4. cvičení z Matematiky 2
|
|
- Žaneta Moravcová
- před 5 lety
- Počet zobrazení:
Transkript
1 4. cvičení z Mtemtiky březn Njděte ity (i (ii (iii (iv 2 +(y (y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y (y 1 2 D f = R 2 \ {(0, 1} bod (0, 1 je tedy hromdným bodem D f. Pro itu použijeme obvyklý trik, jk se zbvit odmocniny (tj. vzorec ( b( + b = 2 b (y (y (y 1 2 = (y (y (y = 2 + (y 1 = ( 2 2 = ( (y (y (ii Pro funkci f(, y, z = z2 y 2 z yz 1 D f = {(, y, z R 3 yz 1} bod (1, 1, 1 je tedy hromdným bodem D f. Stupně polynomů v čitteli i jmenovteli jsou stejné, tkže spíš zkusíme, jestli it vůbec eistuje. Zúžením f n přímku = y = z (bez bodu (, y, z = (1, 1, 1 dostáváme f(,, = = 0, tkže f(, y, z = f(,, = 0. 1 =y=z N druhou strnu zúžením f n přímku = y = 1 (opět bez bodu (, y, z = (1, 1, 1 dostáváme f(1, 1, z = z2 z z 1 = z, tkže f(, y, z = f(1, 1, z = z = 1. z 1 z 1 =y=1 Původní it tedy NEEXISTUJE.
2 (iii Pro funkci f(, y = 2 y 2 2 +y 2 D f = R 2 \ {(0, 0} má hromdný bod (0, 0. Polynom v čitteli m vyšší stupeň než ve jmenovteli, tkže spíš zkusíme ukázt, že it eistuje bude nulová (což si můžeme otestovt zúžením f npř. n souřdné osy. Použijeme opět odhdy pk větu o itě sevřené funkce. Zřejmě pltí 2 + y 2 = (, y, což je důležitá nerovnost, která se hodí n dokzování it. Podobně y (, y, tkže máme 0 2 y y 2 (, y 2 (, y y 2 = (, y 2. Z definice ity sndno dostáváme, že (, (,y (0,0 y 2 = 0 (podobná tvrzení už můžeme brát skoro jko fkt tedy z věty o itě sevřené funkce je rovněž (,y (0,0 2 y y 2 = 0. (iv N rozdíl od předchozího přípdu zde bude situce podsttně jiná to kvůli nulovým hodnotám jmenovtele. Pro funkci f(, y = 2 y 2 2 +y 3 D f = {(, y R 2 y 3 2 } zřejmě má hromdný bod (0, 0. Zúžením f n přímku = 0 (bez bodu (, y = (0, 0 dostáváme f(0, y = 0, tkže f(, y = f(0, y = 0. (,y (0,0 y 0 =0 Pokud by tedy it eistovl, musí být rovn 0. Polynom v čitteli je nulový n osách = 0 y = 0, ztímco polynom ve jmenovteli je nulový n křivce y = 3 2. V bodech ( 0, y 0 R 2 tkových, že y 0 = tedy máme (,y ( 0,y 0 0 y 0= y y 3 = 2 0y0 2 + = + (pokud n chvíli připustíme, že + může tké být itou, kterou jink smí podle nší definice být pouze prvek z R. Pokud by funkce f měl v (0, 0 itu 0, musel by speciálně být n nějkém okolí (0, 0 omezená, tj. eistují K > 0 ε > 0, že 2 y 2 2 +y K pro všechn (, y 3 Uε (0, 0 D f. V okolí U ε (0, 0 se le tké ncházejí body ( 0, 3 2 0, ve kterých je v itě funkce f nopk neomezená. To je spor původní it tedy NEEXISTUJE. 4.2 Njděte tečnou rovinu ke grfu funkce f(, y = y + sin( + y v bodě (1, 1,?. Pge 2
3 Grf funkce f je množin Γ f = {(, y, z R 3 z = f(, y & (, y D f }. Tečná rovin T (0,y 0,z 0, ke grfu f v bodě ( 0, y 0, z 0 = (1, 1, 1, kde z 0 = f( 0, y 0 = 1 je dán rovnicí ( 0 z = f( 0, y 0 + grdf (0,y 0. y y 0 Máme grdf (0,y 0 = (, ( = y + cos( + y, + cos( + y = (2, 0, y (0,y (1, 1 0 tedy tečná rovin má rovnici ( 1 z = 1 + (2, 0 y 1 = 1 + 2( 1 neboli 2 z = Určete derivci funkce (i f(, y, z = z 3 2 y v bodě = (1, 6, 2 podle vektoru v = (3, 4, 12, (ii f(, y = e cos y + 2y v bodě = (0, 0 podle vektoru v = ( 1, 2. Derivce funkce f v bodě podle vektoru v je definovná jko f( + t v f( := v t 0 t Pokud ovšem eistuje derivce f funkce f v bodě (tj. totální diferenciál, pk pltí kde v = (v 1,..., v n. = f v ( v = grdf v = v v n 1 n (i Pro f(, y, z = z 3 2 y = (1, 6, 2 máme grdf = (2y, 2, 3z 2 = (12, 1, 12 v = (12, 1, = 184. Pokud bychom brli derivci podle SMÉRU v, pk je potřeb vektor ještě znormovt, tj. použijeme vektor u = v v pk je u = 1 v v = (ii Pro f(, y = e cos y + 2y = (0, 0 máme grdf = (e cos y, e sin y + 2 = (1, 2 Pge 3
4 ( 1 = (1, 2 v 2 = Njděte rovnici tečné roviny k elipsoidu 2 = 1, která (i je rovnoběžná s rovinou 4 + 2y + z = 3, (ii vytíná stejné úseky n všech souřdnicových osách. Když je nějká množin M zdná jko vrstevnice nějké spojitě diferencovtelné funkce (tj. rovností f(, y, z = 0, pk tečná rovin k M je kolmá ke grdientu funkce f (pokud je tento grdient nenulový, tj. grdient je její normálový vektor. V nšem přípdě si vezmeme f(, y, z = 2 1. Tkže normálový vektor tečné roviny je ( 2 f 0 = grd(f 0 = 25, y 8, 2z (i Tečná rovin má být rovnoběžná s rovinou ρ : 4 + 2y + z = 3, která má normálový vektor n ρ = (4, 2, 1. To nstne právě když ( 2 25, y 8, 2z = grd(f 0 = λ n ρ = λ (4, 2, 1 pro nějké λ R. Tedy = 50λ, y = 16λ z = 2 λ. Součsně má tké pltit, že 2 = 1. Po doszení pk dostneme 100λ λ λ2 = 1 tedy λ = ±2/ 473. Hledné tečné roviny pk musí mít normálový vektor n ρ, tedy rovnici 4 + 2y + z = c, kde neznámé hodnoty c R určíme doszením spočítných bodů ( 0, y 0, z 0 = ± (100, 32,, kterými tečné roviny musí procházet. Výsledek je 4 + 2y + z = y + z = 473. (ii Postupujeme podobně. Rovin, vytíná stejné úseky n všech souřdnicových osách, má normálový vektor n = (1, 1, 1. Tedy ( 2 25, 2y 16, 2z = grd(f u0 = λ n = λ (1, 1, 1 pro nějké λ R. Dostáváme λ = ±2/ 25 tečné roviny jsou + y + z = y + z = 5 2. Pge 4
5 4.5 Njděte úhel sevřený dvěm plochmi v bodě 0 = (2, 0, y 2 + z 2 = 8 ( (y (z 3 2 = 6 Úhel sevřený dvěm rovinmi je roven úhlu, který svírjí přímky určené normálovými vektory těchto rovin. Podle předchozího je tedy n 1 = (2, 2y, 2z 0 = (4, 0, 4 n 2 = Pro hledný úhel α 0, π 2 pk je ( 2( 1, 2(y 2, 2(z 3 = (2, 4, 2. 0 cos α = n 1 n 2 n 1 n 2 = 0 tkže α = π 2. Pge 5
8. cvičení z Matematiky 2
8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,
x + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
NMAF061, ZS Písemná část zkoušky 25. leden 2018
Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4
14. cvičení z Matematické analýzy 2
4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi
5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými
Sbírka příkladů z analýzy funkcí více proměnných
České vsoké učení technické v Prze Fkult elektrotechnická Sbírk příkldů z nlýz funkcí více proměnných Miroslv Korbelář Prh 6 Předmluv Tento text je určen pro student technických vsokých škol, zejmén studentům
11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
Přehled základních vzorců pro Matematiku 2 1
Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,
Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním
Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož
NMAF061, ZS Písemná část zkoušky 16. leden 2018
Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6
Matematika II: Testy
Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit
je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné
1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2
3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
5.2.4 Kolmost přímek a rovin II
5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
VIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu
Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové
Matematika 1 pro PEF PaE
Tečny a tečné roviny 1 / 16 Matematika 1 pro PEF PaE 7. Tečny a tečné roviny Přemysl Jedlička Katedra matematiky, TF ČZU Tečny a tečné roviny Tečny a normály grafů funkcí jedné proměnné / 16 Tečny a normály
18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.
I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce
Přednáška 9: Limita a spojitost
4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.
Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce
26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
Vbodě ajsmevčase t=0ahodnoty fsevtéchvíliměnírychlostí. [(h 2 +k 2 )t 2 +(2h+4k)t+5]
Funkce více proměnných: 2. Derivce Ufunkcíjednéproměnnémáderivcefunkce ftrdičnívýkld.je-lidáno =,pk derivce f ()udávásměrnicitečnkegrfu fvodpovídjícímbodě. Vplikcíchje pkásdnídlšíinterpretce,hodnot f ()udává,jkrchlesebudefunkce
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:
.. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto
4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.
4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost
Diferenciální počet. Spojitost funkce
Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti
Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná
Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem
y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).
III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce
Stereometrie metrické vlastnosti 01
Stereometrie metrické vlstnosti 01 Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek
Neřešené příklady z analýzy funkcí více proměnných
České vysoké učení technické v Prze Fkult elektrotechnická Neřešené příkldy z nlýzy funkcí více proměnných Miroslv Korbelář Pol Vivi Prh 16 Tento dokument byl vytvořen s podporou grntu RPAPS č. 1311/15/15163C5.
KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t
KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá
9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie
9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu
Neurčité výrazy
.. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu
( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306
7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu
integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.
Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze
Lineární nerovnice a jejich soustavy
teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice
Diferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
17 Křivky v rovině a prostoru
17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,
II. 5. Aplikace integrálního počtu
494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu
ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.
VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální
4.2.7 Zavedení funkcí sinus a cosinus pro orientovaný úhel I
4..7 Zvedení funkcí sinus cosinus pro orientovný úhel I Předpokldy: 40, 40, 404, 406 Prolém s definicí funkcí sin ( ) cos( ) : Definice pomocí prvoúhlého trojúhelníku je π možné použít pouze pro ( 0 ;90
Jensenova nerovnost David Hruška
Jensenov nerovnost Dvid Hrušk Abstrkt. Příspěvek seznmuje s jednou z klsických lgebrických nerovností ukzuje její použití n dokzování nerovností olympiádního typu. Konvexní kombince Definice. Nechť x,...,x
56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25
56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou
2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ
. INTEGRÁLNÍ POČET FUNKE JEDNÉ PROMĚNNÉ Při řešení technických prolémů, ve fyzice pod. je velmi čsto tře řešit orácenou úlohu k derivování. K zdné funkci f udeme hledt funkci F tkovou, y pltilo F f. Budeme
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Logaritmická funkce teorie
Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá
dx se nazývá diferenciál funkce f ( x )
6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí
Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné
Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.
Limita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010
právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),
1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.
. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,
DERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)
5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
Otázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)
Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh
1 L Hospitalovo pravidlo
L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje
( ) ( ) ( ) x Užití derivace. Předpoklady: 10202, 10209
.. Užití derivace Předpoklad:, 9 Pedagogická poznámka: Hodinu dělíme na dvě polovin jednu na tečn a normál, druhou na L Hospitalova pravidla. Už při zavádění derivace, jsme si ukázali, že hodnota derivace
7 Analytická geometrie
7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.
Úlohy školní klauzurní části I. kola kategorie C
52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.
Stereometrie metrické vlastnosti
Stereometrie metrické vlstnosti Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek
Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:
PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se
5.1.5 Základní vztahy mezi body, přímkami a rovinami
5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin
1.2 Množina komplexních čísel... 10
Obsh Číselné množiny reálné funkce 5. Množin reálných čísel...................................... 5. Množin kompleních čísel.....................................3 Reálné funkce jedné reálné proměnné..............................
INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL
INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci
ANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]
KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu
OBECNÝ URČITÝ INTEGRÁL
OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,
Management rekreace a sportu. 10. Derivace
Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu
1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu
22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.
.. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).
Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu
Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je
KMA/G2 Geometrie 2 9. až 11. cvičení
KMA/G2 Geometrie 2 9. až 11. cvičení 1. Rozhodněte, zda kuželosečka k je regulární nebo singulární: a) k : x 2 0 + 2x 0x 1 x 0 x 2 + x 2 1 2x 1x 2 + x 2 2 = 0; b) k : x 2 0 + x2 1 + x2 2 + 2x 0x 1 = 0;
Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
Vzdálenosti přímek
5..11 Vzdálenosti přímek Předpokldy: 510 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy
3.1.3 Vzájemná poloha přímek
3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné
Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
ANALYTICKÁ GEOMETRIE
Technická niverzit v Liberci Fklt přírodovědně-hmnitní pedgogická Ktedr mtemtiky didktiky mtemtiky NLYTICKÁ GEOMETRIE Pomocný čební text Petr Pirklová Liberec, listopd 2015 NLYTICKÁ GEOMETRIE LINEÁRNÍCH
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ
Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA
Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním
Matematické metody v kartografii
Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími
Vzdálenosti přímek
5..1 Vzdálenosti přímek Předpokldy: 511 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy
MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF
MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF RNDr. Petr Rádl RNDr. Bohumil Černá RNDr. Ludmil Strá 0 Petr Rádl, 0 ISBN 97-0-77-9- OBSAH Předmluv... Poždvky k přijímcí zkoušce z mtemtiky..
Relativiatická fyzika a astrofyzika I. Geometrie
Reltivitická fyzik strofyzik I Geometrie Definice: Nechť g je metrický tenzor jeho komponenty vůči souřdnicové zi jsou g.dále nechť je g -1 inverzní mtice k g její komponenty k příslušné zi jsou g. zvedání
Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log
Řešme n množině reálných čísel rovnice: ) 6 b) 8 d) e) c) f) ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC Co budeme potřebovt? Chápt definici ritmu. Znát průběh ritmické funkce. Znát jednoduché vět o počítání
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
je daná funkce. Množinu všech primitivních funkcí k f na I nazveme neurčitým f(x)dx nebo f.
MATEMATICKÁ ANALÝZA INTEGRÁLNÍ POČET PŘEDNÁŠEJÍCÍ ALEŠ NEKVINDA. Přednášk Oznčme R = R {, } jko v minulém semestru. V tomto semestru se budeme zbývt opčným úkonem k derivování. Primitivní funkce. Definice.
Hledání hyperbol
759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,
Sbírka p íklad z analýzy funkcí více prom nných
ƒeské vysoké u ení technické v Prze Fkult elektrotechnická Sbírk p íkld z nlýzy funkcí více prom nných Miroslv Korbelá Prh 6 P edmluv Tento text je ur en pro studenty technických vysokých ²kol, zejmén
1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
Integrální počet - II. část (určitý integrál a jeho aplikace)
Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)
6. Určitý integrál a jeho výpočet, aplikace
Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,
Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují
. Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n +. = = n+ 3, 3n + n je totožná s posloupností: n n n = Dvid hrje kždý všední den fotbl v sobotu i v neděli chodí do posilovny. Dnes se sportovně