Datamining a AA (Above Average) kvantifikátor

Rozměr: px
Začít zobrazení ze stránky:

Download "Datamining a AA (Above Average) kvantifikátor"

Transkript

1 Dtmining AA (Above Averge) kvntifikátor Jn Burin Lbortory of Intelligent Systems, Fculty of Informtics nd Sttistics, University of Economics, W. Churchill Sq. 4, Prgue, Czech Republic, Abstrkt. N zákldě frekvencí ze čtyřpolní kontingenční tbulky je definován AA kvntifikátor implementovný v GUHA proceduře 4ftMiner, která je součástí nlytického systému LISp-Miner. Je uveden motivční příkld. Dále je diskutován prvděpodobnostní interpretce AA kvntifikátoru. Nkonec jsou shrnuty vlstnosti AA kvntifikátoru možnosti jejich využití. 1 Úvod. Cíle obsh příspěvku. Jedním ze způsobů dobývání znlostí z dtbází je vyhledávání důležitých vzthů, které se týkjí vzthů dvou Booleovských tributů (čsto to jsou konjunkce literálů) derivovných z nlyzovné dtbáze. Mezi dvěm konjunkcemi literálů vytvořených z ktegorií tributů tbulky relční dtbáze, mohou existovt zjímvé vzthy (sociční prvidl), které je možno zkoumt n zákldě tk zvné čtyřpolní kontingenční tbulky (dále jen čtyřpolní tbulky). První skupinu literálů nzvěme ntecedent(zkráceně budeme oznčovt jko ϕ),druhou sukcedent (zkráceně budeme oznčovt jko ψ). čtyřpolní tbulk má v tkovém přípdě podobu: ψ ψ ϕ b ϕ c d Tbulk 1. čtyřpolní tbulk ϕ ψ Ve čtyřpolní tbulce reprezentuje počet (frekvenci) všech přípdů (záznmů), kdy je splněn jk ntecedent tk sukcedent. b je počet všech přípdů kdy je splněn ntecedent není splněn sukcedent tk dále. Zobecněný kvntifikátor odráží nějkou chrkteristiku vzthu mezi ntecedentem sukcedentem vypočítnou n zákldě frekvencí ze čtyřpolní tbulky vnějších prmetrů. Jedním z velmi prktických sndno interpretovtelných zobecněných kvntifikátorů je tkzvný AA kvntifikátor (Above Averge kvntifikátor). Tento příspěvek pojednává o motivci pro jeho zvedení, jeho interpretci vlstnostech. AA kvntifikátor byl implementován v proceduře 4ft-Miner (součást dtminingového systému LISp-Miner [7]), který prcuje n zákldě metody GUHA [4].

2 2 Motivce pro zvedení AA kvntidikátoru Asociční prvidl používná k nlýze dt procedurou 4ftMiner odrážejí souvislosti v dtech, le mohou být šptně interpretovtelná vzhledem k reálně existujícím vzthům ve světě. Vypovídcí schopnost socičních prvidel může být deformovná strukturou dt. Jedním z probémů při interpretci socičních prvidel může být, že ktegorie tributů mohou mít zcel nerovnoměrné zstoupení. Jko příkld vezměme dt zkoumná npř. v [6]. Jednlo se o medicínská dt (konkrétně dtbáze hypertoniků v rámci projektu EuroMISE [8]), kde záznmy v tbulce dtbáze předstvovl vyšetření tributy hodnoty sledovných chrkteristik vyšetření, mimo jiné tké měsíc ve kterém bylo vyšetření provedeno. Dejme tomu, že ntecedent bude předstvovt npříkld tlk pcient sukcedent měsíc vyšetření. Počet kontrol v jednotlivých měsících (sukcedent) znčně kolísá. Pk le bude npříkld vysoký tlk (stejně jko jiné hodnoty tlku) velmi zřídk zstoupen v měsících, kdy je počet kontrol mizivý (typicky letní měsíce - pcienti i lékři jsou n dovolených pod.). Jk by dopdl výsledek nlýzy pokud bychom použili jeden z klsických vzthů implemetovných v proceduře 4ftMiner ( vůbec ve všech GUHA procedurách), tk zvnou fundovnou implikci [4]? Definice 1. Mezi ntecedentem sukcedentem je vzth fundovnimplikce p,s (formule ϕ p,s ψ pltí) tehdy jen tehdy pokud pro 0 < p 1 s > 0 pltí +b p s. Prmetr s umožňuje zohlednit strukturu dt jen velmi hrubě. Proto od něj nyní odhlédneme. Pokud použijeme fundovnou implikci k nlýze dt, získáme spíše hypotézy (sociční prvidl) týkjící se souvislosti vysokého tlku s měsíci ve kterých bylo zznmenáno větší procento celkového počtu vyšetření. Konkrétně pro hodnotu p=0.1 bychom při průměrném rozložení počtu vyšetření n měsíc očekávli že bude nlezen vzth mezi vysokým tlkem 11. měsícem, ve kterém bylo zznmenáno 12, 68% procent všech vyšetření, méně už bychom to čekli u 12.měsíce ve kterém bylo zznmenáno 7, 71% procent všech vyšetření. A to už nemluvíme o letních měsících, kdy je procento všech zznmenných vyšetření menší než jedno procento. Nejvíce vyšetření s extrémní hodnotou bude nejspíše v tom období, kdy je nejvíce vyšetření obecně. Tedy smotný počet vyšetření s vysokou hodnotou tlku v jistém měsíci, nic neříká o tom, zd pcienti v tomto období skutečně mjí vyšší sklon mít vysoký tlk. Důvod je v tom, že fundovná implikce nezohledňuje podíl frekvence přípdů, kdy je pltný sukcedent (+c) k celkovému počtu vyšetření (+b+c+d). Pokud bychom chtěli generovt všechny pltné hypotézy (sociční prvidl) pro jistým způsobem prmetrizovnou skupinu tributů v ntecedentu sukcedentu (tk jk to umí pomocí tzv koeficientů npř. procedur 4ftTsk), pk

3 bychom pro smysluplnou nlýzu závislosti vysokého tlku pcientů v jistém měsíci, museli nlýzu provádět zvlášť pro všechny různé ktegorie sukcedentu (měsíce), pokždé s příslušným prmetrem p, který by odpovídl podílu počtu vyšetření v příslušném měsíci (+c) n celkovém počtu vyšetření (+b+c+d). Poznmenejme ještě, že pokud bychom změnili ntecedent sukcedent, situce se nezmění. Obecně může být tribut (či tributy) s více nerovnoměrně rozloženými hodnotmi jk v sukcedentu tk v ntecedentu. Vlivu nerovnoměrného rozložení hodnot nás zbví vhodně ndefinovný zobecněný kvntifikátor. Jedním z tkových kvntifikátorů je AA kvntifikátor. N rozdíl od kvntifikátorů, které provádějí operce ekvivlentní sttistickým testům (jko je F test či χ 2 test) je AA kvntifikátor výpočetně mnohem jednodušší. 3 AA kvntifikátor AA kvntifikátor reprezentuje tento fkt: Procento objektů které splňují ϕ i ψ z objektů které splňují ψ, je spoň (1 + p) krát větší než průměrné procento (procento objektů které splňují ϕ ze všech objektů v nlyzovné mtici dt). Definice 2. Pro kždou čtyřpolní tbulku, b, c, d pltí mezi ntecedentem sukcedentem vzth dný kvntifikátorem Above Averge tehdy pouze tehdy když: zároveň + b > 0 + c > 0 ( + b + c + d) ( + b) ( + c) (1+p) Prmetr p je definován v intervlu ( 1; + ). Poznámk 1: Výrz n levé strně nerovnice zmenšený o 1 nzýváme Averge difference. Poznámk 2: AA kvntifikátor je symetrický - je možno vzájemně změnit symboly b c. Vyjdřuje tedy i fkt: Procento objektů které splňují (mjí tribut) ψ i ϕ z objektů které splňují ϕ, je spoň (1 + p) krát větší než průměrné procento (procento objektů které splňují ψ ze všech objektů v nlyzovné mtici dt). Poznámk 3: V součsné verzi procedury 4ftMiner je možno prmetr p zdt pouze v intervlu (0; + ). Pro záporné hodnoty prmetru p není již název Above verge relevntní, neboť jsou generován i prvidl, pro něž procento objektů které splňují (mjí tribut) ψ i ϕ z objektů které splňují ϕ, je nižší než průměrné procento, le stále vyšší než procento dné prmetrem p. Poznámk 4: Obdobně jko AA kvntifikátor je definován k němu opčný BA kvntifikátor (Below Averge), který se liší znménkem nerovnosti v definici. Poznámk 5: V [6] je definován AA kvntifikátor pomocí tzv. sociovné fukkce. Její použití všk vyžduje zvedení tzv. 4FT klkulu viz npř [2], ten zde všk vzhledem k rozshu příspěvku nepoužijeme.

4 4 Prvděpodobnostní interpretce AA kvntifikátoru Obdobu AA kvntifikátoru definovl jko tk zvnou zjímvost (interestingness) Kodrtoff [5]. Kodrtoff zkouml různé chrkteristiky socičních prvidel n zákldě vzthů mezi prvděpodobnostmi podmíněnými prvděpodobnostmi sukcedentu (S) ntecedentu (A). K těmto vzthům se poté pokoušel nlézt odpovídjící lgebrický výrz sestvený z frekvencí obsžených ve čtyřpolní tbulce. Pro názornější ilustrci uveďme různé prvděpodobnosti týkjící se ntecedentu sukcedentu vyjádřené pomocí lgebrických výrzů sestvených z frekvencí obsžených ve čtyřpolní tbulce. P (A S) = + b + c + d + b P (A) = + b + c + d + c P (S) = + b + c + d P (S A) = + b P (A S) = + c Zjímvost (interestingness) reprezentuje tento vzth: P (A S) ( + b + c + d) = P (A) P (S) ( + b) ( + c) Vzth n prvé strně rovnice je pouze jink formulovný vzth z definice AA kvntifikátoru. Kodrtoff neuvádí, i když to z výše uvedeného vyplývá, že jeho zjímvost můžeme vyjádřit z pomocí podmíněných prvděpodobností tké jko: P (A S) P (A) = P (S A) P (S) Kodrtoff tké nezkoumá žádné dlší vlstnosti tohoto vzthu relevntní pro metodu GUHA. Prvděpodobnostní vyjádření je všk velmi prktické pro pochopení reálného upltnění AA kvntifikátoru. Pokud by veličiny, které předstvuje ntecedent sukcedent byly nvzájem zcel nezávislé, pk by A tedy P (A S) = P (A) P (S) P (A S) ( + b + c + d) = = 1 P (A) P (S) ( + b) ( + c) Zjímvost popisuje míru vzájemné závislosti ntecedentu sukcedentu. Hodnot zjímvosti vyšší než 1 znmená vzájemnou závislost ntecedentu sukcedentu v tom smyslu, že tyto mjí sklon vyskytovt se v jednom záznmu čstěji,

5 než při vzájemné nezávislosti (tedy ntecedent sukcedent se nvzájem přithují ). Nopk zjímvost menší než 1 znmená vzájemnou závislost ntecedentu sukcedentu v tom smyslu, že tyto mjí sklon vyskytovt se v jednozm záznmu méně čsto než při vzájemné nezávislosti (tedy ntecedent sukcedent se nvzájem odpuzují ). Pokud vztáhneme tuto prvděpodobnostní interpretci k prmetru p AA kvntifikátoru, tk jk jsme ho definovli v předchozí kpitole, pk npříkld: Hypotézy nlezené pro p=0.5 dávjí do vzthu ty ntecedenty sukcedenty, které jsou splněny zároveň v nejméně o 50% více záznmench, než by tomu bylo při jejich vzájmené nezávislosti. 5 Vlstnosti AA kvntifikátoru V [4] jsou definovány vlstnosti symetričnosti socičnosti zobecněných kvntifikátorů (třídy kvntifikátorů). V [6] jsou tyto vlstnosti definovány pomocí tzv. TPC (Truth preservtion condition). Ve [2] je pk definován F-vlstnost. Definice 3. Zobecněný kvntifikátor ptří do třídy socičních kvntifikátorů, jestliže pro kždé dvě čtyřpolní tbulky, b, c, d, b, c, d pltí: Pltí-li vzth dný kvntifikátorem pro čtyřpolní tbulku, b, c, d zároveň = b = c c = b d = d pk pltí tento vzth i pro čtyřpolní tbulku, b, c, d Definice 4. Zobecněný kvntifikátor ptří do třídy socičních kvntifikátorů, jestliže pro kždé dvě čtyřpolní tbulky, b, c, d, b, c, d pltí: Pltí-li vzth dný kvntifikátorem pro čtyřpolní tbulku, b, c, d zároveň b b c c d d pk pltí tento vzth i pro čtyřpolní tbulku, b, c, d Definice 5. Zobecněný kvntifikátor ptří do třídy kvntifikátorů s vlstností F, jestliže pro kždou čtyřpolní tbulku, b, c, d pltí: - Pltí-li vzth dný kvntifikátorem pro čtyřpolní tbulku, b, c, d zároveň b c 1 0, pk pltí i pro čtyřpolní tbulku, b + 1, c 1, d. - Pltí-li vzth dný kvntifikátorem pro čtyřpolní tbulku, b, c, d zároveň c b 1 0, pk pltí i pro čtyřpolní tbulku, b 1, c + 1, d. V [6] jsou dokázány tyto vlstnosti AA kvntifikátoru (respektive AA kvntifikátor ptří do těchto tříd kvntifikátorů): Vět 1. Vlstnosti AA kvntifikátoru: 1. AA kvntifikátor je symetrický. 2. AA kvntifikátor není sociční. 3. AA kvntifikátor má vlstnost F, ž n výjimku, kdy: Averge difference = 0 = 0 (b = 1 c = 1)

6 Poznmenejme, že mnoho dříve používných prktických kvntifikátorů ptřil do třídy socičních kvntifikátorů. Npříkld kvntifikátory implikční, dvojitě implikční, ekvivlenční td. viz npř. [2]. Je zjímvé, že některé z ekvivlenčních kvntifikátorů (npř. kvntifikátor prostého vychýlení Fisherův) ptří stejně jko AA kvntifikátor do třídy kvntifikátorů s vlstností F. 6 Závěr AA kvntifikátor byl implementován v GUHA proceduře 4ftMiner, která je součástí systému LispMiner. V rámci tohto systému je v součsnosti využíván npříkld při nlýzách medicínských dt v rámci projektu EuroMISE či nlýzách doprvních nehod (projekt Trffic). Zjištěné vlstnosti AA kvntifikátoru bude možno využít při hledání nových (třeb i složitějších - sttistické testy) kvntifikátorů vhodných pro implementci do systému pro dtmining n bázi hledání socičních prvidel. Vlstnosti AA kvntifikátoru byly použity ke zkoumání možností optimlizce nlytického softwre (npříkld systému LISp-Miner), npř. pomocí předpočítání tzv. tbulek kritických frekvencí [6]. English nottion: The AA quntifier implemetnted in GUHA procedure 4ftTsk (prt of nlyticl system LISp-Miner is defined.) A motivtion exmple illustrte its use. Then the probbilistic interprettion of AA quntifier is discussed. Finlly the properies of AA quntifier re resumed. Reference 1. Brchmn T. - Annd Y.: The Process of Knowledge Discovery in Dtbses. In Fyd, U. M. er l.: Asvnces in Knowledge Discovery in nd dt mining. AAAI Press/ The MIT Press, 1996, s Ruch, J.: Příspěvek k logickým zákldům KDD, hbilitiční práce, VŠE, Prh Ruch, J.: Clsses of Four Fold Tble Quntifiers. In Principles of Dt Mining nd Knowledge Discovery. Red. Zytkow, J - Quffou, M. Berlin, Springer Verlg 1998, pp Hájek, P., Hvránek T.: Mechnising Hypothesis Formtion - Mthemticl Foundtions for Generl Theory. Berlin - Heidelberg - New York, Springer-Verlg, Kodrtoff, I. :Compring mchine lerning nd knowwledge discovery in dtbses. On: Lecture Notes from Mchine Lerning nd Applictions, ACAI99, Chni, Vol Burin J.: Guh dtmining, od prxe k teorii zse zpět. Diplomová práce, VŠE, Prh Systém LISp-Miner, URL Evropské centrum pro medicínskou informtiku, sttistiku epidemiologii - Krdio, URL

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla Dobývání znlostí z dtbází (MI-KDD) Přednášk číslo 4 Asociční prvidl (c) prof. RNDr. Jn Ruch, CSc. KIZI, Fkult informtiky sttistiky VŠE zimní semestr 2011/2012 Evropský sociální fond Prh & EU: Investujeme

Více

Asociační pravidla. Úloha hledání souvislostí mezi hodnotami atributů. {párky, hořčice} {rohlíky} Ant Suc,

Asociační pravidla. Úloha hledání souvislostí mezi hodnotami atributů. {párky, hořčice} {rohlíky} Ant Suc, Asociční prvidl Úloh hledání souvislostí mezi hodnotmi tributů. nlýz nákupního košíku (Agrwl, 1993) obecněji {párky, hořčice} {rohlíky} Ant Suc, kde Ant (ntecedent) i Suc (sukcedent) jsou konjunkce hodnot

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

5.2 Asociační pravidla

5.2 Asociační pravidla 5.2 Asociční prvidl IF-THEN konstrukce nlezneme ve všech progrmovcích jzycích, používjí se i v běžné mluvě (nebude-li pršet, nezmoknem). Není tedy divu, že prvidl s touto syntxí ptří společně s rozhodovcími

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Diferenciální počet. Spojitost funkce

Diferenciální počet. Spojitost funkce Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti

Více

Definice limit I

Definice limit I 08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

( a) Okolí bodu

( a) Okolí bodu 0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,

Více

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

3. Kvadratické rovnice

3. Kvadratické rovnice CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

Větu o spojitosti a jejich užití

Větu o spojitosti a jejich užití 0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

Přednáška 9: Limita a spojitost

Přednáška 9: Limita a spojitost 4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

3.2. LOGARITMICKÁ FUNKCE

3.2. LOGARITMICKÁ FUNKCE .. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5. 10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE

25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE 5 KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE KRITÉRIA TĚTIVOVÉHO ČTYŘÚHELNÍKU Abstrkt Konvení čtřúhelník ABCD je tětivový právě tehd kdž pltí AB CD BC AD AC BD ptolemiovské kritérium Jiná s touto větou

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Neurčité výrazy

Neurčité výrazy .. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu

Více

8 Mongeovo promítání

8 Mongeovo promítání 8 Mongeovo promítání Pomocí metod uvedených v kpitolách 3. 4., 3. 6. bychom mohli promítnout do roviny 3 libovolný útvr U E. V prxi všk většinou nestčí sestrojit jeden průmět. Z průmětu útvru U je většinou

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 67. ročník mtemtické olympiády Úlohy krjského kol ktegorie A 1. Pvel střídvě vpisuje křížky kolečk do políček tbulky (zčíná křížkem). Když je tbulk celá vyplněná, výsledné skóre spočítá jko rozdíl X O,

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1).

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1). A DIRACOVA DISTRIBUCE A Dircov distribuce A Definice Dircovy distribuce Dircovu distribuci δx) lze zvést třemi ekvivlentními způsoby ) Dirc [] ji zvedl vzthy δx) dx, δx) pro x ) Grficky znázorňujeme Dircovu

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi

Více

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log Řešme n množině reálných čísel rovnice: ) 6 b) 8 d) e) c) f) ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC Co budeme potřebovt? Chápt definici ritmu. Znát průběh ritmické funkce. Znát jednoduché vět o počítání

Více

NMAF061, ZS Písemná část zkoušky 25. leden 2018

NMAF061, ZS Písemná část zkoušky 25. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Logaritmické rovnice I

Logaritmické rovnice I .9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie 9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu

Více

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/

Více

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p. 1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

5.2.4 Kolmost přímek a rovin II

5.2.4 Kolmost přímek a rovin II 5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k

Více

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}? 1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět.

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět. POKYNY KE STUDIU Pokyny ke studiu V úvodu si vysvětlíme jednotnou pevnou strukturu kždé kpitoly tetu, která by vám měl pomoci k rychlejší orientci při studiu Pro zvýrznění jednotlivých částí tetu jsou

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

Psychologická metodologie. NMgr. obor Psychologie

Psychologická metodologie. NMgr. obor Psychologie Pržská vysoká škol psychosociálních studií, s.r.o. Temtické okruhy ke státní mgisterské zkoušce Psychologická metodologie NMgr. oor Psychologie 1 Vědecká teorie vědecká metod Vědecké vysvětlení, vědecký

Více

Křivkový integrál funkce

Křivkový integrál funkce Kpitol 6 Křivkový integrál funkce efinice způsob výpočtu Hlvním motivem pro definici určitého integrálu funkce jedné proměnné byl úloh stnovit obsh oblsti omezené grfem dné funkce intervlem n ose x. Řd

Více

17 Křivky v rovině a prostoru

17 Křivky v rovině a prostoru 17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,

Více

Vysoká škola ekonomická. Katedra informačního a znalostního inženýrství. Fakulta informatiky a statistiky. Systém LISp-Miner

Vysoká škola ekonomická. Katedra informačního a znalostního inženýrství. Fakulta informatiky a statistiky. Systém LISp-Miner Vysoká škola ekonomická Katedra informačního a znalostního inženýrství Fakulta informatiky a statistiky Systém LISp-Miner Stručný popis určený pro posluchače kurzů Metod zpracování informací verse 20.

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

1.3.8 Množiny - shrnutí

1.3.8 Množiny - shrnutí 1.3.8 Množiny - shrnutí Předpokldy: 010307 Pedgogická poznámk: Kpitol o množinách spolu s následujícími dvěm kpitolmi (výroky dělitelnost) slouží k nácviku učení. Součástí učení je tké příprv n písemky

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

II. kolo kategorie Z5

II. kolo kategorie Z5 II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem

Více

8. Elementární funkce

8. Elementární funkce Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne

Více

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál) Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh

Více

6. Setrvačný kmitový člen 2. řádu

6. Setrvačný kmitový člen 2. řádu 6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické

Více

Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48

Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48 Formální jzyky M. Kot, Z. Sw (VŠB-TU Ostrv) Úvod do teoretické informtiky 6. březn 2007 1/ 48 Motivce 1: Vyhledávání v textu Potřebujeme řešit následující problém: Máme řdu různých textů(npř. soubory n

Více

Základní pojmy: Číselné obory a vztahy mezi nimi Zákony pro počítání s číselnými množinami

Základní pojmy: Číselné obory a vztahy mezi nimi Zákony pro počítání s číselnými množinami / Zákldní pojmy: Číselné obory vzthy mezi nimi ČÍSELNÉ MNOŽINY Zákony pro počítání s číselnými množinmi. Přirozená čísl vyjdřují počet prvků množiny N. Celá čísl změn počtu prvků dné množiny, přírůstky

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

4. cvičení z Matematiky 2

4. cvičení z Matematiky 2 4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y

Více

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu:

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu: vz je lgebr ( M ; ) vzy = se dvěm binárními opercemi tková že pro libovolné prvky b c M pltí následující podmínky xiomy svzu: ( b) c = ( b c) ( b) c = ( b c) b = b b = b ( ) ( ) b = b =. Operce se nzývá

Více