10. Soustava lineárních rovnic - substituční metoda
|
|
- Karla Beránková
- před 8 lety
- Počet zobrazení:
Transkript
1 @ Soustava lineárních rovnic - substituční metoda Jedna z metod, která se používá při řešení soustavy lineárních rovnic, se nazývá substituční. Nejlépe si metodu ukážeme na příkladech. Příklad: Řešte soustavu rovnic v R (1) 2x - y = 1 (2) x + 2y = 3 Postup: vybereme si jednu z rovnic a vypočteme jednu proměnnou (na druhou se budeme dívat jako na parametr) a získanou formuli vložíme do druhé rovnice. Kterou rovnici si zvolíme jako první, záleží výhradně na naší představivosti: snažíme se odhadnout, která nám umožní snazší práci. rozbor V našem případě je snadné vypočítat neznámou y z první rovnice (*) y = 2x - 1 Do druhé rovnice vložíme tento výsledek a dostaneme jednu rovnici pro jednu neznámou. a řešíme ji x + 2(2x - 1) = 3 5x - 2 = 3 5x = 5 x = 1 Po dosazení zpět do výrazu (*) vypočteme druhou neznámou y = = 1 kandidát řešení Přísně logicky uspořádaná dvojice [1; 1] je podezřelá z toho, že je řešením původní soustavy lineárních rovnic. Důkaz bude proveden teprve zkouškou. zkouška rovnice (1) L 1 = = 1 P 1 = 1 L 1 = P 1 rovnice (2) L 2 = = 3 P 2 = 3 L 2 = P 2 Úkol: Řešte soustavu rovnic 2x + 3y = 7 x - 2y = 0 pokračování výsledek
2
3 @115 Bohužel Pouhým dosazením zpaměti zjistíme, že trojice [3, 0, -5] vyhovuje druhé a třetí rovnici, ale první rovnici nevyhovuje. L 1 (3,0,-5) = (-5) = 6-15 = -9 P 1 znovu spočítejte
4 @118 zpět Prozkoumali jsme případ, kdy soustava lineárních rovnic má jediné řešení. Jak vypadá případ, kdy soustava nemá žádné řešení? Příklad: Řešte soustavu rovnic (1) x - z = 2 (2) y + z = 1 (3) x + y = 4 Řešení: rozbor (*) z první rovnice x = 2 + z (3)+(*) 2 + z + y = 4 (4) y + z = 2 (2) opsáno y + z = 1 Závěr: Není možné, aby součet čísel y a z jednou dával výsledek 1 (2. rovnice) a podruhé výsledek 2 (4. rovnice). Toto je ve sporu a proto zadaná sestava nemá řešení. Poznámka: Dostaneme-li během výpočtu soustavy rovnic nepravdivý výrok nebo spor podobný předchozího příkladu, je to důkazem, že soustava nemá řešení. Kdo potřebuje vidět nepravdivý výrok, zde je: z (4) y = 2 - z dosadit do (2) 2 z + z = 1 2 = 1 pokračování
5 @121 Bohužel znovu propočítejte
6 @124 zpět V předchozích příkladech jsme viděli, že v případě neexistence řešení soustavy rovnic se dopracujeme postupně k nepravdivému výroku. Podobně, při nekonečně mnoha řešeních, jsme se dopracovali ke vždy pravdivému výroku. Jen v případě jediného řešení jsme dostali jednu podezřelou trojici (kandidáta řešení), která se nakonec vždycky ukázala být řešením. Slovo podezřelou jsem záměrně zdůraznil. V souvislosti s řešením rovnic se často mluví o ekvivalentních úpravách a vyvozuje se z toho, že zkouška je zbytečná, že stejně vyjde. Tento příklad ukazuje, že zkouška je nutná, aby nás ochránila nikoli před chybou metody, ale před našimi vlastními chybami. Úkol: Kde je v postupu chyba? Původní soustava rovnic (1) 2x - 4y + z = -14 (2) x - 2y + 2z = 5 (3) -2x + y = 1 a řešení proběhlo takto (a) (*) ze (3) y = 1 + 2x (b) (2)+(*) x 2(1 + 2x) + 2z = 5 (c) x - 2-4x + 2z = 5 (d) -3x + 2z = 7 (e) 2z = 7 + 3x (f) (**) z = (7+3x)/2 (g) (1)+(*)+(**) 2x - 4(1 + 2x) + (7 + 3x)/2 = -14 (h) 4x - 8-8x x = -28 (i) -x = -27 (j) x = 27 (k) z (*) y = 55 (l) z (**) z = 44 Úkol: Kde je v postupu chyba? chyba je v přechodu z řádku (b) na řádek (c) chyba je v přechodu z řádku (g) na řádek (h) chyba je v přechodu z řádku (f) na řádek (l)
7 @113 zpět Řešte soustavu rovnic (1) 2x + 3y = 7 (2) x - 2y = 0 rozbor Výhodné je z druhé rovnice vypočítat neznámou x a výsledek dosadit do první rovnice. (*) x - 2y = 0 => x = 2y 2x + 3y = 7 => 2(2y) + 3y = 7 7y = 7 y = 1 dosazení výsledku do (*) x = 2.1 = 2 Kandidátem řešením je asi uspořádaná dvojice [2, 1] zkouška: L 1 = = 7 P 1 = 7 L 1 = P 1 L 2 = = 0 P 2 = 0 L 2 = P 2 pokračování
8 @116 Bohužel Pouhým dosazením zpaměti zjistíme, že trojice [0, 3, 0] vyhovuje pouze první rovnici, zatímco druhé a třetí rovnici nevyhovuje. L 2 (0,3,0) = = P 2 L 3 (0,3,0) = = P 3 znovu spočítejte
9 @119 zpět Jak vypadá případ, kdy soustava má nekonečně mnoho řešení? Příklad: Řešte soustavu rovnic (1) x - z = 2 (2) y + z = 1 (3) x + y = 3 Řešení: rozbor (*) z první rovnice x = 2 + z (3)+(*) 2 + z + y = 3 (4) y + z = 1 (2) opsáno y + z = 1 Z rovnice (1) a (3) jsme dostali rovnici (2). To je známkou toho, že existuje nekonečně mnoho řešení zadané soustavy rovnic. Hodnota jedné neznámé může být libovolné reálné číslo a zbývající dvě neznámé se musí dopočítat. Volme například z jako volnou proměnnou (budeme ji pokládat za parametr řešení). Z (2) vypočteme y (**) y = 1 z a spolu s (*) můžeme formulovat kandidáta řešení uspořádanou trojici [2+z,1-z,z] Zkouška: L 1 = (2+z) - z = 2 P 1 = 2 L 1 = P 1 L 2 = (1-z) + z = 1 P 2 = 1 L 2 = P 2 L 3 = (2+z) + (1-z) = 3 P 3 = 3 L 3 = P 3 Poznámka: Zkouška vyšla, vyhovuje všem třem rovnicím a proto soustava má nekonečně mnoho řešení; jsou to všechny uspořádané trojice [2+z, 1-z, z], kde z R Například tyto: [2; 1; 0], [3; 0; 1], [0; 3; -2], a další Tomuto postupu se říká parametrizace řešení. pokračování
10 @122 zpět Správně. Řešením soustavy rovnic x + y + z = 6 x - 2y + 2z = 3 x + 2y - 2z = -1 je uspořádaná trojice [1; 2; 3], jak dokazuje zkouška L 1 = = 6 P 1 = 6 L 1 = P 1 L 2 = = 3 P 2 = 3 L 2 = P 2 L 3 = = -1 P 3 = -1 L 3 = P 3 Příklad: Řešte soustavu rovnic (1) 2x - 4y + z = -14 (2) x - 2y + 2z = 5 (3) -2x + y = 1 Řešení: rozbor (*) ze (3) y = 1 + 2x (2)+(*) x 2(1 + 2x) + 2z = 5 x - 2-4x + 2z = 5-3x + 2z = 7 2z = 7 + 3x (**) z = (7+3x)/2 (1)+(*)+(**) 2x - 4(1 + 2x) + (7 + 3x)/2 = -14 4x - 8-8x x = -28 -x = -27 x = 27 z (*) y = = 55 z (**) z = ( )/2 = 44 Uspořádaná trojice [27; 55; 44] je kandidátem řešením soustavy zadaných rovnic. Zkouška: L 1 = = -122 P 1 = -14 L 1 P 1 L 2 = = 5 P 2 = 5 L 2 = P 2 L 3 = = 1 P 3 = 1 L 3 = P 3 Úkol: Výsledek předchozí zkoušky znamená, že někde jsme udělali v postupu chybu původní soustava lineárních rovnic nemá žádné řešení
11 @125 zpět Ovšemže je chyba v přechodu z řádku (g) na řádek (h) (g) 2x - 4(1 + 2x) + (7 + 3x)/2 = -14 (h) 4x - 8-8x x = -28 správně má být 4x x x = -28 Úkol: Jaké je řešení studované soustavy rovnic (1) 2x - 4y + z = -14 (2) x - 2y + 2z = 5 (3) -2x + y = 1 soustava rovnic nemá žádné řešení jediným řešením je uspořádaná trojice [1, 3, 5] jediným řešením je uspořádaná trojice [3, 7, 8]
12 @114 zpět Příklad: Řešte soustavu rovnic (1) 2x - 3y + z = -10 (2) x + y - z = 1 (3) 7x + 2y + z = 0 Řešení: poznámka: Při řešení soustavy 3 rovnic pro 3 neznámé substituční metodou si musíme dát pozor, abychom se nezapletli (častá chyba z nepozornosti)! Nejlépe z jedné vybrané rovnice vypočítat vhodnou neznámou a dosadit výsledek do obou zbývajících rovnic. Tak dostaneme 2 nové rovnice pro 2 neznámé a s nimi si již umíme poradit. Pozor zkouška se musí provést do rovnic zadaných na začátku. rozbor Třeba z rovnice (3) vypočteme neznámou z (*) z = -7x - 2y a dosadíme (1)+(*) 2x - 3y + (-7x - 2y) = -10 (4) -5x 5y = -10 (2)+(*) x + y - (-7x - 2y) = 0 (5) 8x + 3y = 1 Nyní řešíme soustavu rovnic (4) a (5). Z rovnice (4) vypočítáme y (**) y = 2 x a dosadíme do (5) 8x + 3(2 x) = 1 5x +6 = 1 x = -1 dosazením do (**) dostaneme y = 3 a dosazením do (*) z = 1 kandidát řešení původní soustavy rovnic je uspořádanou trojice [-1, 3, 1] zkouška L 1 = 2(-1) = = -10 P 1 = -10 L 1 = P 1 L 2 = (-1) = = -1 P 2 = -1 L 2 = P 2 L 3 = 7(-1) = = 0 P 3 = 0 L 3 = P 3 Úkol: Řešte soustavu rovnic 2x - y + 3z = -3 x - 2y = 3 3x + 2z = -1
13 Řešením je uspořádaná trojice [3; 0; -5] [0; 3; 0] [1; -1; -2]
14 @117 zpět Správně. Řešte soustavu rovnic (1) 2x - y + 3z = -3 (2) x - 2y = 3 (3) 3x + 2z = -1 rozbor Například tento postup z (2) rovnice vypočteme x (*) x = 3 + 2y (1)+(*) 2(3 + 2y) - y + 3z = -3 3y + 3z = -9 (4) y + z = - 3 (3)+(*) 3(3 + 2y) + 2z = -1 6y + 2z = -10 (5) 3y + z = - 5 (**) ze (4) y = -3 z (5)+(**) 3(-3 - z) + z = z + z = -5-2z = 4 z = - 2 z (**) y = -1 z (*) x = 1 kandidát řešení [1; -1; -2] zkouška L 1 = (-1) + 3(-2) = -3 P 1 = -3 L 1 = P 1 L 2 = 1 2.(-1) = 3 P 2 = 3 L 2 = P 2 L 3 = (-2) = -1 P 3 = -1 L 3 = P 3 Odpověď Řešením je tedy skutečně uspořádaná trojice [1; -1; -2]. pokračování
15 @120 zpět Parametrizace řešení je metoda, která se použije i v případě, že počet rovnic systému rovnic bude menší než počet neznámých. To si ale necháme do další lekce, kdy se budeme zabývat jinou metodou řešení. Úkol: Řešte soustavu lineárních rovnic x + y + z = 6 x - 2y + 2z = 3 x + 2y - 2z = -1 soustava nemá žádné řešení soustava má jediné řešení soustava má nekonečně mnoho řešení
16 @123 Bohužel. Neúspěšná zkouška pouze ukazuje, že trojice [27, 55, 44] není řešením. Kdyby soustava neměla mít žádné řešení, museli bychom při výpočtu dostat nepravdivý výrok, jak jsme si uvedli, a to jsme nedostali. pokračování
17 @126 Bohužel znovu propočítejte
18 @028 Správně. Dokazuje to i zkouška. L 1 = = -14 P 1 = -14 L 1 = P 1 L 2 = = 5 P 2 = 5 L 2 = P 2 L 3 = = 1 P 3 = 1 L 3 = P 3 KONEC LEKCE
11. Soustava lineárních rovnic - adiční metoda
@127 11. Soustava lineárních rovnic - adiční metoda Adiční neboli sčítací metoda spočívá ve dvou vlastnostech řešení soustavy rovnic: vynásobením libovolné rovnice nenulovým číslem se řešení nezmění, součtem
Více4. Lineární (ne)rovnice s racionalitou
@04 4. Lineární (ne)rovnice s racionalitou rovnice Když se řekne s racionalitou, znamená to, že zadaná rovnice obsahuje nějaký zlomek a neznámá je ve jmenovateli zlomku. Na co si dát pozor? u rovnic je
VíceÚvod do řešení lineárních rovnic a jejich soustav
Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové
Více6. Lineární (ne)rovnice s odmocninou
@06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou
Více9. Soustava lineárních rovnic
@097 9. Soustava lineárních rovnic Definice: Nechť x, y, z, t,... jsou reálné proměnné, a, b, c, d,... jsou reálné konstanty. Kombinace proměnných a konstant tvaru ax+b=0, ax+by+c=0, ax+by+cz+d=0, ax+by+cz+dt+e=0,
VíceNejprve si uděláme malé opakování z kurzu Množiny obecně.
@021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské
Více12. Soustava lineárních rovnic a determinanty
@7. Soustava lineárních rovnic a determinanty Determinanty x V této lekci si ukážeme řešení soustavy lineárních rovnic (dvou rovnici pro dvě neznámé a tří rovnic pro tři neznámé) pomocí determinantů. Definice:
Více9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je:
9. Soustavy rovnic Správný nadpis této kapitoly by měl znít soustavy lineárních rovnic o dvou neznámých, z důvodu přehlednosti jsem jej zkrátil. Hned v úvodu čtenáře potěším teorie bude tentokrát krátká.
VíceSoustavy rovnic pro učební obor Kadeřník
Variace 1 Soustavy rovnic pro učební obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy
Více1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
VíceM - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
VíceSOUSTAVY LINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA SOUSTAVY LINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
VíceM - Příprava na pololetní písemku č. 1
M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
VíceV exponenciální rovnici se proměnná vyskytuje v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto:
Eponenciální rovnice V eponenciální rovnici se proměnná vyskytuje v eponentu. Obecně bychom mohli eponenciální rovnici zapsat takto: a ( ) f ( ) f kde a > 0, b > 0 b Příkladem velmi jednoduché eponenciální
VíceM - Příprava na 1. zápočtový test - třída 3SA
M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento
VíceANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
Více2.3.7 Lineární rovnice s více neznámými I
..7 Lineární rovnice s více neznámými I Předpoklady: 01 Pedagogická poznámka: Následující hodinu považuji za velmi důležitou hlavně kvůli pochopení soustav rovnic, které mají více než jedno řešení. Proto
VíceSoustavy rovnic pro učební obory
Variace 1 Soustavy rovnic pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy rovnic
Více2.3.8 Lineární rovnice s více neznámými II
..8 Lineární rovnice s více neznámými II Předpoklady: 07 Tato hodina má dva cíle: Procvičit si řešení rovnic se dvěma neznámými z minulé hodiny. Zkusit vyřešit dodržováním pravidel a pochopením základů
VíceSoustavy lineárních rovnic
Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
VíceLineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic
Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních
VíceLogaritmická rovnice
Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,
VíceLINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je
VíceZ těchto kurzů shrneme poznatky, které budeme potřebovat: výčtem prvků
@00. Základní poznatky Umět řešit rovnice a nerovnice je jedna ze stěžejních úloh středoškolské matematiky. Řešit bez problémů základní rovnice by měl umět každý středoškolák, který získal maturitu (jakoukoli,
Více7. SOUSTAVY LINEÁRNÍCH A KVADRATICKÝCH ROVNIC
7. SOUSTAVY LINEÁRNÍCH A KVADRATICKÝCH ROVNIC 7.1. Řeš pro reálné neznámé a y soustavu lineárních rovnic: = 5 = 1 = 5 / 5 = 1 / 3 1 15y = 15 1+ 15y = 3 31 = 155 = 5 {[ ] K = 5; 5 = 5 / 7 = 1 / 14 1y =
VíceVariace. Lineární rovnice
Variace 1 Lineární rovnice Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice Rovnice je
VíceLineární rovnice pro učební obory
Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice
Více1 Soustavy lineárních rovnic
1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem
Více( ) ( ) Lineární nerovnice II. Předpoklady: Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < 3 :
.. Lineární nerovnice II Předpoklady: 00 Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < : Správné řešení. x < / + x 0 < + x / < x K = ( ; ) Test možné správnosti: x = :
VíceJednoduchá exponenciální rovnice
Jednoduchá exponenciální rovnice Z běžné rovnice se exponenciální stává, pokud obsahuje proměnnou v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: a f(x) = b g(x), kde a, b > 0. Typickým
VíceMatice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např.
Matice přechodu Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např. u příkladu 7 (v ) dostaneme: Nyní bychom mohli postupovat jako u matice homomorfismu
Více16. Goniometrické rovnice
@198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny
Více(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
VíceANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
VíceCVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
Více14. Exponenciální a logaritmické rovnice
@148 14. Exponenciální a logaritmické rovnice Rovnicím, které obsahují exponencielu resp. logaritmus, říkáme exponenciální resp. logaritmické rovnice. Při řešení exponenciálních a logaritmických rovnic
VíceSoustava 2 lineárních rovnic o 2 neznámých 3 metody: Metoda sčítací
Soustava 2 lineárních rovnic o 2 neznámých 3 metody: a Sčítací b Dosazovací c Substituce Metoda sčítací Cílem sčítací metody je sečíst 2 rovnice tak, aby se eliminovala odstranila jedna neznámá! Vždy se
Více64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
VíceSoustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
VíceCVIČNÝ TEST 17. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 17 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Jsou dány funkce f: y = x + A, g: y = x B,
VíceCVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 20 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Jsou dána tři celá čísla A, B, C. Zvětšíme-li číslo A o 1, číslo
VícePŘÍKLAD 6: Řešení: Příprava k přijímacím zkouškám na střední školy matematika 29. Určete, pro které x je hodnota výrazu 8x 6 rovna: a) 6 b) 0 c) 34
Příprava k přijímacím zkouškám na střední školy matematika 29 PŘÍKLAD 6: Určete, pro které x je hodnota výrazu 8x 6 rovna: a) 6 b) 0 c) 34 Chceme-li vypočítat hodnotu výrazu za daného předpokladu, pak
Více8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
VíceSoustavy dvou lineárních rovnic o dvou neznámých I
.3.10 Soustavy dvou lineárních rovnic o dvou neznámých I Předpoklady: 308 Pedagogická poznámka: Hodina má trochu netradiční charakter. U každé metody si studenti opíší postup a pak ho zkusí uplatnit na
Více1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
VíceSoustavy rovnic diskuse řešitelnosti
Tématická oblast Datum vytvoření 22. 8. 2012 Ročník Stručný obsah Způsob využití Autor Kód Matematika - Rovnice a slovní úlohy 4. ročník osmiletého gymnázia Řešení soustav dvou rovnic o dvou neznámých
VíceVZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
VíceCVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
VíceMO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší
VíceLineární funkce, rovnice a nerovnice 4 lineární nerovnice
Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především
VíceFunkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
VíceFunkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
VíceM - Příprava na 3. čtvrtletní písemnou práci
M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
Více2. Řešení algebraické
@016 2. Řešení algebraické Definice: Nechť a, c jsou reálná čísla. Rovnice v R (s neznámou x) daná formulí se nazývá lineární rovnice a ax + c = 0 se nazývají lineární nerovnice. ax + c 0 ax + c < 0 ax
VíceDigitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
VíceŘešení: 1. Metodou sčítací: Vynásobíme první rovnici 3 a přičteme ke druhé. 14, odtud x 2.
Soustav rovnic Metod řešení soustav rovnic o více neznámých jsou založen na postupné eliminaci neznámých Pro dvě lineární rovnice o dvou neznámých používáme metodu sčítací (aditivní), kd vhodně vnásobíme
VíceProjekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Číslo a proměnná Gradovaný řetězec úloh Téma: soustava rovnic, parametry Autor: Stanislav Trávníček
VícePolynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení
Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná
Více55. ročník matematické olympiády
. ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě
Více7. Důležité pojmy ve vektorových prostorech
7. Důležité pojmy ve vektorových prostorech Definice: Nechť Vje vektorový prostor a množina vektorů {v 1, v 2,, v n } je podmnožinou V. Pak součet skalárních násobků těchto vektorů, tj. a 1 v 1 + a 2 v
VíceLineární algebra. Soustavy lineárních rovnic
Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326
VíceŘešení slovních úloh pomocí lineárních rovnic
Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)
VíceCvičení z Numerických metod I - 12.týden
Máme systém lineárních rovnic Cvičení z Numerických metod I - týden Přímé metody řešení systému lineárních rovnic Ax = b, A = a a n a n a nn Budeme hledat přesné řešení soustavy x = x x n, b = b b n, x
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceNecht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
VícePříklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
Více( ) ( ) ( ) 2.3.11 Soustavy dvou lineárních rovnic o dvou neznámých II. Předpoklady: 2310
..11 Soustavy dvou lineárních rovnic o dvou neznámých II Předpoklady: 10 Pedagogická poznámka: V první části hodiny si studenti zopakuji nejdůležitější metody z minulé hodny. V druhé si pak zkusí méně
Více15. KubickÈ rovnice a rovnice vyööìho stupnï
15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných
VíceSvobodná chebská škola, základní škola a gymnázium s.r.o. Počítání rovnic za pomoci ekvivalentních úprav. Pravidla zacházení s rovnicemi
METODICKÝ LIST DA61 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Rovnice I. - základ Astaloš Dušan Matematika šestý/sedmý frontální, fixační
VíceMO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
VíceFunkce pro učební obory
Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
VíceMatematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar
Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Více5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Více(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,
1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo
VíceCVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
VíceROVNICE, NEROVNICE A JEJICH SOUSTAVY
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ ÚLOH ROVNICE, NEROVNICE A JEJICH SOUSTAVY CIFRIK C. Úloha 1 [kvadratická rovnice s kořeny y_1=x_1^2+x_2^2, y_2=x_1^3+x_2^3]
VícePřipomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
Více1 Diference a diferenční rovnice
1 Diference a diferenční rovnice Nechť je dána ekvidistantní síť uzlů x 0, x 1,..., x n tj. h R, h > 0 takové, že x i = x 0 + ih, i = 0, 1,..., n. Číslo h se nazývá krok. Někdy můžeme uvažovat i nekonečnou
VíceMatematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
VícePříklad z učebnice matematiky pro základní školu:
Příklad z učebnice matematiky pro základní školu: Součet trojnásobku neznámého čísla zvětšeného o dva a dvojnásobku neznámého čísla zmenšeného o pět se rovná čtyřnásobku neznámého čísla zvětšeného o jedna.
VíceKatedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text
VíceLineární funkce IV
.. Lineární funkce IV Předpoklady 0 Pedagogická poznámka Říkám studentům, že cílem hodiny není naučit se něco nového, ale použít to, co už známe (a možná se také přesvědčit o tom, jak se nemůžeme obejít
VíceALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE
ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
VíceŘešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
VíceDefinice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
VíceKlauzurní část školního kola kategorie A se koná
56. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1. rčete všechna reálná čísla s, pro něž má rovnice 4x 4 20x 3 + sx 2 + 22x 2 = 0 čtyři různé reálné kořeny, přičemž součin
Více1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
VíceM - Kvadratické rovnice
M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
VíceÚlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
VíceŘešení úloh TSP MU prezentace k výkladům na prezenčních kurzech ZKRÁCENÁ UKÁZKA PRO WEB Analytické myšlení ročník 2011, var. 07
Řešení úloh TSP MU prezentace k výkladům na prezenčních kurzech ZKRÁCENÁ UKÁZKA PRO WEB Analytické myšlení ročník 2011, var. 07 var. 07, úloha č. 51 Úloha č. 51 Víme, že polovina trasy z A do B měří na
VíceŘešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1
Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném
Více9.2. Zkrácená lineární rovnice s konstantními koeficienty
9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,
Více61. ročník matematické olympiády III. kolo kategorie A. Hradec Králové, března 2012
61. ročník matematické olympiády III. kolo kategorie Hradec Králové, 5. 8. března 01 MO 1. Najděte všechna celá čísla n, pro něž je n 4 3n + 9 prvočíslo. (leš Kobza) Řešení. Zadaný výraz lze jednoduchou
VíceÚlohy klauzurní části školního kola kategorie A
62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,
VícePoznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.
@083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x
Více