Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.
|
|
- Vendula Sedláková
- před 9 lety
- Počet zobrazení:
Transkript
1 .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.). Dále předpokládáme, že znáte zákldní metody výpočtu určitého integrálu. Výkld Uvžujme křivočrý lichoěžník ohrničený shor grfem nezáporné funkce f ( x ), přímkmi x =, x = osou x. Rotcí tohoto křivočrého lichoěžník kolem osy x vznikne rotční těleso. Nším cílem ude vypočítt ojem tohoto těles. Or.... Rotce křivočrého lichoěžník Budeme postupovt nlogicky jko při zvedení Riemnnov určitého integrálu (kp..). Řezy kolmými n osu x rozdělíme rotční těleso n n tenkých plátků tloušťky Δ x (můžete si předstvit, že těleso krájíte n kráječi jko šunku). Or.... Rozřezání těles n tenké plátky
2 Kždý plátek můžeme proximovt válečkem, jehož podstvou je kruh o poloměru f ( ξ i ) s výškou Δ xi (or...). Ojem i - tého válečku ude Δ Vi = f ( ξi ) Δ xi. Ojem celého těles ude přiližně roven součtu ojemů jednotlivých plátků (válečků): n n i ( ξi) xi i= i= V Δ V = f Δ. Čím ude dělení intervlu <, > jemnější, tím méně se ude součet ojemů plátků n ΔV i= i lišit od ojemu dného těles. Proto ojem definujeme jko limitu tohoto součtu pro n, když zároveň všechny délky Δ. Kldeme V = f ( x ) dx. Vět... x i Nechť je funkce f ( x ) spojitá nezáporná n intervlu <, >. Pk rotční těleso, které vznikne rotcí křivočrého lichoěžník ohrničeného shor funkcí f ( x ), osou x přímkmi x =, x = kolem osy x, má ojem V = f ( x ) dx. Grf nezáporné funkce y = f( x) může ýt popsán prmetrickými rovnicemi x = ϕ() t, y = ψ () t, t < α, β >. Je-li funkce x = ϕ( t) ryze monotonní n intervlu < α, β >, pk k ní existuje inverzní funkce t ϕ ( ) = x. Rovnici křivky můžeme proto psát ve tvru y = ψϕ ( ( x)) = f( x). Uvžovné rotční těleso ude mít ojem V = f ( x) dx= ψ ( ϕ ( x)) dx. Odtud sustitucí x = ϕ() t, ze které plyne dx = ϕ () t dt, dostneme β V = ψ () t ϕ () t dt. α - 7 -
3 Vět... Nechť funkce f je dán prmetrickými rovnicemi x = ϕ( t), y = ψ ( t), t < α, β >, přičemž funkce ϕ( t) má spojitou derivci n intervlu < α, β > funkce ψ ( t) je spojitá nezáporná n intervlu < α, β >. Pk pro ojem rotčního těles, které vznikne rotcí elementární olsti ϕ( α) x ϕ( β ), y ψ ( t), kolem osy x, pltí β V = ψ () t ϕ () t dt. α Řešené úlohy Příkld... Ověřte vzorec pro výpočet ojemu kuželu s poloměrem podstvy r výškou v. Řešení: Vrchol kuželu umístíme do počátku souřdné soustvy tk, y os kužele splývl r s osou x. Plášť kužele vznikne rotcí přímky y = x kolem osy x pro x <, v > v (or...). Or.... Ojem kužele Doszením do vzthu z věty.. dostneme v v v r r r x v v v r v V = x dx= x dx= = což je vzth, který znáte z geometrie., - 7 -
4 Příkld... Odvoďte vzth pro výpočet ojemu koule o poloměru r >. Řešení: Rovnice kružnice se středem v počátku poloměrem r je x + y = r. Odtud y=± r x, přičemž x < rr, >. Rotcí horní půlkružnice y =+ r x dostneme plášť koule. Pro její ojem ude pltit Or...4. Ojem koule r r r ( ) ( ) x V = r x dx= r x dx= r x dx= r x = r r 4 = r = r Poznámk. r Při výpočtu jsme využili skutečnosti, že funkce ( r x ) je sudá. Podle věty.4. ude integrál s mezemi < rr>, roven dvojnásoku integrálu s mezemi neoť ojem celé koule se rovná dvojnásoku ojemu polokoule. r <, r >. Je to logické, Pro výpočet ojemu koule můžeme tké využít prmetrické rovnice horní půlkružnice: x = rcost, y = rsin t, t <, > (viz příkld..). Jelikož ϕ ( t) = ( rcos t) = rsin t, dostneme po doszení do vzthu z věty.. sustituce cost u V = = r sin trsin tdt = r sin tdt = r ( cos t)sin tdt = sin tdt = du, = - 7 -
5 u 4 = r ( )( u ) du = r ( u ) du = r u = r. Příkld... Vypočtěte ojem těles, které vznikne rotcí olsti ohrničené křivkmi y = x y = x kolem osy x. Řešení: Olst je ohrničená dvěm prolmi, viz. or...5. Or...5. Olst z příkldu.. Křivky f ( x) = x gx ( ) x se protínjí v odech = x = x =. Hledný ojem dostneme, když od ojemu těles, jehož plášť vznikne rotcí křivky f ( x ) = x kolem osy x pro x <, >, odečteme ojem těles, které vznikne rotcí orzce pod křivkou gx ( ) = x n stejném intervlu (or...6). V = ( x ) dx - ( x ) Or...6. Odečtení ojemů dvou těles dx Pro ojem rotčního těles, které vznikne rotcí olsti ohrničené křivkmi y = x y = x kolem osy x, dostneme: - 7 -
6 V= f ( xdx ) g ( xdx ) = ( x ) dx ( x ) dx= ( x ) ( x ) dx = 4 4 = (4 4 x + x ) x dx = (4 4 x ) dx = 4 ( x ) dx = 8 ( x ) dx = x 6 = 8 x = 8 =. Poznámk Upozornění! Pro výpočet ojemu rotčního těles, které vznikne rotcí olsti ohrničené křivkmi gx ( ) f( x) kolem osy x pro x <, >, použijeme vzth V= f ( xdx ) g ( xdx ) = f ( x) g ( x) dx. Čsto se setkáváme s chyou, kdy je umocněn rozdíl funkcí. Vzth V = f ( x) g( x) dx je evidentně nesprávný! [ ] Příkld..4. Vypočtěte ojem rotčního nuloidu. Řešení: Anuloid (torus), viz or...7, je těleso vytvořené rotcí kruhu kolem přímky ležící v rovině tohoto kruhu neprotínjící kruh. Or...7. Anuloid
7 Střed kruhu o poloměru r umístíme n osu y do vzdálenosti R od počátku, kde r < R (or...8). Tento kruh necháme rotovt kolem osy x. Or...8. Vznik nuloidu rotcí kruhu kolem osy x Hrnici rotujícího kruhu tvoří kružnice, která má rovnici + ( ) =. Odtud x y R r y R=± r x. Podoně jko v předcházejícím příkldu je hrnice rotující olsti tvořen dvěm křivkmi f ( x) = R+ r x gx ( ) = R r x pro x <, rr>. Ojem nuloidu dostneme jko rozdíl ojemů dvou těles (or...9): r r V = f ( x) g ( x) dx== R+ r x R r x d r r x= r sustituce: r x= rsin u = 4R r x dx= 8R r x dx= dx = r cosudu = 8R r r sin u rcosudu= r, r + cosu = 8Rr sin u cosudu = 8Rr cos udu = 8Rr du =
8 sin u = 4Rr u + = 4Rr = Rr. V = r f ( x ) dx - r r g ( x ) dx r Or...9. Výpočet ojemu nuloidu Poznámk Při výpočtu integrálu yl použit sustituční metod. Podoné integrály jsme již několikrát počítli - viz příkldy.4.7 neo.4.5. Příkld..5. Vypočtěte ojem rotčního těles, které vznikne rotcí orzce ohrničeného Řešení: osou x jedním oloukem cykloidy kolem osy x. S cykloidou jsme se podroněji seznámili v příkldu..5. Cykloid (or...9) má prmetrické rovnice: x = t ( sin t), y = ( cos t), >, t R. První olouk cykloidy dostneme pro prmetr t <, >. Protože dx = ( cos t) dt, dostneme z věty..:
9 V = ( cos t) ( cos t) dt = ( cos t) d t = = ( cost+ cos t cos t) dt = + cost [ ] sustituce: sin t = u = t sint + dt ( sin t)cos t dt = costdt= du, = sint = + t ( u ) du ( + = + ) = 5. Výkld V předcházející části yl plášť rotčního těles vytvořen rotcí spojité křivky y = f( x), kolem osy x. Zcel nlogicky můžeme určit ojem rotčního těles, jehož plášť vznikl rotcí spojité křivky x = hy ( ) pro y < c, d > kolem osy y (or...). Or.... Rotce křivočrého lichoěžník kolem osy y Ojem vypočteme ze vzthu: d V = h ( y ) dy. c
10 Příkld..6. Vypočtěte ojem rotčního těles, jehož plášť vznikne rotcí křivky y = e x pro x <, > kolem osy y. Řešení: Funkce y x = e je prostá n definičním ooru inverzní funkce k ní ude x = ln y, y >. Pro x <, > ude y <, e> (or...). Or.... Rotce křivky y x = e kolem osy y Ojem rotčního těles ude: e u = v= ln y e e V = ln ydy = = yln y ln ydy u = y v = (ln y) y = e u = v= ln y = = = + u = y v = y e [ e ] ln ydy e [ yln y] dy = e ( [ ] ) ( ) ( = e e+ y = e e+ e = e. ) e Kontrolní otázky. Uveďte vzth pro výpočet ojemu těles, jehož plášť vznikne rotcí křivky y = f( x) kolem osy x.. Uveďte vzth pro výpočet ojemu těles při rotci kolem osy x, je-li rotující křivk dán prmetrickými rovnicemi
11 . Jk ude vypdt vzth pro výpočet ojemu těles, jestliže křivk dná prmetrickými rovnicemi ude rotovt kolem osy y? 4. Jk vypočtete ojem těles, jehož plášť vytvoří křivk y = x, x, při rotci kolem osy x? Jký ude ojem při rotci kolem osy y? 5. Jk vypočtěte ojem těles, jehož plášť vytvoří křivk y = + x, x, při rotci kolem osy x. Jké těleso vznikne? 6. Jk vypočtete ojem rotčního elipsoidu, jehož plášť vytvoří elips x + y = 4 při rotci kolem osy x (kolem osy y)? Úlohy k smosttnému řešení. Vypočtěte ojem rotčního těles, které vznikne rotcí rovinného orzce ohrničeného zdnými křivkmi kolem osy x : ) y = x ; x= y ) y= x ; x= y c) y = x ; y = x d) y = x; y = ; x= x e) y = x ; y = x f) y = tg x; y = ; x= ; x= 4 g) y = rcsin x; y = ; x= ; x= h) xy = 4; y = ; x = ; x = 4 x i) y = ; x 4y+ 5= j) x y = ; y = ; x = x k) x + y = 4; x+ y= l) y = sin x; y = ; x= ; x=. Vypočtěte ojem rotčního těles, které vznikne rotcí rovinného orzce ohrničeného zdnými křivkmi kolem osy y : = ; = ) y x x y ) y + x 4= ; x= x c) y = sin x; y = ; x= d) y = e ; y = ; x= ; x= x x e) y = x ; y = ; x = f) y = ; y = g) 4 y = x ; 4x= y h) y = ln x; y = ; y = ; x=
12 . Vypočtěte ojem rotčního těles, které vznikne rotcí rovinného orzce ohrničeného osou x dnou, prmetricky popsnou, křivkou při rotci kolem osy x : ) t x= t, y = t ; t ) x= t sin t, y = cos t; t c) x= sin t, y= cos t; t d) x= sin t, y = cos t; t Výsledky úloh k smosttnému řešení. ) ; ) ; c) ; d) 6 ; e) ; f) ; g) ; h) ; i) 7 ; j) (9 8ln ; k) 4ln ) 8 5 ; l).. ) ; ) ; 5 c) + ; d) 7 6 ) 5 ; c) ; d) 6. 5 ; e) e 4 96 ; f) ; g) ; h) 7 ( 5 e ).. ) ; 4-8 -
13 Kontrolní test. Vypočtěte ojem těles, jehož plášť vytvoří olouk křivky y = tg xpro x rotcí 4 kolem osy x. ) (4 ), ) ( ) / 4, c) (4 ) / 4, d) ( ).. Vypočtěte ojem těles, jehož plášť vytvoří olouk křivky xy = 6pro x otáčením kolem osy x. ) 6, ),4, c) 9,6, d) 5, 4.. Vypočtěte ojem těles, které vytvoří rovinný orzec ohrničený osmi x, y oloukem křivky y = cos( x ) otáčením kolem osy x. ) 5 +, ) 8 5, c) 8 5, d) Vypočtěte ojem těles, jehož plášť vytvoří olouk řetězovky ( x x y = e + e ) pro x. ) c) ( 8 4 e e 4 ) 4 + +, ) ( 8 e e 4 ) 4 +, d) 4 4 ( 8 ) 4 e e +, 4 4 ( 8 ) e e Vypočtěte ojem těles, které vznikne rotcí rovinného orzce ohrničené křivkmi x 5 x y = ( ) y = kolem osy x. 5 ) 8, ) 8 5, c) 6 5, d) Vypočtěte ojem úseče koule o poloměru r, je-li výšk úseče v < r. ) c) v ( r v), ) v ( r v), d) v ( r v), v ( r v)
14 7. Vypočtěte ojem těles, které vznikne rotcí rovinné olsti ohrničené křivkmi x y = x + 4y = 6v polorovině x kolem osy x. ) 6, ), c) 4, d). 8. Vypočtěte ojem těles, které vznikne rotcí rovinné olsti ohrničené křivkmi x y = x + 4y = 6v polorovině x kolem osy y. ), ) 4, c) 4, d). 9. Vypočtěte ojem těles, jehož plášť vytvoří olouk křivky x = 4cos t, y = sint pro t otáčením kolem osy x. 4 ) ( + 8), ) (5 + 8) c) (5 8), d) ( 5 + 8). t. Vypočtěte ojem těles, jehož plášť vytvoří olouk křivky x = cost+ lntg, y = sin t pro t otáčením kolem osy x. ), ), c), d). 6 4 Výsledky testu. c);. );. ); 4. ); 5. d); 6. ); 7. c); 8. d); 9. d);. ). Průvodce studiem Pokud jste správně odpověděli nejméně v 8 přípdech, pokrčujte dlší kpitolou. V opčném přípdě je tře prostudovt kpitolu. znovu. Shrnutí lekce Ojem rotčního těles, které vznikne rotcí křivočrého lichoěžník y f( x) pro x kolem osy x, vypočteme ze vzthu V = f ( x ) dx. Anlogicky pro ojem rotčního těles, které vznikne rotcí křivočrého lichoěžník x hy ( ) pro c y d - 8 -
15 d kolem osy y, užijeme vzth V = h ( y ) dy. Jelikož se v integrndu vyskytuje druhá c mocnin, nečiní ovykle výpočet příslušného integrálu větší prolémy. Ojemy oecnějších těles, která nejsou rotční, lze vypočítt pomocí dvojných neo trojných integrálů. Podronosti nleznete v textu Mtemtik III
R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na
Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.
VíceSeznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.
.4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli
Více3. APLIKACE URČITÉHO INTEGRÁLU
APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít
Více+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
Více18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.
I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce
VícePři výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu
Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je
VíceII. 5. Aplikace integrálního počtu
494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu
Více26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
Více6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
VíceSeznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.
Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že
VíceJak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:
.. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto
VíceMatematika II: Testy
Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit
VíceIntegrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)
Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh
Více5.2. Určitý integrál Definice a vlastnosti
Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)
Vícex + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26
Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz
VíceObsah rovinného obrazce
Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce
VíceMATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Petr Schreierová, Ph.D. Ostrv Ing. Petr Schreierová, Ph.D. Vsoká škol áňská Technická univerzit
VíceVýpočet obsahu rovinného obrazce
Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh
VíceSeznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.
Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti sttických mometů souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme že jste
VíceIntegrály definované za těchto předpokladů nazýváme vlastní integrály.
Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,
VíceKřivkový integrál prvního druhu verze 1.0
Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm
VíceIntegrální počet - II. část (určitý integrál a jeho aplikace)
Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)
VíceDigitální učební materiál
Digitální učení mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitnění výuky prostřednictvím ICT Číslo název šlony klíčové ktivity III/ Inovce zkvlitnění výuky prostřednictvím ICT Příjemce
VíceIII.4. Fubiniova (Fubiniho) věta pro trojný integrál
E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E
VíceLINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
VícePetr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)
VíceIntegrální počet - III. část (určitý vlastní integrál)
Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)
VíceGEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU
Integální počet funkcí jedné eálné poměnné - 4. - GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU PŘÍKLAD Učete plochu pod gfem funkce f ( x) = sinx n intevlu,. Ploch pod gfem nezáponé funkce f(x) se n intevlu,
Více11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
VíceMatematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné
Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.
VíceIntegrál a jeho aplikace Tomáš Matoušek
Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ
VícePři výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.
Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt
VíceKomplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.
7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1
Více8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
Více2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ
. INTEGRÁLNÍ POČET FUNKE JEDNÉ PROMĚNNÉ Při řešení technických prolémů, ve fyzice pod. je velmi čsto tře řešit orácenou úlohu k derivování. K zdné funkci f udeme hledt funkci F tkovou, y pltilo F f. Budeme
VíceVzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.
Vzdělávcí mteriál vytvořený v projektu OP VK Název školy: Gymnázium, Zářeh, náměstí Osvoození 20 Číslo projektu: Název projektu: Číslo název klíčové ktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro
VíceMatematické metody v kartografii
Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími
Více14. cvičení z Matematické analýzy 2
4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi
Více56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25
56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou
VíceVzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
VíceFunkce jedné proměnné
Funkce jedné proměnné Lineární funkce f: y = kx + q, D f = R, H f = R, grf je přímk množin odů [x, y], x D f, y = f(x) q úsek n ose y, tj. od [0, q], k směrnice, k = tn φ = 2 2 1 1, A[ 1, 2 ], B[ 1, 2
VíceHledání hyperbol
759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,
VíceKapitola Křivkový integrál 1. druhu Délka oblouku
x 5 x 6 x 7 x 8 pitol 3 řivkové integrály 3. řivkový integrál. druhu líčová slov: délk oblouku, délk křivky, křivkový integrál. druhu po oblouku, křivkový integrál. druhu po křivce, neorientovný křivkový
VíceVzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
VíceMasarykova univerzita
Msrykov univerzit Přírodovědecká fkult Diplomová práce Web k témtu: Integrální počet Bc. Ev Schlesingerová Brno 9 Prohlášení Prohlšuji, že jsem tuto diplomovou práci npsl sm s použitím uvedené litertury.
Víceintegrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.
Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze
Více3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
Více(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a
Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:
Víceje parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné
1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2
VíceGeometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.
4. přednášk Geometické zikální plikce učitého integálu Geometické plikce. Osh ovinného útvu A. Pokud se jedná o ovinný útv omezený osou přímkmi gem spojité nezáponé unkce pk je jeho osh dán učitým integálem
VíceV = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2
Odození zorců pro ýpočet objemů porchů některých těles užitím integrálního počtu Objem rotčního těles, které znikne rotcí funkce y f(x) n interlu, b kolem osy x, lze spočítt podle zorce b V f (x) dx Porch
VíceObsah na dnes Derivácia funkcie
Johnnes Kepler Dec 2, 57- Nov 5, 63 Mtemtik I Prednášjúci: prof. RNDr. Igor Podlný, DrSc. http://www.tke.sk/podln/ # Osh n dnes Deriváci fnkcie 74 KAPITOLA 3. FUNKCE JEDNÉ PROMĚNNÉ Určitý integrál 8. Vlstnosti
VícePříklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
VíceANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
Více6. URČITÝ INTEGRÁL Výpočet určitého integrálu Úlohy k samostatnému řešení... 68
Sbírka úloh z matematik 6. URČITÝ INTEGRÁL... 68 6.. Výpočet určitého integrálu... 68 Úloh k samostatnému řešení... 68 6.. Geometrické aplikace... 69 6... Obsah rovinného obrazce... 69 Úloh k samostatnému
Více17 Křivky v rovině a prostoru
17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,
Více6. Určitý integrál a jeho výpočet, aplikace
Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,
VíceLaboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:
Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou
VíceINTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL
INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci
VíceKapitola 8: Dvojný integrál 1/26
Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet
VíceURČITÝ INTEGRÁL FUNKCE
URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()
Víceje jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.
10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány
Více4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
VíceAž dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním
Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož
VíceAnalytická geometrie v rovině
nltická geometrie v rovině Souřdnicová soustv v rovině Zvolme v rovině dvě nvájem kolmé přímk číselné os. růsečík O těchto přímek nveme počátek souřdnic. Vodorovnou přímku ončíme osou svislou ončíme osou
VícePŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2
PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku
VíceKŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t
KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii
VíceZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.
VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální
VíceSprávné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010
právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),
VíceVIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
VíceSouhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A
Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty
Vícevás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět.
POKYNY KE STUDIU Pokyny ke studiu V úvodu si vysvětlíme jednotnou pevnou strukturu kždé kpitoly tetu, která by vám měl pomoci k rychlejší orientci při studiu Pro zvýrznění jednotlivých částí tetu jsou
VíceV předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
Více13. Exponenciální a logaritmická funkce
@11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze
Více2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
Více12 Trojný integrál - Transformace integrálů
Trojný integrál transformace integrálů) - řešené příklady 8 Trojný integrál - Transformace integrálů. Příklad Spočtěte x + y dxdydz, kde : z, x + y. Řešení Integrační obor určený vztahy z, x + y je válec.
VícePřehled základních vzorců pro Matematiku 2 1
Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,
Více1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
VíceKomplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0
Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny
Více8. cvičení z Matematiky 2
8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,
Vícef(x)dx, kde a < b < c
URČITÝ INTEGRÁL jeho plikce Newton-Leibnizov formule f(x)=f(b) F(), kde F (x)=f(x). Vlstnosti ) ) ) 4) Substituce f(x)+ c f(x)= f(x)= f(x)= b f(g(x))g (x)= f(x)= f(x) c f(x), kde < b < c pro fsudou, =
VíceNeřešené příklady z analýzy funkcí více proměnných
České vysoké učení technické v Prze Fkult elektrotechnická Neřešené příkldy z nlýzy funkcí více proměnných Miroslv Korbelář Pol Vivi Prh 16 Tento dokument byl vytvořen s podporou grntu RPAPS č. 1311/15/15163C5.
VíceMETODICKÝ NÁVOD MODULU
Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název modulu: Zákldy mtemtiky Zkrtk: ZM Počet kreditů: Semestr: Z/L Mentor: Petr Dolnský Tutor: Petr Dolnský I OBSAH BALÍČKU STUDIJNÍCH OPOR: ) Skriptum:
Více8.6. Aplikace určitého integrálu ve fyzice Index
8 Určitý integrál 8.. Integrování - sčitání mnoh mlých příspěvků.......................... 3 8.. Výpočet určitého integrálu.............................................9 8.3. Zákldní vlstnosti určitého
Více14 Kuželosečky v základní poloze
4 Kuželosečk v zákldní poloze Následující tet 4 7 se týkjí geometrie v rovině. Až dosud jsme studovli útvr lineární (v nltickém vjádření l vžd proměnné,, z v první mocnině). Nní se udeme zývt některými
VíceDvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
VíceNEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
VíceObecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
VíceJEDNODUCHÝ INTEGRÁL příklady. pro vysoké školy
JEDNODUCHÝ INTEGRÁL příkldy pro vysoké školy Bohemicus mthemticus doctor Pvel Novotný 0 Vzor citce: NOVOTNÝ, P. Jednoduchý integrál příkldy : pro vysoké školy. Bučovice : Nkldtelství Mrtin Stříž, 0. 6
Víceˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE
PŘEDNÁŠKA 9 DALŠÍ METODY INTEGRACE 1 9.1. Věta o substituci Věta 1 (O substituci) Necht je ϕ(x) prosté regulární zobrazení otevřené množiny X R n na množinu Y R n. Necht je M X, f(y) funkce definovaná
VíceDiferenciální počet. Spojitost funkce
Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti
VíceJsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.
Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce
VíceMATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. IV. Základy integrálního počtu
MATEMATIKA I. prof. RNDr. Gejz Dohnl, CSc. IV. ákldy integrálního počtu 1 Mtemtik I. I. Lineární lgebr II. ákldy mtemtické nlýzy III. Diferenciální počet IV. Integrální počet 2 Mtemtik I. IV. Integrální
Více[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2
4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch
Více7. Integrální počet Primitivní funkce, Neurčitý integrál
7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)
VíceDERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
Více9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie
9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu
Více