a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a
|
|
- Emil Bartoš
- před 8 lety
- Počet zobrazení:
Transkript
1 Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme polynom P (x), potom si ho vyjádříme jako lineární kombinaci vektorů x 2 1, x 2 +x 1, x 2 +x. Vektor koeficientů této lineární kombinace je vektor souřadnic polynomu P (x) vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). P (x) 1(x 2 + x 1) + 1(2x 2 x 1) 1(x 2 + x + 2) 2x 2 x 4 a(x 2 1) + b(x 2 + x 1) + c(x 2 + x) (a + b + c)x 2 + (b + c)x + ( a b) Rovnají-li se dva polynomy, rovnají se jejich koeficienty u odpovídajících mocnin, tedy a + b + c 2 b + c 1 a b 4 Tato soustava má jediné řešení a to a 3, b 1, c 2. Souřadnice polynomu P (x) vzhledem k bázi (x 2 1, x 2 + x 1, x 2 + x) jsou (3, 1, 2). 2. Najděte všechna řešení maticové rovnice BX X C, kde B , C BX X C (B E)X C X (B E) 1 C X Spočtěte determinant matic A a A 1, jestliže a IR a A a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a Matici nejprve upravíme, např. takto: Od druhého sloupce odečteme dvojnásobek 1. sloupce, od 3. a od 4. sloupce odečteme 1. sloupec. Při těchto úpravách se determinant nezmění.potom uděláme rozvoj podle 1. řádku. Ve čtvercové matici řádu 3 pak můžeme ještě od 3. a od 4. sloupce odečíst sloupec 2. a udělat rozvoj podle 3. řádku a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a ( 1) a a ( 1)4 ( 1)( 1) 1 Tedy deta 1. Podle Laplaceovy věty platí deta deta 1 det(a A 1 ) dete 1, takže pro všechna a IR je deta 1 1.
2 4. Označme P 2 lineární prostor všech polynomů nejvýše 2. stupně. Nechť A : P 2 P 2 je lineární zobrazení, pro které platí A(x 2 + x + 1) x 2 + x + 2, A(x 2 + 2x + 1) x 2 + 2x, A(x 2 + x + 2) x 2 + 3x 2. Rozhodněte, zda je zobrazení A prosté. Najdeme matici A lineárního zobrazení A vzhledem k bazím (x 2 + x + 1, x 2 + 2x + 1, x 2 + x + 2) a bázi standardní (x 2, x, 1). Je to matice, jejímiž sloupci jsou souřadnice obrazů vektorů z báze prostoru vzorů vzhledem k bázi prostoru obrazů (tj. bázi standardní). A Zobrazení A je prosté právě tehdy, když je matice A regulární. deta , A není regulární a zobrazení A tedy není prosté. 5. Definujte hodnost matice. Najděte matici typu (4, 3), která má hodnost 2. Zdůvodněte. Hodnost matice typu (m,n) je dimense podprostoru lineárního prostorur n, který je generován řádky matice. Takovou maticí je např matice neboť bazí prostoru generovaného vektory (1, 1, 1), (0, 1, 1), (2, 2, 2), (0, 0, 0) je např. množina {(1, 1, 1), (0, 1, 1)}.,
3 Zadání C. 1. Polynom P (x) má v uspořádané bázi (x 2 x 1, 2x 2 + x + 1, x 2 x + 2) souřadnice ( 1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 + 1, x 2 x 1, x 2 x). Nejprve si spočítáme polynom P (x), potom si ho vyjádříme jako lineární kombinaci vektorů x 2 +1, x 2 x 1, x 2 x. Vektor koeficientů této lineární kombinace je vektor souřadnic polynomu P (x) vzhledem k uspořádané bázi (x 2 + 1, x 2 x 1, x 2 x). P (x) 1(x 2 x 1) + 1(2x 2 + x + 1) + 1(x 2 x + 2) 2x 2 + x + 4 a(x 2 + 1) + b(x 2 x 1) + c(x 2 x) (a + b + c)x 2 + ( b c)x + (a b) Rovnají-li se dva polynomy, rovnají se jejich koeficienty u odpovídajících mocnin, tedy a + b + c 2 b c 1 a b 4 Tato soustava má jediné řešení a to a 3, b 1, c 0. Souřadnice polynomu P (x) vzhledem k bázi (x 2 + 1, x 2 x 1, x 2 x) jsou (3, 1, 0). 2. Najděte všechna řešení maticové rovnice XB X C, kde B 1 1 1, C XB X C X(B E) C X C(B E) 1 X Spočtěte determinant matic A a A 1, jestliže a IR a A a 4 + a 1 a a 4 + 2a 2 a 2 Matici nejprve upravíme, např. takto: Od 2., od 3. a od 4. sloupce odečteme 1. sloupec. Při těchto úpravách se determinant nezmění. Potom uděláme rozvoj podle 1. řádku. Ve čtvercové matici řádu 3 pak můžeme ještě udělat rozvoj podle 1. sloupce. ( 1) a 4 + a 1 a a 4 + 2a 2 a a 2 a 1 1 3a 1 2a a 0 3 2a 2 a 3 + 2a 1 1 3a 1 2a ( 1)4 1 ( 2( 2 a) ( 3 2a)( 1)) 4 + 2a 3 2a 1 Tedy deta 1. Podle Laplaceovy věty platí deta deta 1 det(a A 1 ) dete 1, takže pro všechna a IR je deta 1 1.
4 4. Označme P 2 lineární prostor všech polynomů nejvýše 2. stupně. Nechť A : P 2 P 2 je lineární zobrazení definované předpisem A(ax 2 + bx + c) (a b c)x 2 + (a b + c)x + 2a + b c. Najděte matici tohoto zobrazení vzhledem ke standardním bazím a rozhodněte, zda je toto zobrazení prosté. Matice lineárního zobrazení vzhledem ke standardním bazím je taková matice, jejímiž sloupci jsou souřadnice obrazů vektorů ze standardní báze vzorů vzhledem ke standardní bázi prostoru obrazů. Spočítáme si, na co se zobrazí vektory x 2, x, 1. A(x 2 ) x 2 + x + 2, A(x) x 2 x + 1, A(1) x 2 + x 1. Matice lineárního zobrazení vzhledem ke standardním bazím je tedy matice A Zobrazení A je prosté právě tehdy, když je matice A regulární. deta , A je regulární a zobrazení A je tedy prosté. 5. Definujte inversní matici k matici A. Dokažte, že pokud existuje inversní matice k matici A, pak je určena jednoznačně. Necht A je čtvercová matice řádu n. Inversní maticí k matici A nazveme čtvercovou matici X řádu n, pro kterou platí AX XA E. Nechť tuto podmínku splňují matice X, Y, tj. platí AX XA E a také AY YA E. Potom X XE X(AY) (XA)Y EY Y. Matice X a Y jsou si tedy rovny.
5 Zadání B. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte, zda jsou lineárně nezávislé také vektory u + v + 2 w, 2 u 2 v + 3 w, 2 u 2 v w. Uvažujme nulovou lineární kombinaci vektorů u + v + 2 w, 2 u 2 v + 3 w, 2 u 2 v w. α 1 ( u + v + 2 w) + α 2 (2 u 2 v + 3 w) + α 3 (2 u 2 v w) o (α 1 + 2α 2 + 2α 3 ) u + (α 1 2α 2 2α 3 ) v + (2α 1 + 3α 2 α 3 ) w o je nulová lineární kombinace vektorů u, v, w. Ta musí být triviální, protože tyto vektory jsou lineárně nezávislé. Platí tedy α 1 + 2α 2 + 2α 3 0 α 1 2α 2 2α 3 0 2α 1 + 3α 2 α 3 0 Napíšeme a upravíme matici této soustavy: Tato soustava má jediné řešení a to α 1 α 2 α 3 0. Existuje jediná nulová lineární kombinace vektorů u + v + 2 w, 2 u 2 v + 3 w, 2 u 2 v w (triviální), vektory jsou tedy také lineárně nezávislé. 2. Najděte všechna řešení maticové rovnice AX C X, kde A , C AX C X AX + X C (A + E)X C X (A + E) 1 C) X Pro které hodnoty parametru p IR existuje k matici A inveresní matice? A p p + 6 4p + 7 p + 5 p + 4 Inversní matice existuje pouze k regulární matici, tedy k matici, jejíž determinant je nenulový. Spočítáme deta. Matici nejprve upravíme, např. takto: Od 2. sloupce, od 3. sloupce a od 4. sloupce odečteme 1. sloupec. Při těchto úpravách se determinant nezmění. Potom uděláme rozvoj podle 1. řádku. Ve čtvercové matici řádu 3 pak můžeme ještě k 2. a ke 3. sloupci přičíst 1. sloupec a udělat rozvoj podle 1. řádku p p + 6 4p + 7 p + 5 p p 1 2 2p p 1 p 2 p
6 ( 1) p p 1 p 2 p p p 1 p 2 2p + 1 p p 1 ( 1) 2 1 ((p 1)(p 1) p(p 2)) p 2 2p + 1 p 2 + 2p 1 Tedy deta 1, a inversní matice existuje pro všechna p IR. 4. Označme P 2 lineární prostor všech polynomů nejvýše 2. stupně. Nechť A : P 2 P 2 je lineární zobrazení, pro které platí A(x 2 + 2x 1) x 2 + x + 2, A(x 2 + x 2) x 2 + 2x, A(x 2 + 2x) x 2 + 3x 2. Rozhodněte, zda je zobrazení A prosté. Najdeme matici A lineárního zobrazení A vzhledem k bazím (x 2 + 2x 1, x 2 + x 2, x 2 + 2x) a bázi standardní (x 2, x, 1). Je to matice, jejímiž sloupci jsou souřadnice obrazů vektorů z báze prostoru vzorů vzhledem k bázi prostoru obrazů (tj. bázi standardní). A Zobrazení A je prosté právě tehdy, když je matice A regulární. deta , A není regulární a zobrazení A tedy není prosté. 5. Definujte souřadnice vektoru u vzhledem k uspořádané bázi B. Spočtěte souřadnice polynomu P (x) 3x 3 + 5x 2 1 vzhledem k uspořádané bázi B (x 2, 1, x, x 3 ). Nechť B ( b 1, b 2,... b n ), je uspořádaná báze vektorového prostoru V. Každý vektor v V můžeme právě jedním způsobem napsat jako lineární kombinaci vektorů z báze B. Vektor koeficientů této lineární kombinace nazveme souřadnice vektoru v vzhledem k bázi B. Tedy jestliže v a 1 b1 + a 2 b a n bn, pak vektor souřadnic je (a 1, a 2,..., a n ). Polynom P (x) 3x 3 + 5x x 2 + ( 1) x + 3 x 3, jeho souřadnice vzhledem k bázi B tedy jsou (5, 1, 0, 3).
7 Zadání D. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte, zda jsou lineárně nezávislé také vektory 2 u v + 2 w, u + 2 v 3 w, 2 u v 2 w. Uvažujme nulovou lineární kombinaci vektorů 2 u v + 2 w, u + 2 v 3 w, 2 u v 2 w. α 1 (2 u v + 2 w) + α 2 ( u + 2 v 3 w) + α 3 (2 u v 2 w) o (2α 1 +α 2 +2α 3 ) u +( α 1 +2α 2 α 3 ) v +(2α 1 3α 2 2α 3 ) w o je nulová lineární kombinace vektorů u, v, w. Ta musí být triviální, protože tyto vektory jsou lineárně nezávislé. Platí tedy 2α 1 + α 2 + 2α 3 0 α 1 + 2α 2 α 3 0 2α 1 3α 2 2α 3 0 Napíšeme a upravíme matici této soustavy: Tato soustava má jediné řešení a to α 1 α 2 α 3 0. Existuje jediná nulová lineární kombinace vektorů 2 u v + 2 w, u + 2 v 3 w, 2 u v 2 w (triviální), vektory jsou tedy také lineárně nezávislé. 2. Najděte všechna řešení maticové rovnice XA C X, kde A 2 3 1, C XA C X XA + X C X(A + E) C X C(A + E) 1 X Pro které hodnoty parametru p IR existuje k matici A inveresní matice? A p p 2 p 1 p 1 p + 4 p 3 p 4 Inversní matice existuje pouze k regulární matici, tedy k matici, jejíž determinant je nenulový. Spočítáme deta. Matici nejprve upravíme, např. takto: Od 2. sloupce a od 3. sloupce odečteme 1. sloupec. Při těchto úpravách se determinant nezmění. Potom uděláme rozvoj podle 1. řádku. Ve čtvercové matici řádu 3 pak můžeme ještě k 1. sloupci přičíst dvojnásobek 3. sloupce a udělat rozvoj podle 2. řádku p p 2 p 1 p 1 p + 4 p 3 p p p 1 5 2p 2 p 4
8 ( 1) p 2 p p 4 Tedy deta 1, a inversní matice existuje pro všechna p IR. ( 1)5 1 ( 4 ( 3)) ( 1)( 1) 1 4. Označme P 2 lineární prostor všech polynomů nejvýše 2. stupně. Nechť A : P 2 P 2 je lineární zobrazení definované předpisem A(ax 2 + bx + c) (a + b c)x 2 + (a + c)x + 2a b c. Najděte matici tohoto zobrazení vzhledem ke standardním bazím a rozhodněte, zda je toto zobrazení prosté. Matice lineárního zobrazení vzhledem ke standardním bazím je taková matice, jejímiž sloupci jsou souřadnice obrazů vektorů ze standardní báze vzorů vzhledem ke standardní bázi prostoru obrazů. Spočítáme si, na co se zobrazí vektory x 2, x, 1. A(x 2 ) x 2 + x + 2, A(x) x 2 1, A(1) x 2 + x 1. Matice lineárního zobrazení vzhledem ke standardním bazím je tedy matice A Zobrazení A je prosté právě tehdy, když je matice A regulární. deta , A je regulární a zobrazení A je tedy prosté. 5. Definujte determinant čtvercové matice. Odvoďte Sarrusovo pravidlo pro matici řádu 2. Nechť A (a i,j ) je čtvercová matice řádu n. Determinantem této matice je reálné číslo deta ( 1) sgnπ a 1,π(1) a 2,π(2)...a n,π(n), π kde sčítáme přes všechny permutace π. Pro n 2 máme dvě permutace: π 1, která číslu 1 přiřadí číslo 1 a číslu 2 přiřadí číslo 2 a jejíž znaménko je +1, a permutaci π 2, která číslu 1 přiřadí číslo 2 a číslu 2 přiřadí číslo 1 a jejíž znaménko je 1. Tedy deta (+1) a 1,1 a 2,2 + ( 1) a 1,2 a 2,1 Determinant tedy spočítáme tak, že od součinu členů na hlavní diagonále odečteme součin členů na vedlejší diagonále.
α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0
Vzhledem k tomu, že jsem to psala ve velkém spěchu, mohou se vyskytnout nějaké chybičky. Pokud nějaké najdu, opravím je hned po prázdninách. Zadání A. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte,
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,
Soutavy lineárních algebraických rovnic Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, X R n je sloupcový vektor n neznámých x 1,..., x n, B R m je daný sloupcový vektor pravých stran
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
Polynomy. Matice a determinanty. 1. Rozložte na součin kořenových činitelů polynom. P(x) = x 4 6x Řešení: x 4 6x 2 +8 = (x+2)(x 2)(x+ 2)(x 2)
Polynomy 1 Rozložte na součin kořenových činitelů polynom P(x = x 4 6x 2 +8 x 4 6x 2 +8 = (x+2(x 2(x+ 2(x 2 2 Rozložte na součin ireducibilních reálných polynomů polynom P(x = x 6 64 x 6 64 = (x 2(x 2
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Soustavy lineárních rovnic a determinanty
Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
Cvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Soustava m lineárních rovnic o n neznámých je systém
1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Matematika 2 pro PEF PaE
Determinanty / 8 Matematika 2 pro PEF PaE 3 Determinanty Přemysl Jedlička Katedra matematiky, TF ČZU Permutace Determinanty Výpočet determinantu z definice 2 / 8 Permutací množiny {,, n} rozumíme prosté
Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců
Determinant matice Čtvercové matice Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant je zobrazení, které přiřadí každé čtvercové matici A skalár (reálné číslo).
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
EUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
ftp://math.feld.cvut.cz/pub/olsak/linal/
Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
z textu Lineární algebra
2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer
Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.
Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1
Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném
VÝSLEDKY Písemný test z předmětu BI-LIN( ), varianta R
VÝSLEDKY Písemný test z předmětu BI-LIN(19. 4. 2011), varianta R 1.Nechť p, q, rjsoupolynomy,všechnymajístupeňroven n.pakpolynom má stupeň: a)vždyroven n 2, b)vždyroven2n, c)vždyroven n, d)nejvýšeroven
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry TU v Liberci Jiří Hozman 1. dubna 2010 Cvičení 2 Příklad 1. Rozhodněte, zda lze vektor x vyjádřit jako lineární kombinaci vektorů u, v, w, v
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
1/10. Kapitola 12: Soustavy lineárních algebraických rovnic
1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11
[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}
Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
Vlastní čísla a vlastní vektory
Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální
Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
A0B01LAA Lineární algebra a aplikace (příklady na cvičení- řešení)
A0B0LAA Lineární algebra a aplikace příklady na cvičení- řešení Martin Hadrava martin@hadrava.eu. ledna 0.týdenod9.9. Řešení soustav lineárních rovnic Gaussovou eliminační metodou diskuse počtu řešení..
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.
Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R
těchto písemek (bez řešení) najdete na (odkazy v posledních dvou odstavcích před sekcí Literatura ).
Vážení studenti, předkládám vám zde vzorová řešení písemek, které proběhly letos v semestru, a také řešení vzorové písemky. Zadání těchto písemek (bez řešení) najdete na http://math.feld.cvut.cz/0educ/pozad/y01alg.htm
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
P 1 = P 1 1 = P 1, P 1 2 =
1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.
Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Číselné vektory, matice, determinanty
Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
Transformace souřadnic
Transformace souřadnic Odpřednesenou látku naleznete v kapitolách 8.2 a 8.3 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01AG 5.11.2015: Transformace souřadnic 1/17 Minulá přednáška
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p Např: 2 2 + (-2) 4 + 0 0 + 1 1 = -3 INVERZNÍ MATICE Pro čtvercovou matici B může (ale nemusí) existovat
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
Řešené úlohy z Úvodu do algebry 1
Řešené úlohy z Úvodu do algebry Veronika Sobotíková katedra matematiky FEL ČVUT Vzhledem k tomu, že se ze strany studentů často setkávám s nepochopením požadavku zdůvodnit jednotlivé kroky postupu řešení,
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)
4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
Soustavy lineárních rovnic
Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Obecná úloha lineárního programování
Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
(2) [B] Nechť G je konečná grupa tvořena celočíselnými maticemi roměru 2 2 s operací násobení. Nalezněte všechny takové grupy až na izomorfizmus.
(1 [B] Nechť A : R 6 R 6 je lineární zobrazební takové, že A 26 = I. Najděte lineární prostory V 1, V 2 a V 3 takové, že R 6 = V 1 V 2 V 3 dim V 1 = dim V 2 = dim V 3 AV 1 V 1, AV 2 V 2 a AV 3 V 3 (2 [B]
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?
Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
Linearní algebra příklady
Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového
ČTVERCOVÉ MATICE. Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det(a) značíme determinant čtvercové matice A
ČTVERCOVÉ MTICE Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det() značíme determinant čtvercové matice Regulární matice hodnost je rovna jejímu řádu determinant je
ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A
Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4
Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
ALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
Lineární algebra : Vlastní čísla, vektory a diagonalizace
Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je