fáze pltí β f β ( f ) β pro tři fáze trice (trix), vod (wter), vzduch (ir) pltí [ ] β β f β w w β ( f ) ( f f ) w Dle koeficientu β sou poenovné ednotlivé odely β 0,5 Birchkův odel, β 0,33 Looyengův odel, β sériová Wienerov ez, β - prlelní Wienerov ez
15 Jk lépe vystihnout geoetrii teriálu? - u předchozích sěšovcích prvidel není sně definovtelný vzth ezi vstupníi pretry geoetrií teriálu. - Existuí dvě reprezentce, které geoetrii teriálů popisuí poocí tzv. distribuční funkce g(l) Efektivní édiu dle Bergn odvozeno pro dvě fáze, nerozšiřitelné pro více fází nevhodné pro stvební teriály. využívné npř. pro odhd vodivosti kopozitů el. nevodivá nekovová trice, elektricky vodivý pokovuící teriál. Stnovení ini vodivého teriálu potřebného k dosttečné výsledné vodivosti kopozitu ušetření nákldů n výrobu Bergnův zápis sledue linii Mxwell Grnettov odelu g( L) f dl 0 L pro izotropní teriály nvíc pltí g( L) dl 0 Lg ( L) f dl 0 3
16 Jk lépe vystihnout geoetrii teriálu? Efektivní édiu dle Gonchrenk Gonchrenko zobecnil rovnici pro výpočet efektivní hodnoty sledovné veličiny n tří- vícefázové systéy. Tento přístup e vhodný pro porézní stvební teriály. n fi i, kde 0 P( L) dl 0 si L s i i P(L) distribuční funkce, oezuící podínk Gonchrenko sledue linii Bruggenov odelu P ( L) dl Do Bergnovy notce g(l) i Gonchrenkovy notce P(L) ohou být z distribuční funkci doszen stená distribuční rozdělení. V obou přípdech popisuí ikrogeoetrii kopozitu, tedy eho ikrostrukturu. 0
17 Jk vytvořit distribuční funkci? - použití tetického prátu bet (g) funkce teoretické nesou zloženy n reálné struktuře teriálů - použití ěřitelné křivky vystihuící vnitřní strukturu teriálů ožností e norlizovná distribuční křivk pórů, tk by vyhovovl oezuící podínce P ( L) dl 0 Distribuční křivk pórů e dobře ěřitelná veličin poocí etody rtuťové nebo plynové porozietrie. Udává závislost obeového zstoupení pórů n dné průěru pórů
18 Klciusilikát reltivní peritivit Obeová hotnost Otevřená pórovitost Součinitel tepelné vodivosti suchého teriálu Fktor difúzního odporu [kg -3 ] [%] [ 3-3 ] [W - K - ] [-] (0,87) 0,063 2,6
19 Klciusilikát reltivní peritivit Složk Popis Reltivní peritivit e r [-] Mtrice Pevná složk teriálu vypočtená dle Ryleighov sěšovcího prvidl 7,98 Vzduch Výplň otevřených pórů v suché teriálu Vod Vod vyplňuící otevřené póry teriálu 80
20 Klciusilikát reltivní peritivit Geoetrie popsná poocí Polder vn Sntenovýi sěšovcíi prvidly
21 Klciusilikát reltivní peritivit Veli dobrá shod něřených hodnot s výsledky získnýi poocí distribuční funkce. Je ožné tuto vlstnost predikovt bez nutnosti ěření.
22 Cihelný střep Heluz Fily 50 součinitel tep. vod. Složk Popis Součinitel tepelné vodivosti l [W - K - ] Mtrice Pevná složk teriálu extrpolce dt [Koronthályová nd Mtiášovský, 2007],58 Vzduch Výplň otevřených pórů v suché teriálu 0,0262 Vod Vod vyplňuící otevřené póry teriálu 0,607
23 Cihelný střep Heluz Fily 50 součinitel tep. vod. Extrpolce něřených dt součinitele tepelné vodivosti v závislosti n pórovitosti. Hodnot pro trici odpovídá pórovitosti 0% - [Koronthályová nd Mtiášovský, 2007]
24 Cihelný střep Heluz Fily 50 součinitel tep. vod. Dobrá korelce s ěřenýi dty vždy en pro určitou oblst obshu vlhkosti
25 Cihelný střep Heluz Fily 50 součinitel tep. vod. Vrint s distribuční funkcí lépe sledue trend závislosti součinitele tepelné vodivosti n obshu vlhkosti
26 Mšenský pískovec součinitel tepelné vodivosti Složk Popis Součinitel tepelné vodivosti l [W - K - ] Mtrice Pevná složk teriálu - křeen (SiO 2 ) ěřeno kolo n osu c - [Lide, 999], snížené v důsledku vlivu ikrokrystlické fáze 5, Vzduch Výplň otevřených pórů v suché teriálu 0,0262 Vod Vod vyplňuící otevřené póry teriálu 0,607
27 Mšenský pískovec součinitel tepelné vodivosti Pro vyšší obsh vlhkosti se něřené hodnoty blíží sériové Wienerově ezi
28 Mšenský pískovec součinitel tepelné vodivosti Veli dobré výsledky odelu s distribuční funkcí. Pro nevyšší vlhkosti všk odel nevykzue dosttečnou přesnost
29 Závěr Použití distribučních funkcí ve forě výstupu z porozietrických ěření se zdá být perspektivní. Využití distribučních funkcí pro predikci vlstností heterogenních teriálů není v součsné době dosttečně prozkouáno to ni v iných vědních disciplínách. Výstupe ohou být křivky uložené v ěřících zřízených. Měřená elektrická veličin ůže být poocí uložené křivky přepočítán n obsh vlhkosti.
Teoretický souhrn k 2. až 4. cvičení
SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko
Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku
Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.
25 Měrný náboj elektronu
5 Měrný náboj elektronu ÚKOL Stnovte ěrný náboj elektronu e výsledek porovnejte s tbulkovou hodnotou. TEORIE Poěr náboje elektronu e hotnosti elektronu nzýváe ěrný náboj elektronu. Jednou z ožných etod
Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Přímka kapitálového trhu
Finanční anageent Příka kapitálového trhu, odel CAPM, systeatické a nesysteatické riziko Příka kapitálového trhu Čí vyšší e sklon křivky, tí vyšší e nechuť investora riskovat. očekávaný výnos Množina všech
(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a
Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:
Potřeba tepla na vytápění budovy
SPJ1 Podkldy pro cvičení Potřeb tepl n vytápění budovy In. Kil Stněk, 10/2010 kil.stnek@sv.cvut.cz 1 Sché výpočtu 1.1 Potřeb tepl n vytápění Potřebu tepl n vytápění budovy nd [kwh] vypočtee bilncování
Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A
Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty
Pístový efekt výtahů ve stavebních objektech
Pístový efekt výthů ve stvebních objektech Ing. Jiří Pokorný, Ph.D. Hsičský záchrnný sbor Morvskoslezského krje úzení odbor Opv Těšínská 39, 746 01 Opv e-il: jiripokorny@ujil.cz Klíčová slov Pístový efekt,
( ) 1.5.2 Mechanická práce II. Předpoklady: 1501
1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením
Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic
Logické rovice J Bborák, Gyáziu Česká Líp, bbork@sez.cz Ev Svobodová, Krlíské gyáziu, evsvobo@gil.co Doiik Tělupil, Gyáziu Bro, dtelupil@gil.co Abstrkt Záklde šeho iiproektu e počítáí poocí Booleovy lgebry
Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:
Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového
APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ
APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává
3. Kvadratické rovnice
CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:
Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:
Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou
ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA
OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický
x + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
Memorandum o spolupráci (dále jen Memorandum )
enteri.s. se sídlem: Jiráskov 169, Zelené Předměstí, 530 02 Prdubice IČO: 275 37 790 zpsná v obchodním rejstříku vedeném Krjským soudem v Hrdci Králové v oddíle B, vložce 2770 zstoupená: [BUDE DOPLNĚNO]
1.1 Numerické integrování
1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme
3. VÝVRTY: ODBĚR, POPIS A ZKOUŠENÍ V TLAKU
3. VÝVRTY: ODBĚR, POPIS A ZKOUŠENÍ V TLAKU Vývrty jsou válcová zkušební tělesa, získaná z konstrukce poocí dobře chlazeného jádrového vrtáku. Vývrty získané jádrový vrtáke jsou pečlivě vyšetřeny, upraveny
ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN
ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN pevné látky jsou chrkterizovány omezeným pohybem zákldních stvebních částic (tomů, iontů, molekul) kolem rovnovážných poloh PEVNÉ LÁTKY krystlické morfní KRYSTAL pevné
ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.
VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální
Zrnitost zemin se zjišťuje zkouškou zrnitosti, která se provádí 2 způsoby:
racovní list č.2: lastnosti zein Zrnitost zein Zrnitost zein se zjišťuje zkouškou zrnitosti, která se provádí 2 způsoby: 1 Zrna většího průěru než 0,06 lze získat prosévání na řadě sít různé velikosti
2.1 - ( ) ( ) (020201) [ ] [ ]
- FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé
Příloha č. 1. Obchodní podmínky. Revize 10 leden 2009
Operátor trhu s elektřinou,.s. 186 00 Prh 8 Příloh č. 1 Smlouvy o zúčtování odchylek Smlouvy o přístupu n orgnizovný krátkodobý trh s elektřinou Smlouvy o přístupu n vyrovnávcí trh s regulční energií Smlouvy
Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním
Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož
3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru
Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém
Téma 5 Rovinný rám. Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám
Stvební mechnik,.ročník bklářského studi AST Tém 5 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit
13. Soustava lineárních rovnic a matice
@9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky
Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám
Stvební mechnik,.ročník bklářského studi AST Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit
Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou
Příkld 1: SPŘAŽEÝ SLOUP (TRUBKA VYPLĚÁ BETOE) ZATÍŽEÝ OSOVOU SILOU Posuďte oboustrnně kloubově uložený sloup délk L 5 m, který je entrik ztížen silou 1400 kn. Sloup tvoří trubk Ø 45x7 z oeli S35 vplněná
URČITÝ INTEGRÁL FUNKCE
URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()
Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.
.4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli
Vzorová řešení čtvrté série úloh
FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník VI, řada stavební
Sorník vědekýh prí Vysoké školy áňské - Tehniké univerzity Ostrv číslo, rok 2006, ročník VI, řd stvení Ivet SKOTNICOVÁ ZMĚNY VE VÝPOČTOVÝCH METODÁCH TEPELNĚ TECHNICKÝCH NOEM Astrt The rtile desries the
KOMPLEXNÍ DVOJBRANY - PŘENOSOVÉ VLASTNOSTI
Koplexní dvobrany http://www.sweb.cz/oryst/elt/stranky/elt7.ht Page o 8 8. 6. 8 KOMPEXNÍ DVOJBNY - PŘENOSOVÉ VSTNOSTI Intergrační a derivační článek patří ezi koplexní dvobrany. Integrační článek á vlastnost
Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra
Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel
PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení
PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce
Pojistná smlouva č. 8051534719
Pojistná smlouv č. 8051534719 Smluvní strny: ČSOB Pojišťovn,. s., člen holdingu ČSOB Sídlo: Prdubice, Zelené předměstí Msrykovo náměstí čp. 1458 PSČ 532 18 IČ: 45534306 Zápis v OR: KS v Hrdci Králové,
Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám
Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická
3. PEVNOST V TLAKU BETONU NA VÝVRTECH
3. PEVNOST V TLAKU BETONU NA VÝVRTECH Vývrty jsou válcové zkušební vzorky, získané z konstrukce poocí dobře chlazeného jádrového vrtáku. Vývrty jsou pečlivě vyšetřeny, upraveny buď zabroušení, anebo koncování
CZ.1.07/1.5.00/34.0556
CZ.1.07/1.5.00/34.0556 Číslo projektu Číslo ateriálu Název školy Autor Teatický celek Ročník CZ.1.07/1.5.00/34.0556 VY_32_INOVACE_ZF_POS_11 Zkoušky kaeniva Střední průyslová škola a Vyšší odborná škola,
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání
METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt relizovný n PŠ Nové Město nd Metují s finnční podporou v Operční proru Vzdělávání pro konkurencescopnost Královérdeckéo krje Modul 03 - Tecnické předěty In. Jn Jeelík - nuk o rovnováze kplin jejic
NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,
EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování
Křivkový integrál funkce
Kpitol 6 Křivkový integrál funkce efinice způsob výpočtu Hlvním motivem pro definici určitého integrálu funkce jedné proměnné byl úloh stnovit obsh oblsti omezené grfem dné funkce intervlem n ose x. Řd
Platné znění schválené usnesením rady města č. 103/2014 ze dne 4. 2. 2014 a radou Městského obvodu Liberec - Vratislavice nad Nisou dne 17. 2.
Pltné znění schválené usnesením rdy měst č. 103/2014 ze dne 4. 2. 2014 rdou Městského obvodu Liberec - Vrtislvice nd Nisou dne 17. 2. 2014 Interní předpis PRO ZŘIZOVÁNÍ SLUŽEBNOSTÍ Čl. 1 Předmět ceny 1.
Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA
Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním
Hlavní body - magnetismus
Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického
I. Prohlášení smluvních stran
8/14118 SMLOUVA O BUDOUCÍ SMLOUVĚ KUPNÍ A SOUHLAS SE ZŘÍZENÍM STAVBY uzvřená podle * 1785 násl. ~ 2055 násl., občnského zákoníku * 110 odst. 2) písm. ) zák. Č. 183/2006 Sb., stvební zákon Smluvní strny:
je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co
Obecná etod nstruentálních proěnných (G)IV (Generl Instruentl Vrbles ethod) v soustvě sultánních regresních rovnc utor etody: J.D. Srgn [958] Metod nstruentálních proěnných je jstý zobecnění dvoustupňové
Regulace f v propojených soustavách
Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny
Datamining a AA (Above Average) kvantifikátor
Dtmining AA (Above Averge) kvntifikátor Jn Burin Lbortory of Intelligent Systems, Fculty of Informtics nd Sttistics, University of Economics, W. Churchill Sq. 4, 13067 Prgue, Czech Republic, burinj@vse.cz
Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254
Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé
Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Stavební statika, 1.ročník kombinovaného studia
Stvební sttik, 1.ročník kombinovného studi Stvební sttik Úvod do studi předmětu n Stvební fkultě VŠB-TU Ostrv Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit Ostrv Stvební sttik přednášející
Lineární nerovnice a jejich soustavy
teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice
2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman
STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr
Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktiku 1 Úloha č...xvi... Název: Studiu Brownova pohybu Pracoval: Jan Kotek stud.sk.: 17 dne: 7.3.2012 Odevzdal dne:... ožný počet
Studijní materiály ke 4. cvičení z předmětu IZSE
ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti
3.2. LOGARITMICKÁ FUNKCE
.. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov
1 i= VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ. OTAKAR TRNKA a MILOSLAV HARTMAN. i M
Chem. Listy, 55 53 (7) VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ OTAKAR TRNKA MILOSLAV HARTMAN Ústv chemických procesů, AV ČR, Rozvojová 35, 65 Prh 6 trnk@icpf.cs.cz
Analytická geometrie v rovině
nltická geometrie v rovině Souřdnicová soustv v rovině Zvolme v rovině dvě nvájem kolmé přímk číselné os. růsečík O těchto přímek nveme počátek souřdnic. Vodorovnou přímku ončíme osou svislou ončíme osou
a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11
Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n
BH059 Tepelná technika budov
BH059 Tepelná technika budov Neustálený teplotní stav Teplotní útlum a fázové posunutí teplotního kmitu konstrukce Pokles dotykové teploty podlahy θ 10 O ustáleném (stacionárním)teplotním stavu mluvíme
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry Transport vodní páry porézním prostředím: Tepelná vodivost vzduchu: = 0,0262 W m -1 K -1 Tepelná vodivost izolantů: = cca 0,04 W
Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
2.3. DETERMINANTY MATIC
2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní
třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy:
SPŠ VOŠ KLADO SAIKA - PASIVÍ ODPORY PASIVÍ ODPORY Při vzájemném pohybu těles vznikjí v reálných vzbách psivní odpory, jejichž práce se mění v teplo. Psivní odpory předstvují ztráty, které snižují účinnost
( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t
7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách
Národní centrum výzkumu polárních oblastí
Národní centrum výzkumu polárních oblstí Dohod o spolupráci při výzkumu polárních oblstí Země Msrykov univerzit Žerotínovo nám. 9, 601 77 Brno, IČ 00216224, zstoupená rektorem Prof. PhDr. Petrem Filou,
Ohýbaný nosník - napětí
Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se
Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.
7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1
ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA
ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých
Posouzení stability svahu
Verifikční nuál č. 3 Aktulizce 04/016 Posouzení stbility svhu Progr: Soubor: Stbilit svhu Deo_v_03.gst V toto verifikční nuálu je uveden ruční výpočet posouzení stbility svhu posouzení stbility svhu zbezpečeného
2.2.9 Grafické řešení rovnic a nerovnic
..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci
M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)
5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete
Téma 6 Staticky neurčitý rovinný oblouk. kloubový příhradový nosník
Stvení mechnik,.ročník klářského studi AST Tém 6 Stticky neurčitý rovinný olouk Stticky neurčitý rovinný klouový příhrdový nosník Zákldní vlstnosti stticky neurčitého rovinného olouku Dvoklouový olouk,
MĚSTSKÁ ČÁST PRAHA 3 Rada městské části U S N E S E N Í
č.j.: 16/2010 MĚSTSKÁ ČÁST PRAHA 3 Rd městské části U S N E S E N Í č. 24 ze dne 8.12.2010 k návrhu Smlouvy o výstvbě mezi Městskou částí Prh 3, Renátou Bádlovou, Jnem Běhounkem Alicí Běhounkovou, Jiřinou
6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.
STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje
Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou
MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry TRANSPORT VODNÍ PÁRY PORÉZNÍM PROSTŘEDÍM: Ve vzduchu obsažená vodní pára samovolně difunduje do míst s nižším parciálním tlakem až
KERAMICKÉ NOSNÉ PŘEKLADY HELUZ 23,8 EN 845-2 1 (2)
KERAMICKÉ NOSNÉ PŘEKLADY 23,8 1 (2) POUŽITÍ Nosné překlady se používají jako překlady nad dveřníi a okenníi otvory ve vnitřních i vnějších stěnách. Tyto překlady lze kobinovat s izolante pro dosažení zvýšených
Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.
.. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).
2. Úloha difúze v heterogenní katalýze
2. Úloha difúze v heterogenní katalýze Vnitřní difúze při nerovnoměrné radiální distribuci aktivní složky v částici katalyzátoru Kateřina Horáčková Příčina radiálního aktivitního profilu v katalyzátorové
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Stanovení základních materiálových parametrů Vzor laboratorního protokolu Titulní strana: název experimentu jména studentů v pracovní skupině datum Protokol:
ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě
Vodorovné protipožární konstrukce > Podhledy Interiér/Exteriér > Vzhled s utěsněnou spárou a hlavičkami vrutů
Technický průvodce Vodorovné protipožární konstrukce > Rozsh pltnosti N zákldě výsledků zkoušek, které jsou zde uvedené, lze plikovt desky CETRIS v těchto typech protipožárních vodorovných konstrukcí:
(Text s významem pro EHP)
9.9.2015 L 235/7 PROVÁDĚCÍ NAŘÍZENÍ KOMISE (EU) 2015/1502 ze dne 8. září 2015, kterým se stnoví minimální technické specifikce postupy pro úrovně záruky prostředků pro elektronickou identifikci podle čl.
13. Exponenciální a logaritmická funkce
@11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze
Chemie - cvičení 2 - příklady
Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká
Zadání příkladů. Zadání:
Zdání příkldů Zdání: ) Popšte oblst vužtí plánovných expermentů ) Uveďte krtér optmlt plánů ) Co sou Hdmrdov mtce ké mí vlstnost? ) Co sou. fktorové plán k e lze vužít? 5) Blok čtverce - oblst ech vužtí
4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
Logaritmická funkce teorie
Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá
1. Hmotnost a látkové množství
. Hotnost a látkové nožství Hotnost stavební jednotky látky (například ato, olekly, vzorcové jednotky, eleentární částice atd.) označjee sybole a, na rozdíl od celkové hotnosti látky. Při požití základní
kritérium Návaznost na další dokumenty Dokument naplňující standard
1. CÍLE A ZPŮSOBY ČINNOSTI POVĚŘENÉ OSOBY Dokument obshuje zákldní prohlášení středisk Služby pro pěstouny, do kterého se řdí: poslání, cílová skupin, cíle zásdy, v souldu s kterými je služb poskytován.
Ochrana před úrazem elektrickým proudem Společná hlediska pro instalaci a zařízení. 1. Definice
ČSN EN 61 140 Ochrn před úrzem elektrickým proudem Společná hledisk pro instlci zřízení Tto mezinárodní norm pltí pro ochrnu osob zvířt před úrzem elektrickým proudem. Je určen pro poskytnutí zákldních
Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.
Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce
Nosné stavební konstrukce Výpočet reakcí
Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení