odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
|
|
- Libuše Pospíšilová
- před 7 lety
- Počet zobrazení:
Transkript
1 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé odhady. Itervalový odhad středí hodoty, rozptylu, relativí četosti Teoretická část Statistika Statistika je matematická disciplía, která vychází z empirických dat pozorováí), ze kterých pak dělá obecé závěry. Zabývá se řešeím problémů áhodých situací - apř. odhady hodot platé s určitou ppstí, ohodoceí rizik při rozhodováí, aj.. V teorii statistiky je áhodost a eurčitost modelováa pomocí teorie pravděpodobosti. Statistika ám také poskytuje soubor matematických metod postupů) pro pláováí experimetů, získáváí dat a jejich aalýzu a ásledou iterpretaci závěrů. Závěry a rozhodutí učiěé a základě statistických modelů mohou, ale emusí odpovídat realitě. Statistické postupy můžeme rozdělit a: Kofirmačí aalýzu, která se zabývá testováím předem přesě formulovaých hypotéz. Zjedodušeě řečeo, úkolem kofirmačí aalýzy je dávat odpovědi a otázky typu Je pravda, že...? Explorači aalýzu, při které eí dostatečě jasé, co vše může být výsledkem. Jejím cílem je vyčíst z dat maximum iformace, ispirace, poučeí to vše vzhledem k ějakému obecému, často vágě formulovaému problému apř. aalýza příči poruchovosti). Jako statistiku také ozačujeme hodoty, které získáme provedeím áhodého výběru Základí soubor Základí soubor představuje možiu všech prvků s kokrétími sledovaými vlastostmi. které jsou podrobey zkoumáí apř. obyvatelstvo ČR ke di..., výrobky vyrobeé v závodě Z v době od... do... ). Obvykle je teto soubor velmi rozsáhlý - může být koečý i ekoečý. Základí soubor je charakterizová charakteristikami středí hodota, rozptyl, variačí rozpětí, Výběrový soubor statistický soubor) Výběrový soubor představuje koečou podmožiu základího souboru - -tice reálých čísel, získaou a základě výsledků statistického experimetu. 1
2 Uspořádaý statistický soubor - Statistický soubor s uspořádaými prvky podle velikosti. Hodoty v souboru se mohou opakovat. x 1) x )... x ) Popisá statistika - defiuje výběrové charakteristiky statistiky, míry) výběrového souboru charakteristiky míry) polohy charakteristiky míry) variability Popisá statistika Charakteristiky polohy Aritmetický průměr Dále platí. x = x 1+x +...+x x i x) = 0. Pro libovolé a x platí: x i x) < x i a) Necht a, b R a položme y i = ax i +b pro i = 1,,...,, pak y = ax+b x je citlivý a hrubé chyby př. 8,00; 1,00; 15,00; 3,00; 1500 x = 311,60). Geometrický průměr x G = x 1.x.....x Geometrický průměr je používá pouze pro kladé hodoty x i. Využívá se zejméa pro určeí průměré hodoty tzv. řetězových idexů. Tj. echt x 0, x 1,..., x udávají počet jedotek apř. prodaých výrobků) v i- tém časovém období. Vývoj počtu jedotek prodeje) charakterizujeme pomocí řetězových idexů i 1 = x 1 x 0, i = x x 1,..., i = Pak lze vyjádřit x = x 0 i 1 i... i. Pak x = x 0 i G ) x x 1. Harmoický průměr x H = x 1 1 +x 1 +x x 1
3 Příklad: Auto jede do kopce rychlostí v 1 a po stejé dráze z kopce rychlostí v. Jaká je jeho průměrá rychlost? Řešeí: Délku tratě ozačme d, dobu jízdy do kopce t 1 = d v 1, dobu jízdy z kopce t = d v, průměrá rychlost je Pro jedotlivé typy průměrů platí: x H x G x Rovost je splěa když jsou všechy prvky x i shodé. d t 1 +t = v 1 1 +v 1 = v H Mediá x představuje prvek, který se ve statistickém uspořádaém souboru achází v poloviě. Představuje robustí míru polohy tz. eí citlivý a hrubé chyby. x = x m) ) pro liché, m = + 1)/ xm) + x m+1) pro sudé, m = / = 1 př. 8,00; 1,00; 15,00; 3,00; 1500 x = 15,00) Modus ˆx je ejčastěji se vyskytující hodota v souboru x 1, x,..., x Modus emusí být urče jedozačě. Charakteristiky variability Rozptyl σ = 1 x i x) σ = σ je směrodatá odchylka Výpočetí tvar rozptylu σ = 1 x i x) Necht a, b R a položme y i = ax i +b pro i = 1,,...,, pak σy = a σx resp. σ y = a σ x. Sa) = 1 x i a) abývá svého miima v bodě a = x. Výběrový rozptyl s = 1 x i x) 1 s = s je výběrová směrodatá odchylka. Výběrový rozptyl má lepší statistické vlastosti ež rozptyl a proto je používaější. s = σ 1 3
4 Pro velké hodoty řekěme > 100) jsou hodoty rozptylu a výběrového rozptylu skoro stejé. Začeí - ěkdy začíme rozptyl s a výběrový rozptyl s. Variačí rozpětí R = x ) x 1) je vyjádřeo v jedotkách x i. Variačí koeficiet v = R Variačí koeficiet ezávisí a jedotkách x x i. Necht a R a položme y i = ax i pro i = 1,,...,, pak v y = v x. Třídí rozděleí četosti Necht c 1 < c <... < c k 1 jsou daá čísla. Uvažujme itervaly: I 1 = ; c 1 ), I = [c 1, c ),..., I k 1 = [c k, c k 1 ), I k = [c k 1, ), které charakterizují jedotlivé třídy I 1, I,..., I k. 1,,..., k pak začí třídí četosti absolutí třídí četosti) pro ěž platí i i = Relativí třídí četosti 1,,..., k, pro ěž platí i i = 1 z j I j pro j = 1,,..., k je reprezetat třídy, zastupující hodoty třídy. Obvykle se volí uprostřed itervalu. Data rozděleá do třídích četostí zobrazujeme pomocí tyčkového diagramu, polygou ebo histogramem Náhodý výběr Náhodý výběr je charakterizová jako posloupost ezávislých stejě rozděleých áhodých veliči X 1, X,..., X, jejichž realizace začíme x 1, x,..., x. Realizace x 1, x,..., x jsou kokrétí reálá čísla a tvoří statistický soubor. Na základě hodot x 1, x,..., x statistického souboru, které jsou realizacemi stejé áhodé veličiy X 1 = X =... = X = X usuzujeme a vlastosti áhodé veličiy X, charakterizující základí soubor. Základí soubor je dále charakterizová distribučí fukcí F X), středí hodotou EX), rozptylem DX),.... Náhodý výběr x 1, x,..., x : je charakterizová empirickou distribučí fukcí, statistikami mírami) - aritmetický průměr, rozptyl, variačí rozpětí,... Pomocí odhadu parametrů budou specifikováy charakteristiky základího souboru. Poz. Stejě jako u statistických souborů se můžeme také setkat s pojmy uspořádaý áhodý výběr, áhodý výběr sdružeý do tříd, atp. 4
5 Odhady parametrů Na základě hodot statistického souboru hodot realizace áhodého výběru s vykresleým histogramem četostí) určíme, o jaký typ rozděleí pravděpodobosti by mohlo jít. Pro bližší specifikaci parametrů jedotlivých rozděleí jsou používáy bodové a itervalové odhady těchto parametrů. Bodové odhady Charakteristiku základího souboru odhadují a základě kokrétích charakteristik áhodého výběru. Necht x 1, x,..., x jsou realizace áhodého výběru áhodé veličiy X 1 = X =... = X = X, která má distribučí fukci F x; G), kde G je obecě ezámý parametr apříklad p, µ, σ, ρ, λ,...) Bodovým odhadem parametru G azveme libovolou statistiku áhodého výběru, která ezávisí a G. Ozačíme ji g = gx 1, x,..., x ). g = Ĝ. Bodové odhady vybraých charakteristik Necht X je áhodá veličia s koečou středí hodotou a x 1, x,..., x jsou realizace -krát ezávisle opakovaé veličiy X,pak bodovým odhadem středí hodoty je aritmetický průměr EX) = x = 1 x i bodovým odhadem rozptylu pro jdoucí do ekoeča, je veličia rozptyl DX) = σ = 1 x i x) bodovým odhadem rozptylu je veličia výběrový rozptyl s, tedy DX) = s = 1 x 1 i x) Itervalové odhady Charakteristiku základího souboru odhadujeme itervalem a pravděpodobostí, že uvedeá charakteristika bude ležet v daém itervalu. Necht x 1, x,..., x jsou realizace áhodého výběru áhodé veličiy X 1 = X =... = X = X, která má distribučí fukci F x; G), kde G je obecě ezámý parametr. Itervalovým odhadem kofidečím odhadem) parametru G je iterval g d ; g h ), který s daou pravděpodobostí 1 α obsahuje ezámý parametr G. Jedá se o iterval spolehlivosti pro parametr G s koeficietem spolehlivosti 1 α. Itervalové odhady dělíme a dvoustraý itervalový odhad P g d < G < g h ) = 1 α jedostraý levostraý, resp. pravostraý) itervalový odhad P g d < G) = 1 α P G < g h ) = 1 α. 5
6 g d a g h jsou vhodě určeé statistiky vycházející z realizací x 1, x,..., x a volby α. g d = g d x 1, x,..., x, α) a g h = g h x 1, x,..., x, α). Koeficiet 1 α azýváme koeficiet spolehlivosti odhadu spolehlivost odhadu). Hodotu α hladiu výzamosti) volíme obvykle 1%, 5% ebo 10%. Na zvoleém α závisí přesost odhadu = g h g d )/, která je také závislá a rozsahu výběrového souboru. Itervalové odhady parametru µ ormálího rozděleí pro zámou hodotu σ. Necht x je áhodá veličia s ormálím rozděleím Nµ, σ ) a x 1, x,..., x jsou realizace -krát ezávisle opakovaé veličiy X. Pak: dvoustraý iterval spolehlivosti pro parametr µ x u1 α σ ; x + u 1 α ) σ jedostraé itervaly spolehlivosti pro parametr µ x σ u1 α ; ) ) ; x + σ u1 α Itervalové odhady parametru µ ormálího rozděleí pro ezámou hodotu σ dvoustraý iterval spolehlivosti pro parametr µ x t1 α ν = 1) s ; x + t 1 α ν = 1) ) s jedostraý iterval spolehlivosti pro parametr µ x s t1 α ν = 1) ; ) ) ; x + s t1 α ν = 1) Kde t α ν = 1) je kvatil studetova t-rozděleí a s = 1 x 1 i x) je odhad rozptylu Itervalové odhady parametru σ Necht x je áhodá veličia s ormálím rozděleím Nµ, σ ) a x 1, x,..., x jsou realizace -krát ezávisle opakovaé veličiy X, pak dvoustraý iterval spolehlivosti pro parametr σ ) 1)s ; 1)s χ 1 α ν= 1) χ α ν= 1) jedostraý iterval spolehlivosti pro parametr σ 1)s χ 1 α ν= 1); ) ; 1)s χ α ν= 1) ) 6
7 10. Příklady 1. Na růzých svorkách byla v časovém itervalu postupě aměřea apětí: a),3,,4,15, V b) 0,,19,,1,0 V Vypočtěte průměré apětí pomocí aritmetického, geometrického a harmoického průměru. Zjištěé hodoty avzájem porovejte. Dále zjistěte modus, mediá, vypočtěte rozptyl, směrodatou odchylku jedotlivých statistických souborů. Určete variačí rozpětí. Řešeí a) x = 8 = 4, 667V, x 6 G = = 3, 36V, x H = 6 =, 79V. Modus=, mediá=,5, rozptyl=1,89, směrodatá odchylka=4,68v. Va-,15 riačí rozpětí=13v. b) x = 104 = 17, 33V, x 6 G = = 13, 84V, x H = 6 = 8, 05V. 1,19 Modus=0, mediá=0, rozptyl=47,89, směrodatá odchylka=6,9v. Variačí rozpětí=0v.. a) mějme realizaci áhodého výběru z rozděleí P oλ): 8, 6, 11, 7, 9, 9, 1, 13. Odhaděte parametr λ b) mějme realizaci áhodého výběru z rozděleí Nµ; σ ): 175, 186, 189, 169, 170, 184. Odhaděte parametry µ a σ c) mějme realizaci áhodého výběru z rozděleí Bi100; p): 3, 3, 3, 3, 6, 0, 0, 1,, 3. Odhaděte parametr p d) mějme realizaci áhodého výběru z rozděleí Expλ): 5,4; 9,4;,4; 1,6; 4,9; 14,1; 34,1; 9,3; 1,4. Odhaděte parametr λ Řešeí a) geerováo P o9, 38) b) geerováo N178; 74, 17) c) geerováo Bi100; 0, 04) d) geerováo Exp0, 09). 3. X je áhodá veličia s ormálím rozděleím Nµ, σ ). Náhodým výběrem byly získáy ásledující hodoty: 175, 186, 189, 169, 170, 184. Dále víme, že σ = 49. Spočtěte dvoustraý itervalový odhad pro parametr µ. Hladia výzamosti 7
8 α = 0, 05 Řešeí: Itervalový odhad - parametr µ leží s pravděpodobostí 95% v itervalu 173,3; 184,43). 4. X je áhodá veličia s ormálím rozděleím Nµ, σ ). Spočtěte dvoustraý itervalový odhad pro parametr σ a základě áhodého výběru: 175, 186, 189, 169, 170, 184. Hladia výzamosti α = 0, 05. Řešeí: Parametr σ s pravděpodobostí 95% leží v itervalu 8,9; 446,5). Výběrová směrodatá odchylka s = 74, Literatura s dalšími příklady Reif, Jiří: Metody matematické statistiky. Straa
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
VíceZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
VíceV. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
VíceIntervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
VíceP2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
VíceIntervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr
VíceSTATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
VícePro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,
Víceveličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
VíceCvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý
VícePopisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem
Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
Více4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
VíceZáklady statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková
Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují
VíceOdhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
VíceCvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu
Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia
VícePřednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti
Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou
VíceStatistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.
Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový
VíceMezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
Vícei 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky
Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí
Vícevají statistické metody v biomedicíně
Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk
Více14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
VíceTESTOVÁNÍ STATISTICKÝCH HYPOTÉZ
TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího
Vícevají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví
Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě
VíceParametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti
1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
VíceVYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
VíceElementární zpracování statistického souboru
Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými
Vícejako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
VícePopisná statistika. Zdeněk Janák 9. prosince 2007
Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46
VíceStatistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc
Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se
VícePři sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
VíceTestování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
VíceOdhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
Více6. P o p i s n á s t a t i s t i k a
6. P o p i s á s t a t i s t i k a 6.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme
Více14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou
4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,
VíceNEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
Více8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
Více2. Náhodná veličina. je konečná nebo spočetná množina;
. Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité
VícePevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.
evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické
Více8. Odhady parametrů rozdělení pravděpodobnosti
Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z
VícePřednáška VIII. Testování hypotéz o kvantitativních proměnných
Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?
Více0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p)
. Příklad Při průzkumu trhu projevilo 63 z dotázaých zákazíků zájem o iovovaý výrobek, který má být uvede a trh se zákazíky. Odvoďte a odhaděte proceto a počet zájemců v populaci s 95% spolehlivostí. Následě
VíceIntervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním
Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí
VíceNáhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.
Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího
Více13 Popisná statistika
13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický
Více1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );
1 PSE 1 Náhodý pokus, áhodý jev. Operace s jevy. Defiice pravděpodobosti jevu, vlastosti ppsti. Klasická defiice pravděpodobosti a její použití, základí kombiatorické vzorce. 1.1 Teoretická část 1.1.1
Více1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V
Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být
VíceÚloha III.S... limitní
Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími
VíceStatistika pro metrologii
Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých
VícePravděpodobnostní model doby setrvání ministra školství ve funkci
Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí
VíceUPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ
3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,
VíceZávislost slovních znaků
Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru
VícePravděpodobnost vs. statistika. Data. Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými
Pravděpodobost vs. Teorie pravděpodobosti pracuje s jedou ebo více teoretickými áhodými veličiami, jejichž je zámo odvozovali jsme y těchto atd. Šárka Hudecová Katedra pravděpodobosti a matematické Matematicko-fyzikálí
VíceDynamická pevnost a životnost Statistika
DŽ statistika Dyamická pevost a životost tatistika Mila Růžička, Josef Jreka, Zbyěk Hrbý mechaika.fs.cvt.cz zbyek.hrby@fs.cvt.cz DŽ statistika tatistické metody vyhodocováí dat DŽ statistika 3 tatistické
Vícezákladním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
Více1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
Více7. Odhady populačních průměrů a ostatních parametrů populace
7. Odhady populačích průměrů a ostatích parametrů populace Jak sme zišťovali v kapitole. e možé pro každou populaci sestroit možství parametrů, které i charakterizue. Pro účely základího pozáí e evýzaměší
Více8. Základy statistiky. 8.1 Statistický soubor
8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě
VícePřednášky část 7 Statistické metody vyhodnocování dat
DŽ ředášky část 7 tatistické metody vyhodocováí dat Mila Růžička mechaika.fs.cvt.cz mila.rzicka@fs.cvt.cz DŽ tatistické metody vyhodocováí dat Jak velké rozptyly lze očekávat mezi dosažeými pevostmi ebo
VíceÚloha II.S... odhadnutelná
Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí
VíceČeské vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika
České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35
VíceSTATISTIKA. Základní pojmy
Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci
Vícez možností, jak tuto veličinu charakterizovat, je určit součet
6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p
Více7. cvičení 4ST201-řešení
cvičící 7. cvičeí 4ST21-řešeí Obsah: Bodový odhad Itervalový odhad Testováí hypotéz Vysoká škola ekoomická 1 Úvod: bodový a itervalový odhad Statistický soubor lze popsat pomocípopisých charakteristik
VíceTeorie chyb a vyrovnávací počet. Obsah:
Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí
Více6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
VíceOdhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení
Odhad parametrů ormálího rozděleí a testy hypotéz o těchto parametrech * Věty o výběru z ormálího rozděleí Nechť, X, X je áhodý výběr z rozděleí N ( µ, ) X, Ozačme výběrový průměr a = X = i = X i i = (
VíceTento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
VíceMOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ
PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION 0/008 MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ STATISTICAL ASSESSMENT
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou
Víceprocesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze
limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí
Více2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.
0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace
VíceFITOVÁNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI PRO APLIKACE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF MATHEMATICS FITOVÁNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI
Více3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
Více8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
Více8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -
VícePoznÁmky k přednášce
NMSA331 Matematická statistika 1 PozÁmky k předášce Naposledy upraveo de 15. úora 2019. Katedra pravd podobosti a matematické statistiky Matematicko-fysikálí fakulta Uiversity Karlovy Teto učebí text představuje
VíceCo je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika
Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má
VíceNMSA331 Matematická statistika 1
NMSA331 Matematická statistika 1 POZNÁMKY K PŘEDNÁŠCE Naposledy upraveo de 29. prosice 2018. Katedra pravd podobosti a matematické statistiky Matematicko-fysikálí fakulta Uiversity Karlovy Teto učebí text
VíceAplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus
Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu
VíceZhodnocení přesnosti měření
Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek
Více3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a
VíceM - Posloupnosti VARIACE
M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,
VíceSprávnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
VíceNáhodný výběr, statistiky a bodový odhad
Lekce Náhodý výběr, statistiky a bodový odhad Parametr rozděleí pravděpodobosti je ezámá kostata, jejíž přímé určeí eí možé. Nástrojem pro odhad ezámých parametrů je áhodý výběr a jeho charakteristiky
VíceMetody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
Více