{Q={1,2};S,T;u(s,t)} (3.3) Prorovnovážnéstrategie s,t vehřesnulovýmsoučtemmusíplatit:
|
|
- Dušan Černý
- před 8 lety
- Počet zobrazení:
Transkript
1 3 ANTAGONISTICKÉ HRY 3. ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí na tom, jaká rozhodnutí zvolili. Matematickým modelem antagonistického konfliktu je hra v normálním tvaru s konstantním součtem: {Q={,2};S,T;u (s,t),u 2 (s,t)} u (s,t)+u 2 (s,t)=konst. prokaždé(s,t) S T (3.) Definice. Strategie s,t senazývajírovnovážnévehře(3.),platí-lipro každé s Sakaždé t T: u (s,t ) u (s,t ) azároveň u 2 (s,t) u 2 (s,t ) (3.2) Je-li speciálně součet ve hře(3.) nulový, budeme používat značení model tedy bude vypadat takto: u (s,t)=u 2 (s,t)=u(s,t); {Q={,2};S,T;u(s,t)} (3.3) Prorovnovážnéstrategie s,t vehřesnulovýmsoučtemmusíplatit: u(s,t ) u(s,t ) u(s,t) provšechna s S, t T. (3.4) Hodnota u(s,t )senazývácenahry. Lze dokázat, že ke každé hře tvaru(3.) s konstantním součtem lze přiřadit hru v normálním tvaru s nulovým součtem, která je s původní hrou strategicky ekvivalentní, tj. každá dvojice strategií s, t, které jsou rovnovážné v původní hře, představuje dvojici rovnovážných strategií i v příslušné hře s nulovým součtem a naopak. Přesněji: Věta. Nechť(3.)jehraskonstantnímsoučtemrovným K.Potom s,t jsou rovnovážnéstrategievehře(3.)tehdyajentehdy,jsou-li s,t rovnovážnéstrategie vehřesnulovýmsoučtem(3.3),kde u(s,t)=u (s,t) u 2 (s,t).
2 3.2 MATICOVÉ HRY Hru dvou hráčů s nulovým součtem a konečnými prostory strategií lze zadat pomocí matice A, A= S= {s,s 2,...s m }, T= {t,t 2,...t n } (3.5) = u (s,t ) u (s,t 2 )... u (s,t l ) u (s 2,t ) u (s 2,t 2 )... u (s 2,t l ) u (s k,t ) u (s k,t 2 )... u (s k,t l ) (3.6) jejíž prvky udávají hodnoty výplatní funkce prvního hráče(výplatní funkce druhého hráčemávždyopačnouhodnotu):prvek a ij jerovenhodnotěvýplatnífunkceprvního hráče,zvolil-listrategii s i aprotivníkzvolilstrategii t j.protaktozadanéhryse používá označení maticové hry. Rovnovážné strategie v maticové hře Základní myšlenka, jak nalézt optimální strategie obou hráčů, vychází z toho, že zvýšení zisku jednoho hráče je rovno zvýšení ztráty hráče druhého; chce-li nyní hráč pro sebe získat co nejvyšší zisk, usiluje zároveň o co nejvyšší ztrátu protivníka. Každý hráč proto nyní předpokládá, že jej jeho oponent chce co nejvíce poškodit a při volbě svých strategií postupuje následujícím způsobem. Pro každou svou strategii uvažuje všechny možné strategie oponenta a nalezne pro sebe nejhorší možný výsledek. Pak zvolí tu strategii, pro kterou je tento nejhorší výsledek co nejlepší postupuje tedy cestou nejmenšíhozla. Prvníhráčtedyprokaždousvoustrategii s i,tj.prokaždýřádek i {,2,...,m} matice, nalezne imální prvek, který pro danou strategii představuje imální zaručenou výhru bez ohledu na volbu protivníka. Pak vybere tu strategii, neboli ten řádek, kde je toto imum nejvyšší a tím i nejvyšší zaručená výhra. Podobně postupuje druhý hráč. Pro něj je nejhorší možností ta nejvyšší hodnotavýhryprvníhohráče;protoprokaždousvoustrategii t i,tj.prokaždýsloupec j {,2,...,n}matice,naleznemaximální prvek,kterýprodanoustrategii představuje maximální zaručenou prohru bez ohledu na volbu protivníka. Potom vybere tu strategii, neboli ten sloupec, kde je toto maximum nejmenší, neboli kde je maximální prohra co nejnižší: Hráč2 Hráč s s 2. s k t t 2... t l u (s,t ) u (s,t 2 )... u (s,t l ) u (s 2,t ) u (s 2,t 2 )... u (s 2,t l ) u (s k,t ) u (s k,t 2 )... u (s k,t l ) Hráč: tj u (s i,t j ) MAX Hráč2: max si u (s i,t j ) MIN 2
3 Zřejmě platí: max s i t j u (s i,t j ) max u (s i,t j ) (3.7) t j s i Platí-li ve vztahu(3.7) rovnost, pak společná hodnota u(s,t )=max s i t j u (s i,t j )=max u (s i,t j ) (3.8) t j s i představujecenuhryadvojicestrategií(s,t )jerovnovážnýmbodem. Prvek u(s,t )mátuvlastnost,žejesoučasněnejmenšínařádkuanejvětší ve sloupci, proto se nazývá sedlový prvek matice. Příklad. Uvažujme hru s maticí Hráč2 t t 2 t 3 t 4 Hráč s s 2 s k max: max s t u (s i,t j )=4= t Dvojicestrategií(s,t 3 )jerovnovážnýmbodemhry. Bohužel, ne vždy sedlový prvek existuje: Příklad. maxu (s i,t j )=u (s,t 3 ) s Hráč2 t t 2 t 3 Hráč s s s k 0 max: max s t Podobně pro matice: ( A= u (s i,t j )= < t maxu (s i,t j )= s ) ( 0 5/2 2, B= 3 ). (3.9) 3
4 V těchto případech nezbyde než zavést smíšené strategie. Uvažujme nový model dané rozhodovací situace, původně popsané maticovou hrou s maticí(3.6): Definice 2. Mějme maticovou hru s prostory strategií(3.) a maticí hry(3.6). Hru dvou hráčů s nulovým součtem s prostory strategií S s = {p; p=(p,p 2,...p m ), p + p 2 + +p m =, p o} T s = {q; q=(q,q 2,...q n ), q + q 2 + +q n =, q o} (3.0) a s výplatní funkcí m n π(p,q)= p i a ij q j = paq T (3.) i= j= nazveme smíšeným rozšířením původní maticové hry. Prvky původních prostorů strategií S, T se nazývají ryzí strategie, prvky prostorů S s,t s,kteréudávajírozdělenípravděpodobnostínaprostoruryzíchstrategií, se nazývají smíšené strategie. Věta 2. Základní věta maticových her. Smíšené rozšíření každé maticové hry má řešení v rovnovážných strategiích. Jinýmislovy,prokaždoumatici Aexistujívektory p S s,q T s,prokteré platí: paq T p Aq T p Aq T provšechna p S s, q T s. (3.2) Ještě jinak: Věta. Vždyexistujísmíšenéstrategie(p,q ),prokteré π(p,q )=max p q π(s i,t j )=max π(s q i,t j ) p Věta 3. Rovnovážné strategie smíšeného rozšíření maticové hry se nemění, přičtemelikekaždémuprvkumaticehrytotéžkladnénebozápornéčíslo c.cenahrystakto pozměněnoumaticíje v+ c,kde vjecenapůvodníhry. 4
5 3.3 GRAFICKÉ ŘEŠENÍ MATICOVÝCH HER PROMATICETYPU(2, n) Středníhodnotyvýhryhráčepřismíšenéstrategii(p, p)apřiryzíchstrategiích hráče 2: Hledáme Nejprve budeme uvažovat funkci g j (p)=pa j +( p)a 2j, j=,2,...,n. (3.3) p :=arg max p 0, g j(p). (3.4) j=,2,...,n ϕ(p):= j=,2,...,n g j(p). (3.5) Tato funkce je konkávní, po částech lineární, snadno nalezneme bod jejího maxima. Hledaná cena hry je potom rovna v= ϕ(p ):= max ϕ(p) (3.6) p 0, ahledanásmíšenárovnovážnástrategiehráčeje(p, p ). Nastává-liextrémvbodě p,kde g j (p )=g k (p )=vprojednoznačněurčené strategie j, k pak složky smíšené rovnovážné strategie hráče 2 s indexy různými od j, k jsou rovny nule. Složky, které mohou být nenulové, získáme vyřešením soustavy a j q j + a k q k = v, q j + q k =, q j 0, q k 0, (3.7) nebo a 2j q j + a 2k q k = v, q j + q k =, q j 0, q k 0. (3.8) 5
6 Příklad. Grafické určení rovnovážných strategií pro hru s maticí ( ) 5 5/ g(p) g (p) = 5p+4( p)=p+4 g 2 (p) = 5 p+8( p)= 2 2 p+8 g 3 (p) = 3p+6( p)= 3p+6 8 g 2 (p)= 2 p+8 6 g 3 (p)= 3p+6 g (p)=p+4 4 ϕ(p)= j=,2,...,n g j(p) 0 2 p Grafické řešení antagonistické hry Funkce ϕ(p)nabývásvéhomaximavbodě p= 2,hodnotatohotomaximaje Vyřešením soustavy rovnic získáme q =0.75, q 2 =0.25. Rovnovážný bod je tedy v(m)=4.5. 5q +3q 3 =4.5, q + q 3 =, q 0, q 3 0, p = ( ) ( ) 3 2,, q = 2 4,. 4 6
7 3.4 OBECNÉ ŘEŠENÍ MATICOVÝCH HER LINEÁRNÍ PROGRAMOVÁNÍ Uvažujme maticovou hru s maticí a smíšené strategie A= (3.9) p=(p,p 2,...,p m ), p + p 2 + +p m =, p i 0 i {,2,...,m}, q=(q,q 2,...,q n ), q + q 2 + +q n =, q j 0 j {,2,...,n}. Předpokládejme, že všechny prvky matice A jsou kladné(pokud by nebyly, mohli bychom ke všem prvkům matice přičíst dostatečně vysokou kladnou konstantu c, čímž se podle věty 3 z hlediska strategií nic nezmění). Postup je podobný, jako v případě hledání ryzích rovnovážných strategií. Prvníhráčhledáprolibovolné,alevtutochvílipevné psvouimálnízaručenou výhru h. Uvažujme Zřejmě je h= j {a jp + a 2j p 2 + +a mj p m }. (3.20) h a j p + a 2j p 2 + +a mj p m provšechna j {,2,...,n}. (3.2) Pro každé j udává výraz vpravo očekávanou výhru prvního hráče při jeho smíšené strategii paryzístrategii t j druhéhohráče.očekávanáhodnotavýhry π(p,q)pro smíšenou strategii q druhého hráče je pak lineární kombinací těchto hodnot s koeficienty q,q 2,...,q n,jejichžsoučetjeroven.snadnosimůžemeuvědomit,že nerovnost(3.2) zůstane zachována, bude-li na pravé straně uvedená lineární kombinace: m (q + q 2 + +q n ) } {{ } h q h q (a p + a 2 p 2 + +a m p m ) q 2 h q 2 (a 2 p + a 22 p 2 + +a m2 p m ) q n h q n (a n p + a 2n p 2 + +a mn p m ) i= n p i a ij q j = π(p,q) j= h π(p, q) Hodnota h je proto imální zaručenou výhrou hráče, ať již jeho protivník zvolí jakoukoli ryzí či smíšenou strategii(vzhledem k(3.20) je h největší číslo splňující poslední nerovnost). 7
8 Nerovnosti(3.2) vydělme hodnotou h p a j h + a p 2 2j h + +a p m mj h aoznačme y i = p i h ; zřejměplatí: y + y 2 + +y m = h. Obdržíme nerovnost a j y + a 2j y 2 + +a mj y m. (3.22) Maximalizovat imální zaručenou výhru znamená maximalizovat h, tj. Minimalizovat při omezeních h = y + y 2 + +y m a j y + a 2j y 2 + +a mj y m, j=,2,...,n. (3.23) To je přesně duální úloha lineárního programování, která nám jako výsledek poskytne příslušnou strategii p. Prodruhéhohráčejepostupanalogický.Druhýhráčhledá haqtak,aby h a i q + a i2 q 2 + +a in q n provšechna i {,2,...,m}, (3.24) přičemžopět q + q 2 + +q n =,q j 0provšechna j {,2,...,n}. Vydělme nerovnost(3.24) hodnotou h q a i h + a q 2 i2 h + +a n inq h aoznačme x j = q j h ; zřejměplatí: x + x 2 + +x n = h. Obdržíme nerovnost a i x + a i2 x 2 + +a in x n. (3.25) Minimalizovat h tedy znamená: maximalizovat při omezeních h = x + x 2 + +x n a i x + a i2 x 2 + +a in x n, i=,2,...,m. (3.26) To je odpovídající primární úloha lineárního programování(aby h byla cenahry,jetřeba,abytovoboupřípadechbylototéžčíslo). 8
3. ANTAGONISTICKÉ HRY
3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
VíceANTAGONISTICKE HRY 172
5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí
VíceOperační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.
Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky
VíceA0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly
Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková
Více2 Spojité modely rozhodování
2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A
VíceOperační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.
Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty
VíceTeorie her a ekonomické rozhodování. 2. Maticové hry
Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru
Více4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)
4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2
VíceVYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Model tahové hry s finančními odměnami
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Obor: Statistika a ekonometrie Název bakalářské práce Model tahové hry s finančními odměnami Autor: Vedoucí bakalářské práce: Rok: 009 Markéta
VíceÚvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
VíceÚvod do teorie her. David Bartl, Lenka Ploháková
Úvod do teorie her David Bartl, Lenka Ploháková Abstrakt Předložený text Úvod do teorie her pokrývá čtyři nejdůležitější, vybrané kapitoly z této oblasti. Nejprve je čtenář seznámen s předmětem studia
VíceTeorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)
Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada
VíceKOOPERATIVNI HRY DVOU HRA CˇU
8 KOOPERATIVNÍ HRY DVOU HRÁČŮ 291 V této kapitole se budeme zabývat situacemi, kdy hráči mohou před začátkem hry uzavřít závaznou dohodu o tom, jaké použijí strategie, vygenerovaný zisk si však nemohou
VíceÚvod do teorie her. podzim 2010 v.1.0
Úvod do teorie her podzim 2010 v.1.0 1 Obsah 1 Matematická teorie her 3 1.1 Matematický model.................................. 3 1.2 Maticové hry...................................... 6 1.3 Bi maticové
Více2 HRA V EXPLICITNÍM TVARU
2 HRA V EXPLICITNÍM TVARU 59 Příklad 1 Hra Nim. Uvažujme jednoduchou hru, kdy dva hráči označme je čísly 1, 2 mají před sebou dvě hromádky, z nichž každá je tvořena dvěma fazolemi. Hráč 1 musí vzít z jedné
Více1/10. Kapitola 12: Soustavy lineárních algebraických rovnic
1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11
VíceMatice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.
Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice
VíceÚvod do teorie her
Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu
VíceDva kompletně řešené příklady
Markl: Příloha 1: Dva kompletně řešené příklady /TEH_app1_2006/ Strana 1 Dva kompletně řešené příklady Úvod V této příloze uvedeme úplné a podrobné řešení dvou her počínaje jejich slovním neformálním popisem
VíceJazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
VíceLenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012
Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z
VíceKATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Více5. Maticová algebra, typy matic, inverzní matice, determinant.
5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.
VíceSkalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )
LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava
VíceSoustavy lineárních rovnic
7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,
VíceRegulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.
Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice
VíceMatematika pro studenty ekonomie
w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY
VíceVícekriteriální hodnocení variant metody
Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Metody vícekriteriální hodnocení variant (VHV) Jak jsme již zmiňovali, VHV obecně neposkytuje
VíceKapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
VíceJak pracovat s absolutními hodnotami
Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.
Více10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
VíceSoučin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.
Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VíceVektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
VíceRozhodovací procesy v ŽP HRY A SIMULAČNÍ MODELY
Rozhodovací procesy v ŽP HRY A SIMULAČNÍ MODELY Teorie her proč využívat hry? Hry a rozhodování varianty her cíle a vítězné strategie (simulační) Modely Operační hra WRENCH Cv. Katedra hydromeliorací a
Více11 Soustavy rovnic a nerovnic, Determinanty a Matice
11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceVektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
VíceMnožinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
VíceUčební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,
VíceLineární programování
Lineární programování Úlohy LP patří mezi takové úlohy matematického programování, ve kterých jsou jak kriteriální funkce, tak i všechny rovnice a nerovnice podmínek výhradně tvořeny lineárními výrazy.
VíceSkalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.
Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný
VíceDeterminant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.
[] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá
Více3. Matice a determinanty
. Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl
Vícefakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceNěkolik poznámek na téma lineární algebry pro studenty fyzikální chemie
Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);
Více1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
VíceVI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceRegresní a korelační analýza
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)
VíceTGH13 - Teorie her I.
TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,
VíceÚvod do teorie her ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ
ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Úvod do teorie her David Bartl, Lenka Ploháková OSNOVA Úvod (hra n hráčů ve strategickém
Více12 HRY S NEÚPLNOU INFORMACÍ
12 HRY S NEÚPLNOU INFORMACÍ 543 Ne v každé hře mají všichni hráči úplné informace o výplatních funkcích ostatních. Ve skutečnosti je většina situací s informací neúplnou. Například: V aukcích zpravidla
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
VíceRozhodování při riziku, neurčitosti a hry s neúplnou informací. Rozhodování při riziku
Rozhodování při riziku, neurčitosti a hry s neúplnou informací Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Výkladová část 1) Rozhodování při riziku a neurčitosti I. Rozhodování
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Více8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
VíceOperace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.
1 Sylvestrova věta Platí: Nechť A je symetrická matice řádu n, označme a 11 a 12... a 1i a D i = 21 a 22... a 2i.... a i1 a i2... a ii Pak A(a příslušná KF) je pozitivně definitní, právěkdyž D i >0provšechna
Vícea m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.
1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její
Více7. Důležité pojmy ve vektorových prostorech
7. Důležité pojmy ve vektorových prostorech Definice: Nechť Vje vektorový prostor a množina vektorů {v 1, v 2,, v n } je podmnožinou V. Pak součet skalárních násobků těchto vektorů, tj. a 1 v 1 + a 2 v
VíceÚvod do optimalizace
Přednáška Ú-Opt, February 19, 2006:1324 Petr Lachout 1 Úvod do optimalizace Prof. RNDr. Jitka Dupačová, DrSc. Doc. RNDr. Petr Lachout, CSc. KPMS MFF UK Verze 19. února 2006 2 Obsah 1 Úvod 5 2 Optimalizace
VíceKOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ?
KOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekonomická vědní disciplína, která se
Více(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
VíceSymetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
VíceGymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11
Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně
VíceKapitola 1. Tenzorový součin matic
Kapitola 1 Tenzorový součin matic Definice 1.1. Buď F komutativní těleso. Pro matice A F m n a B F r s definujeme tenzorový součin A B jako matici o rozměru mr ns zapsanou blokově: A 11 B A 12 B A 1n B
VíceFakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
Více1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Více2. KONEČNÉ HRY 2 HRÁČŮ
Markl: Konečné hry 2 hráčů /TEH_2_2006.doc/ Strana 1 2. KONEČNÉ HRY 2 HRÁČŮ Definice 2.1: Konečná hra dvou (racionálních) hráčů je speciální případ hry v normálním tvaru (viz definice 1.1.2)
VíceTeorie informace a kódování (KMI/TIK)
Teorie informace a kódování (KMI/TIK) Bezpečnostní kódy Lukáš Havrlant Univerzita Palackého 13. listopadu 2012 Konzultace V pracovně 5.076. Každý čtvrtek 9.00 11.00. Emaily: lukas@havrlant.cz lukas.havrlant@upol.cz
Více1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
VíceJiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,
VíceOperace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
VíceMaticový a tenzorový počet
Maticový a tenzorový počet Doc. RNDr. Martin Kovár, Ph.D. Ústav matematiky Fakulta elektrotechniky a komunikačních technologií VUT v Brně Obsah. Test vstupních znalostí............................. 5 Matice
VíceStochastické modely: prezentace k přednášce
Stochastické modely: prezentace k přednášce Jan Zouhar Katedra ekonometrie FIS VŠE v Praze 27. října 2015 Obsah 1 Úvod do náhodných procesů 2 MŘ s diskrétním časem a konečným počtem stavů Základní pojmy
VíceTeorie her a ekonomické rozhodování 5. Opakované hry
Teorie her a ekonomické rozhodování 5. Opakované hry (chybějící či chybná indexace ve skriptech) 5.1 Opakovaná hra Hra až dosud hráči hráli hru jen jednou v reálu se konflikty neustále opakují (firmy nabízí
Víceskladbu obou směsí ( v tunách komponenty na 1 tunu směsi):
Klíčová slova: simplexová metoda 1 Simplexová metoda Postup výpočtu: 1. Nalezení výchozího řešení. 2. Test optima: pokud je řešení optimální výpočet končí, jinak krok 3. 3. Iterační krok, poté opět test
Více2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC
22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se
VíceOperace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
VíceSoustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Více4EK213 Lineární modely. 12. Dopravní problém výchozí řešení
4EK213 Lineární modely 12. Dopravní problém výchozí řešení 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování
VíceDeterminanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
VíceNejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
VíceDerivace a průběh funkce.
Derivace a průběh funkce. Robert Mařík 14. října 2008 Obsah 1 Základní myšlenky. 2 2 Přesné věty a definice 10 3 Okolí nevlastních bodů. 16 4 Sestrojení grafu funkce. 19 1 Základní myšlenky. y x Uvažujme
VíceDva podniky vedou mezi sebou spor, k jehož vyřešení může každý z nich podniknout jednu
Zadání příkladu: Dva podniky vedou mezi sebou spor, k jehož vyřešení může každý z nich podniknout jednu ze tří akcí: a/ žalovat druhý podnik u soudu strategie Z b/ nabídnout druhému podniku spojení strategie
VíceEuklidovský prostor Stručnější verze
[1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)
Více2. Matice, soustavy lineárních rovnic
Matice, soustavy lineárních rovnic Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Irena Sýkorová Některé vlastnosti matic Uvažujmečtvercovoumatici A=(a ij ) n n Matice Asenazývásymetrická,jestližeplatí
VíceIB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
VíceEduard Šubert: Koktejl nápoj je vektorem z lineárního obalu ingrediencí.
Eduard Šubert: Koktejl nápoj je vektorem z lineárního obalu ingrediencí. V roce 2012 se na katedře matematiky FJFI ČVUT v Praze konala Matematická fotosoutěž. Vítězný snímek týkající se právě lineární
Více4EK311 Operační výzkum. 4. Distribuční úlohy LP část 1
4EK311 Operační výzkum 4. Distribuční úlohy LP část 1 4. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování (plánování
VíceMatematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
VíceOperační výzkum. Přiřazovací problém.
Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326
Více2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů
Klíčová slova: Dopravní problém, Metody k nalezení výchozího ˇrešení, Optimální ˇrešení. Dopravní problém je jednou z podskupin distribuční úlohy (dále ještě problém přiřazovací a obecná distribuční úloha).
Více1 1 3 ; = [ 1;2]
Soustavy lineárních rovnic - Příklady k procvičení ) + y= y= [ ; ] ) + y= = ) y= y 0 y ; + = [ ;] ) y= + y= [ ;] ) + y= = ; ) y= = y ) y = y= 8) y= + y= 9) = 8 y 0) y=, y= ) a+ = a b ) = y 9 ) u ( ) v
Více4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina
VíceMATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
VíceUčební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
VíceMatice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
VíceZáklady maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
Více